2D Octagon-Structure Carbon and Its Polarization Resolved Raman Spectra
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mu, X.; Sun, M. The linear and non-linear optical absorption and asymmetrical electromagnetic interaction in chiral twisted bilayer graphene with hybrid edges. Mater. Today Phys. 2020, 14, 100222. [Google Scholar] [CrossRef]
- Wang, J.; Mu, X.; Wang, L.; Sun, M. Properties and applications of new superlattice: Twisted bilayer graphene. Mater. Today Phys. 2019, 9, 100099. [Google Scholar] [CrossRef]
- Li, P.; Luo, W. A new structure of two-dimensional allotropes of group V elements. Sci. Rep. 2016, 6, 25423. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.R.; Manjanath, A.; Singh, A.K. pentahexoctite: A new two-dimensional allotrope of carbon. Sci. Rep. 2014, 4, 7164. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Liang, S.-D.; He, C.; Xie, W.; He, H.; Mai, Q.; Li, J.; Yao, D.-X. Stabilities and novel electronic structures of three carbon nitride bilayers. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, D.; Jana, D. First-principles calculation of the electronic and optical properties of a new two-dimensional carbon allotrope: Tetra-penta-octagonal graphene. Phys. Chem. Chem. Phys. 2019, 21, 24758–24767. [Google Scholar] [CrossRef]
- Du, Q.-S.; Tang, P.-D.; Huang, H.-L.; Du, F.-L.; Huang, K.; Xie, N.-Z.; Long, S.-Y.; Li, Y.-M.; Qiu, J.-S.; Huang, R.-B. A new type of two-dimensional carbon crystal prepared from 1,3,5-trihydroxybenzene. Sci. Rep. 2017, 7, 40796. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.; Li, J.; Wang, W.; Liang, S.-D.; Yao, D.-X. Electronic Structure and Band Gap Engineering of Two-Dimensional Octagon-Nitrogene. Sci. Rep. 2018, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Qin, G.; Hao, K.-R.; Yan, Q.-B.; Hu, M.; Su, G. Exploring T-carbon for energy applications. Nanoscale 2019, 11, 5798–5806. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Fatemi, V.; Demir, A.; Fang, S.; Tomarken, S.L.; Luo, J.Y.; Sanchez-Yamagishi, J.D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nat. Cell Biol. 2018, 556, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nat. Cell Biol. 2018, 556, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yu, Y.; Ye, G.J.; Ge, Q.; Ou, X.; Wu, H.; Feng, D.; Chen, X.H.; Zhang, Y. Black phosphorus field-effect transistors. Nat. Nanotechnol. 2014, 9, 372–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharya, A.; Das, G.P. Band gap engineering by functionalization of BN sheet. Phys. Rev. B 2012, 85, 035415. [Google Scholar] [CrossRef] [Green Version]
- Slotman, G.J.; De Wijs, G.A.; Fasolino, A.; Katsnelson, M.I. Phonons and electron-phonon coupling in graphene-h-BN heterostructures. Ann. Phys. 2014, 526, 381–386. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Ma, F.; Liang, W.; Sun, M. Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures. Mater. Today Phys. 2017, 2, 6–34. [Google Scholar] [CrossRef]
- Deng, Z.; Li, Z.; Wang, W. Electron affinity and ionization potential of two-dimensional honeycomb sheets: A first principle study. Chem. Phys. Lett. 2015, 637, 26–31. [Google Scholar] [CrossRef]
- Luo, Y.; Wang, S.; Tang, W.; Chou, J.-P.; Yu, J.; Sun, Z.; Sun, M. Transition-metal dichalcogenides/Mg(OH)2 van der Waals heterostructures as promising water-splitting photocatalysts: A first-principles study. Phys. Chem. Chem. Phys. 2019, 21, 1791–1796. [Google Scholar] [CrossRef]
- Yin, X.; Ye, Z.; Chenet, D.A.; Ye, Y.; O’Brien, K.; Hone, J.C.; Zhang, X. Edge Nonlinear Optics on a MoS2 Atomic Monolayer. Science 2014, 344, 488–490. [Google Scholar] [CrossRef]
- Lu, C.-P.; Li, G.; Watanabe, K.; Taniguchi, T.; Andrei, E.Y. MoS2: Choice Substrate for Accessing and Tuning the Electronic Properties of Graphene. Phys. Rev. Lett. 2014, 113, 156804. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.; Shi, Y.; Yang, X.; Li, J.; Sun, M.-T.; Xu, X.; Pullerits, T.; Liang, W.; Sun, M. Physical mechanism on exciton-plasmon coupling revealed by femtosecond pump-probe transient absorption spectroscopy. Mater. Today Phys. 2017, 3, 33–40. [Google Scholar] [CrossRef]
- Chen, S.-L.; Liang, Y.-Z.; Hou, Y.; Wang, H.; Wu, X.; Gan, W.; Yuan, Q. Simple physics in and easy manipulating of the interfacial behavior of charged molecules on drug delivery vesicles. Mater. Today Phys. 2019, 9, 100092. [Google Scholar] [CrossRef]
- Zhang, Y.; Lee, J.; Wang, W.; Yao, D.-X. Two-dimensional octagon-structure monolayer of nitrogen group elements and the related nano-structures. Comput. Mater. Sci. 2015, 110, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.-T.; Lu, C.; Yang, F.; Yao, D.-X. Single-orbital realization of high-temperature superconductivity in the square-octagon lattice. Phys. Rev. B 2019, 99, 184506. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Yao, Y.; Zhu, S.; Yang, Y.; Lin, L. Fabrication of free-standing octagon-shaped carbon nanofibre assembly for electrical actuation of shape memory polymer nanocomposites. Pigment. Resin Technol. 2015, 44, 157–164. [Google Scholar] [CrossRef]
- Liu, M.; Liu, M.; She, L.; Zha, Z.; Pan, J.; Li, S.; Li, T.; He, Y.; Cai, Z.; Wang, J.; et al. Graphene-like nanoribbons periodically embedded with four- and eight-membered rings. Nat. Commun. 2017, 8, 14924. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Zhao, M.; Yu, W.; Lu, Y.; Chen, C.; Xu, M.; Qiaoliang, B.; Loh, K.P.; Bao, Q. Raman Spectroscopy of Two-Dimensional Bi2TexSe3−x Platelets Produced by Solvothermal Method. Materials 2015, 8, 5007–5017. [Google Scholar] [CrossRef]
- Ouyang, G.; Sun, C.Q.; Zhu†, W.-G. Pressure-Stiffened Raman Phonons in Group III Nitrides: A Local Bond Average Approach. J. Phys. Chem. B 2008, 112, 5027–5031. [Google Scholar] [CrossRef]
- Bhattacharya, T.S.; Mitra, S.; Singha, S.S.; Mondal, P.K.; Singha, A. Tailoring light-matter interaction in WS2 –gold nanoparticles hybrid systems. Phys. Rev. B 2019, 100, 235438. [Google Scholar] [CrossRef]
- Zhao, W.; Wu, Q.; Hao, H.; Wang, J.; Li, M.; Zhang, Y.; Bi, K.; Chen, Y.; Ni, Z. Plasmon–phonon coupling in monolayer WS2. Appl. Phys. Lett. 2016, 108, 131903. [Google Scholar] [CrossRef]
- Meunier, V.; Meunier, V. First-principles Raman spectra of MoS2, WS2 and their heterostructures. Nanoscale 2014, 6, 5394–5401. [Google Scholar] [CrossRef]
- Ceriotti, M.; Pietrucci, F.; Bernasconi, M. Ab initiostudy of the vibrational properties of crystalline TeO2: The α, β, and γ phases. Phys. Rev. B 2006, 73, 104304. [Google Scholar] [CrossRef] [Green Version]
- Sheng, X.-L.; Yan, Q.-B.; Ye, F.; Zheng, Q.-R.; Su, G. T-Carbon: A Novel Carbon Allotrope. Phys. Rev. Lett. 2011, 106, 155703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Wang, R.; Zhu, X.; Pan, A.; Han, C.; Li, X.; Zhao, D.; Ma, C.; Wang, W.; Su, H.; et al. Pseudo-topotactic conversion of carbon nanotubes to T-carbon nanowires under picosecond laser irradiation in methanol. Nat. Commun. 2017, 8, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter. 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Togo, A.; Chaput, L.; Tanaka, I.; Hug, G. First-principles phonon calculations of thermal expansion in Ti3SiC2, Ti3AlC2, and Ti3GeC2. Phys. Rev. B 2010, 81, 174301. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Hafner, J. Ab initiomolecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initiomolecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Chevary, J.A.; Vosko, S.H.; Jackson, K.A.; Pederson, M.R.; Singh, D.J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687. [Google Scholar] [CrossRef]
- Deng, Z.; Li, Z.; Wang, W.; She, J. Vibrational properties and Raman spectra of pristine and fluorinated blue phosphorene. Phys. Chem. Chem. Phys. 2019, 21, 1059–1066. [Google Scholar] [CrossRef] [PubMed]
- Shegai, T.O.; Haran, G. Probing the Raman Scattering Tensors of Individual Molecules. J. Phys. Chem. B 2006, 110, 2459–2461. [Google Scholar] [CrossRef] [PubMed]
- Kranert, C.; Sturm, C.; Schmidt-Grund, R.; Grundmann, M. Raman tensor elements of β-Ga2O3. Sci. Rep. 2016, 6, 35964. [Google Scholar] [CrossRef] [PubMed]
- Sander, T.; Eisermann, S.; Meyer, B.K.; Klar, P.J. Raman tensor elements of wurtzite ZnO. Phys. Rev. B 2012, 85, 165208. [Google Scholar] [CrossRef]
- Zheng, W.; Zheng, R.; Huang, F.; Wu, H.; Li, F. Raman tensor of AlN bulk single crystal. Photon. Res. 2015, 3, 38–43. [Google Scholar] [CrossRef] [Green Version]
- Umari, P.; Pasquarello, A.; Corso, A.D. Raman scattering intensities in α-quartz: A first-principles investigation. Phys. Rev. B 2001, 63, 094305. [Google Scholar] [CrossRef]
- Saboori, S.; Deng, Z.; Li, Z.; Wang, W.; She, J. β-As Monolayer: Vibrational Properties and Raman Spectra. ACS Omega 2019, 4, 10171–10175. [Google Scholar] [CrossRef]
- Jin, M.; Zheng, W.; Ding, Y.; Zhu, Y.; Wang, W.; Huang, F. Raman Tensor of WSe2 via Angle-Resolved Polarized Raman Spectroscopy. J. Phys. Chem. C 2019, 123, 29337–29342. [Google Scholar] [CrossRef]
- Saboori, S.; Wang, W.; Li, Z.; She, J. Raman spectra of MXenes Zr2X (X = C and N). Nanotechnology 2020, 31, 405708. [Google Scholar] [CrossRef]
- Luo, G.; Wang, L.; Li, H.; Qin, R.; Zhou, J.; Li, L.; Gao, Z.; Mei, W.-N.; Lu, J.; Nagase, S. Polarized Nonresonant Raman Spectra of Graphene Nanoribbons. J. Phys. Chem. C 2011, 115, 24463–24468. [Google Scholar] [CrossRef]
- Zhu, Y.; Zheng, W.; Wang, W.; Zhu, S.; Cheng, L.; Li, L.; Lin, Z.; Ding, Y.; Jin, M.; Huang, F. Raman tensor of layered black arsenic. J. Raman Spectrosc. 2020, 51, 1324–1330. [Google Scholar] [CrossRef]
- Jin, M.; Zheng, W.; Ding, Y.; Zhu, Y.; Wang, W.; Huang, F. Raman Tensor of van der Waals MoSe2. J. Phys. Chem. Lett. 2020, 11, 4311–4316. [Google Scholar] [CrossRef] [PubMed]
- Tuinstra, F.; Koenig, J.L. Raman Spectrum of Graphite. J. Chem. Phys. 1970, 53, 1126–1130. [Google Scholar] [CrossRef] [Green Version]
- Venezuela, P.; Lazzeri, M.; Mauri, F. Theory of double-resonant Raman spectra in graphene: Intensity and line shape of defect-induced and two-phonon bands. Phys. Rev. B 2011, 84, 035433. [Google Scholar] [CrossRef] [Green Version]
- Krishnan, R.S. Second-Order Raman Spectra of Crystals. Nat. Cell Biol. 1947, 160, 230–231. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.-B.; Zhang, X.; Ijäs, M.; Han, W.-P.; Qiao, X.-F.; Li, X.-L.; Jiang, D.-S.; Ferrari, A.C.; Tan, P.-H. Resonant Raman spectroscopy of twisted multilayer graphene. Nat. Commun. 2014, 5, 5309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Material | Average Energy/Atom |
---|---|
Graphene | −9.224 eV |
Octagon Carbon monolayer | −8.711 eV |
Graphite | −9.306 eV |
Diamond | −9.099 eV |
Octagon Carbon Bulk | −8.782 eV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, C.; Wang, W. 2D Octagon-Structure Carbon and Its Polarization Resolved Raman Spectra. Nanomaterials 2020, 10, 2252. https://doi.org/10.3390/nano10112252
He C, Wang W. 2D Octagon-Structure Carbon and Its Polarization Resolved Raman Spectra. Nanomaterials. 2020; 10(11):2252. https://doi.org/10.3390/nano10112252
Chicago/Turabian StyleHe, Chunshan, and Weiliang Wang. 2020. "2D Octagon-Structure Carbon and Its Polarization Resolved Raman Spectra" Nanomaterials 10, no. 11: 2252. https://doi.org/10.3390/nano10112252
APA StyleHe, C., & Wang, W. (2020). 2D Octagon-Structure Carbon and Its Polarization Resolved Raman Spectra. Nanomaterials, 10(11), 2252. https://doi.org/10.3390/nano10112252