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Abstract: Catalysts for visible-light-driven oxidative cleaning processes and antibacterial applications
(also in the dark) were developed. In order to extend the photoactivity of titanium dioxide into
the visible region, nitrogen-doped TiO2 catalysts with hollow and non-hollow structures were
synthesized by co-precipitation (NT-A) and sol–gel (NT-U) methods, respectively. To increase their
photocatalytic and antibacterial efficiencies, various amounts of silver were successfully loaded on
the surfaces of these catalysts by using a facile photo-deposition technique. Their physical and
chemical properties were evaluated by using scanning electron microscopy (SEM), transmission
electron microscopy–energy dispersive X-ray spectroscopy (TEM–EDS), Brunauer–Emmett–Teller
(BET) surface area, X-ray diffraction (XRD), and diffuse reflectance spectra (DRS). The photocatalytic
performances of the synthesized catalysts were examined in coumarin and 1,4-hydroquinone solutions.
The results showed that the hollow structure of NT-A played an important role in obtaining high
specific surface area and appreciable photoactivity. In addition, Ag-loading on the surface of
non-hollow structured NT-U could double the photocatalytic performance with an optimum Ag
concentration of 10−6 mol g−1, while a slight but monotonous decrease was caused in this respect for
the hollow surface of NTA upon increasing Ag concentration. Comparing the catalysts with different
structures regarding the photocatalytic performance, silverized non-hollow NT-U proved competitive
with the hollow NT-A catalyst without Ag-loading for efficient visible-light-driven photocatalytic
oxidative degradations. The former one, due to the silver nanoparticles on the catalyst surface,
displayed an appreciable antibacterial activity, which was comparable to that of a reference material
practically applied for disinfection in polymer coatings.

Keywords: silver/nitrogen co-doped TiO2; visible-light-driven photocatalysis; hollow structure;
coumarin; hydroquinone; disinfection
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1. Introduction

Titanium dioxide (TiO2) is known as one of the most popular photoactive materials. It has
emerged as an excellent photocatalyst for environmental applications due to its low cost, low toxicity,
outstanding chemical stability, and unique photochemical properties. However, there are some
properties which need to be improved for practical applications under visible light—e.g., the large band
gap energy (∼3.2 eV for anatase) and fast recombination of photo-generated electron-hole pairs [1].

Up to now, many papers have reported different strategies in order to enhance the photoactivity
of TiO2, such as impregnation with dye sensitizers and doping with nonmetal and metal elements.

Dye sensitizers such as quinizarin and zinc protoporphyrin are commonly used to modify the
TiO2 surface. These chromophore compounds are able to absorb visible light and excite electrons.
The excited electrons then migrate to the conduction band of TiO2, leading to the formation of reactive
oxygen species (ROS) [2–4].

On the other hand, doping with nonmetals, including N, F, S, C, and P, has been explored to extend
the light absorption of TiO2 into the visible-light region. Nitrogen has been proven and considered as
an effective dopant to narrow the band-gap energy due to its atomic size comparable to that of oxygen,
high electronegativity and ionization energy, marked thermal stability, and cost-effectiveness [1,5].

Meanwhile, the incorporation of noble metals (such as Au, Ag, Pt, Cu, and Pd) onto the surface of
N-TiO2 is also a favorable strategy to overcome the problem of fast recombination of the photo-generated
electron-hole pairs and to improve the charge transfer [6–9]. Among them, Ag is the most suitable
candidate for industrial applications due to its relatively low cost and easy preparation [10–12].

In addition, Ag nanoparticles also have been known to display strong cytotoxicity toward a wide
range of bacteria, including Escherichia coli [13], Staphylococcus aureus [14], Acinetobacter baumannii [15],
etc. The Ag nanoparticles can simply come into contact with the cell surfaces and destroy the
membranes to inactivate bacteria. In another way, the inactivation process can be initiated by
interaction of the bacteria with ROS (•O2

−, •OH) in the photocatalytic system [16,17]. Therefore,
in addition to enhancing the photoactivity of N-TiO2, Ag doping is also expected to result in an
antibacterial effect for selected microorganisms.

Typically, when Ag/N-TiO2 catalysts are illuminated by light, electron-hole (e−, h+) pairs form,
and then the interfacial charge transfers to Ag nanoparticles through the formation of Schottky barriers
can suppress recombination of electrons and holes and extend their lifetimes in the Ag/N-TiO2 system.
The surrounding O2 molecules can capture the electrons to form superoxide anion radicals (•O2

−), and
H2O molecules can be oxidized in the presence of holes to form hydroxyl radicals (•OH), as shown in
Figure 1. These ROS (•O2

−, •OH) have strong oxidation potentials and can degrade numerous organic,
frequently bio-resistant materials into harmless products [18–20].
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Gao et al. prepared Ag/N-TiO2 via hydrothermal method with various Ag concentrations.
The photocatalytic activity of an as-prepared sample was examined in Rhodamine B (RhB) solution
under visible-light irradiation. It was found that the photocatalytic performance of Ag/N-TiO2

was affected by the concentration of Ag nanoparticles. It was reported that in the first period, the
photocatalytic activity increased upon increasing Ag content, and then dropped above the optimal
Ag content [10]. Gaidau et al. synthesized Ag/N-TiO2 grains by using electrochemical method. The
photocatalytic experiment with the Orange II dye demonstrated that the photocatalytic activities of TiO2

under visible light could be improved by the synergistic effect of N doping and Ag modification [14].
Sun et al. successfully fabricated an Ag/N-TiO2 catalyst via an in situ calcination procedure, with
titanium nitride (TiN) and silver nitrate (AgNO3) as starting materials. The catalyst displayed an
enhanced light absorption and a red shift of the optical edge compared to pure TiO2 and N-TiO2.
Under visible-light irradiation, a superior Methylene Blue (MB) degradation over Ag/N-TiO2 was also
found compared to N-TiO2 [21]. However, these methods also involved special equipment or complex
preparation processes. It is still necessary to develop more facile and efficient approaches. In addition,
using dyes as organic model compounds could interfere with the photocatalytic performances of the
catalysts studied due to their own light absorption and sensitizer properties. Therefore, other model
compounds such as chemical probes or organic pollutants which do not absorb visible light must be
utilized in the photocatalytic assessment of the catalysts.

In this work, N-TiO2 catalysts with hollow and non-hollow structures were fabricated via different
methods such as co-precipitation and sol–gel procedures [22]. Titanium isobutoxide–urea (NT-U,
sol–gel) and titanium isopropoxide–ammonium hydroxide (NT-A, co-precipitation) were used as
catalyst precursors. In the designation of the catalysts, NT indicates N-doped TiO2, while U and A
represent the nitrogen sources (urea and ammonium hydroxide).

Ag nanoparticles were also decorated on the surface of N-TiO2 via a facile photo-deposition method.
Various concentrations of Ag were applied to investigate the photocatalytic efficiency under visible light.
In addition, numerous measurements, including diffuse reflectance spectra (DRS), X-ray diffraction
(XRD), scanning electron microscopy (SEM), transmission electron microscopy–energy dispersive
X-ray spectroscopy (TEM–EDS), Brunauer–Emmett–Teller (BET) surface area, and inductively coupled
plasma (ICP) spectroscopy were used for material characterization.

In order to assess the photocatalytic performances of the catalysts, coumarin was used as a
chemical probe to analyze the formation of both •OH and other reactive species (photo-generated
electron or •O2

−) under visible light [22]. Furthermore, to evaluate the performance of photocatalytic
degradation regarding emerging contaminants in the environment, 1,4-hydroquinone (1,4-HQ) was
also used as a model organic pollutant, which is a major benzene metabolite and commonly found in
the industries of pharmaceutics and personal care [23,24]. Lastly, antibacterial effects of the catalysts
were evaluated by using bioluminescence method in the presence of Vibrio fischeri strain. These
bioluminescent bacteria are Gram-negative and commonly found in the marine environment [25].

2. Experimental

2.1. Materials

Titanium (IV) isobutoxide, (TTIB; Ti[OC(CH3)3]4, 98%), and titanium (IV) isopropoxide (TTIP;
Ti[OCH(CH3)2]4, 98%), were purchased from Acros Organic (Geel, Belgium) and used as titanium
precursors. Urea (CH4N2O) and ammonium hydroxide (NH4OH) 25% were used as nitrogen sources
(pure reagent grade) and obtained from Scharlab Hungary Kft. (Debrecen, Hungary). Nitric acid
(HNO3) 65% was supplied by VWR International Kft. (Debrecen, Hungary). Silver nitrate (AgNO3) and
ethanol were purchased from Forr-Lab Kft. (Budapest, Hungary) and Molar Chemical Kft. (Halásztelek,
Hungary). Coumarin (C9H6O2) and 7-hydroxycoumarin (C9H6O3, designated as 7-OHC) 99% were
purchased from Carlo Erba Reagent (Cornaredo MI, Italy) and Sigma-Aldrich Kft. (Budapest, Hungary),
respectively. 1,4-hydroquinone (C6H6O2) ≥99% was obtained from Sigma-Aldrich Kft. Compressed air
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was introduced (via bubbling) into the reaction mixtures from a gas bottle [22]. Freeze-dried bacteria
(for Lumistox bacteria test) were provided by Hach Lange GmbH (Düsseldorf, Germany).

2.2. Synthesis of N-doped TiO2

Sol–gel method (NT-U): A volume of 5 cm3 TTIB was dissolved drop-wise into 50 cm3 anhydrous
ethanol. Furthermore, 3.6 g of urea in 2 cm3 of NH4OH was slowly added into the transparent solution
under a vigorous stirring at room temperature for 2 h then temperature was increased to 80 ◦C for 1 h.
Subsequently, a white gel was vacuum filtered and dried at 40 ◦C for 24 h [26].

Co-precipitation method (NT-A): The catalyst was prepared by using ammonium hydroxide as
nitrogen precursor and the synthesis procedure was adopted from our previous work [22]. Typically,
85 cm3 of ammonium hydroxide solution (25%) was slowly added to 20 cm3 of nitric acid solution
(65%), and then 50 cm3 of distilled water was also added to the transparent solution and stirred for
10 min. Subsequently, 2 cm3 of TTIP was incorporated into the solution and magnetically stirred for
60 min at 10 ◦C. Afterwards, the white precipitate formed was vacuum filtered and dried at 40 ◦C for
24 h. Finally, the N-TiO2 precursors obtained from these sol–gel and co-precipitation methods were
ground and calcined at 450 ◦C for 30 min in an air atmosphere at a heating rate of 2 ◦C min−1 (in a
Nabertherm P330 furnace, Nabertherm GmbH, Lilienthal, Germany).

2.3. Synthesis of Ag/N Co-Doped TiO2

Ag nanoparticles were decorated on the surface of N-doped TiO2 by using photo-deposition
method. Firstly, 0.180 cm3 solutions of various AgNO3 concentrations (0.2, 2.0, 20, and 200 mM) were
diluted to 15 cm3 with distilled water. Then, 0.36 g of NT-U or NT-A was added into these solutions,
followed by 10-min stirring to reach the adsorption-desorption equilibrium. Subsequently, under
continuous stirring, the mixture was irradiated by using a UV LED (λmax = 389 nm [22]) for 10 min
from a distance of 5 cm. [27]. Lastly, the catalyst was dried at 50 ◦C for 24 h. The obtained catalysts are
denoted as Ag/NT-Ux and Ag/NT-Ax, where x (x = 0, 10−7, 10−6, 10−5 and 10−4 mol g−1) represents
the Ag/NT ratio. The color of the as-synthesized catalysts changed from light yellow to grey upon
increasing the Ag concentration.

In order to estimate the amount of Ag nanoparticles attached on the surface of the catalysts, the
concentrations of Ag in the solution initially (i.e., before the adsorption process), after the adsorption,
and at the end of the deposition were measured by using inductively coupled plasma optical emission
spectroscopy (ICP-EOS, with a Spectroflame Modula equipment, SPECTRO Analytical Instruments,
Kleve, Germany) under Ar plasma.

2.4. Characterizations

In order to identify the morphologies of the particles in the samples, an Apreo SEM (ThermoFisher
Apreo S scanning electron microscope) was used at 5 kV for imaging. A Talos F200X G2 instrument
(Thermo Fisher Scientific, Waltham, MA, USA), equipped with a field-emission gun and a four-detector
Super-X energy-dispersive X-ray spectrometer was used at 200 kV for TEM and elemental analysis.
High-resolution TEM (HRTEM) images were obtained for structure analysis, whereas scanning
transmission electron microscopy (STEM) was used for obtaining high-angle annular dark-field
(HAADF) images and EDS elemental maps. The specific surface area was determined by nitrogen
adsorption/desorption isotherms measured with a Micromeritics ASAP 2000-type instrument on
samples (weight ≈ 1.0 g) previously outgassed in vacuum at 160 ◦C. The surface areas of the
samples were determined by the BET (Brunauer–Emmett–Teller) method from the corresponding
nitrogen adsorption isotherms. The XRD patterns were obtained on a Philips PW 3710 type powder
diffractometer (Philips Analytical, Almeao, Netherlands) with a Cu-Kα radiation source (λ = 1.5405 Å).
Diffuse reflectance spectra (DRS) were recorded on a luminescence spectrometer (LS 50-B, PerkinElmer,
Waltham, MA, USA) equipped with an integrating sphere attachment, and BaSO4 was used as a
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reference standard. The band-gap energy was calculated using Tauc plot of square of the Kubelka–Munk
function against photon energy [22].

2.5. Photocatalytic Experiment

Photocatalytic experiments were carried out using a laboratory-scale quartz reactor with a volume
of 50 cm3. Two visible LEDs (λmax = 453 nm; 2 × 7 W) were used as light sources and located at both
sides of the reactor with a distance of ≈ 3 cm, respectively. The lamp arrangement was modified
and optimized from our previous work in order to reach a higher light intensity [22]. The optimum
arrangement (light intensity = 90 mW cm−2 for each lamp) was obtained as illustrated in Figure 2. In
all experiments, the reaction mixture was also stirred by air bubbling at a flow rate of 20 dm3 h−1.
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Figure 2. Schematic illustration of laboratory-scale quartz reactor, and its setup for
photocatalytic experiments.

Typically, 50 mg of catalyst was added into 10 cm3 of distilled water and sonicated for 30 min to
homogenize the particles. The suspension was left overnight under continuous stirring. Afterwards,
40 cm3 of coumarin (0.1 mM) or 1,4-hydroquinone (0.25 mM) was added into the suspension and left in
the dark (30 min) to reach adsorption-desorption equilibrium. Then the visible LEDs were turned on.

2.6. Analytical Procedure

The samples were taken after given time intervals with a 5-cm3 syringe and filtered by a Millipore
Millex-LCR PTFE 0.45 µm membrane filter. Furthermore, the absorbance of coumarin was measured
by using a UV–Vis spectrophotometer (S-3100, Scinco, Seoul, Korea) and the emission of 7-OHC
(λex = 332 nm and λem = 453 nm) was recorded by a luminescence spectrometer (LS 50-B, PerkinElmer,
Waltham, MA, USA) [22]. Luminescence method was also utilized for monitoring the photodegradation
of 1,4-HQ due to its intense emission at λem = 330 nm (λex = 288 nm). In addition, the concentration of
1,4-HQ was also analyzed by using a high performance liquid chromatograph (HPLC, Shimadzu, Kyoto,
Japan) with a C18 column (Phenomenex Kinetec, 3.0 × 100 mm, 2.6 µm particle sizes, Phenomenex Inc.,
Torrance, CA, USA) for separation and a UV detector at 246 and 288 nm wavelengths. The mobile phase
consisted of methanol and water (5/95%, v/v), and its flow rate was 0.2 cm3/min. The concentrations
of 7-OHC, coumarin, 1,4-HQ were calculated from analytical standard curves. The mineralization
process was measured by using a total organic carbon analyzer (TOC-L, Shimadzu, Kyoto, Japan).

2.7. Antibacterial Study

The antibacterial effect was measured by using Vibrio fischeri luminescent bacteria. The sample
preparation for antibacterial study is described in the Supplementary Information (SI) as Text S1 [28].
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The luminescent intensity of Vibrio fischeri was detected by a Toxalert 100 device. The inhibition rate of
bioluminescence could be achieved by Equation (1).

Relative decompositiont(%) =
Ire f erence(t) − Isample(t)

Ire f erence(t)
× 100 (1)

where Ireference(t) is the emission intensity of the reference or blind sample and Isample(t) is the emission
intensity of the actual sample.

3. Result and Discussion

3.1. Silver Deposition Analysis

The Ag+ concentrations in each solution, initially (AgNO3 + water), after adsorption (AgNO3 +

water + catalyst), and after UV irradiation (AgNO3 + water + catalyst + UV LED) were investigated
by using ICP spectroscopy. Under dark conditions, a certain number of the dissolved Ag+ ions were
adsorbed on the surfaces of the catalysts. NT-A adsorbed a higher amount of Ag+ compared to the
case of the NT-U catalyst with concentrations of 0.97 × 10−5 and 0.89 × 10−5 mol Ag+ per g catalyst,
respectively (Figure 3). However, after irradiation, all Ag+ ions (both on the catalyst surface and in the
solution) were reduced to form Ag0 nanoparticles and deposited on the surfaces of NT-U and NT-A
with concentrations of 0.99 × 10−5 and 1.00 × 10−5 mol g−1, respectively.
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Ag concentration).

Moreover, the adsorption efficiency depended on the initial Ag+ concentration in the solutions:
100%, 89%, and 79% of Ag+ were adsorbed from solutions of 0.024, 0.24, and 2.40 mM Ag+, respectively,
on the surface of NT-U, resulting in 1.00 × 10−6, 0.89 × 10−5, and 0.79 × 10−4 mol g−1 concentrations.
However, after irradiation, all Ag+ ions were successfully reduced and attached onto the surfaces of
the catalysts.

Typically, the photo-generated electrons on the surface of a catalyst are efficiently trapped by
adsorbed Ag+ (rather than by oxygen), resulting in the formation of Ag0 nanoparticles. The holes then
react with adsorbed water molecules to form oxygen and H+, according to the stoichiometry, as given
in Equations (2) and (3) [29].

N-TiO2 {e−, h+} + Ag+
adsorbed→ N-TiO2Ag0 {h+} (2)
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4Ag+ + H2O −→
N−TiO2

4Ag0 + 4H+ + O2 (3)

3.2. Structural and Elemental Analyses

The morphologies and elemental compositions of the catalysts were studied by SEM and TEM–EDS
measurements. Polydispersed (irregular) micro-particles were obtained for both NT-U and NT-A with
sizes in the 1–50 µm range. SEM morphologies showed significant differences between NT-U and NT-A
catalysts; the previous one possessed a non-hollow structure (Figure 4a), and the latter one exhibited a
hollow structure (Figure 4b) [22]. Meanwhile, Ag deposition on the catalysts exhibited a negligible
difference for the surfaces of Ag/NT-U and Ag/NT-A (Figure 4c,d). The diameters of the holes in the
hollow structure (Ag/NT-A) were distributed in the 0.3–1.1 µm range, as shown in Figure S1.
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Figure 4. SEM morphologies of (a) NT-U, (b) NT-A, (c) Ag/NT-U, and (d) Ag/NT-A.

In TEM micrographs of Ag/NT-U 10−4, it is possible to observe the presence of quasi-spherical
Ag nanoparticles on the catalyst’s surface (Figure 5a). The element maps and EDS spectra show that
the catalyst consists of Ti and O as major elements. In addition, nanoparticles of silver as a dopant
are unevenly distributed on the TiO2 aggregates (Figure 5b–d). The sizes of the Ag nanoparticles are
typically in the range of 5 to 100 nm, but most of them are about 20 to 30 nm (Figure 5e). The TEM
images and element maps for Ag/NT-A (with 10−5 mol g−1 concentration) and Ag/NT-U (with 10−5

and 10−6 mol g−1 Ag concentrations) are shown in Figure S2. Figure 5f shows an HRTEM image and
the corresponding fast Fourier transform (FFT) pattern, suggesting that the nanoparticle consists of
pure silver (Ag0).

The specific surface areas of the samples were measured by BET (Brunauer–Emmett–Teller)
methods, as displayed in Table 1. The NT-A catalyst possessed a larger specific surface area (and
pore volume) than NT-U did, with SBET values of 61 and 32 m2 g−1, respectively. These values
are in accordance with the different (hollow and non-hollow) structures shown by the SEM images
(Figure 4). There are similar results in the literature. For instance, Suwannaruang et al. obtained about
34–42 m2 g−1 of specific surface area for N-TiO2 catalysts with nanorice structure prepared by using
the hydrothermal method [30]. Their values indicate relatively even particle surfaces.
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Figure 5. TEM analysis of the Ag/NT-U catalyst (with 10−4 mol g−1 Ag concentrtion); (a) TEM
micrograph; (b,c) element maps obtained in STEM–EDS mode; (d) EDS spectrum of the entire aggregate;
(e) size distribution of Ag nanoparticles; and (f) HRTEM image of Ag nanoparticles with an inserted
fast Fourier transform (FFT) pattern on the lower left, obtained from the area marked by the yellow
square and indexed according to the structure of native silver.

Table 1. Characteristic values of the catalysts prepared.

Catalyst SBET Values/m2 g−1 Pore Volume
V1.7–100 nm/cm3 g−1

Crystallite
Size/nm

Band-Gap
Energy/eV

NT-U 32 0.08456 25.2 3.11
Ag/NT-U 10−5 47 0.10149 24.8 3.01

NT-A 61 0.14307 19.0 3.13
Ag/NT-A 10−5 62 0.14563 18.8 3.01

V1.7–100 nm—BJH cumulative desorption pore volume of pores with diameters between 1.7 and 100 nm.

Ag-loading on the NT-U enhanced the specific surface area to 47 m2 g−1, while it hardly changed
in the case of NT-A (62 m2 g−1). These results may be interpreted by consideration of both the structures
of the catalysts and their modification by the Ag nanoparticles deposited on the particles’ surfaces.
The non-hollow structure of NT-U resulted in a lower specific surface area, which could be increased
by the silver nanoparticles having considerably larger surfaces than the area they covered on the
catalyst. The NT-A catalyst, however, possessed a significantly higher specific surface area due to the
surficial holes with rather bent walls. Hence, deposition of Ag nanoparticles on these walls could not
appreciably enhance the surface area; their own surface hardly exceeded the occupied area on the
catalyst. A partly similar phenomenon was observed by Wang et al. regarding the specific surface
areas of Ag/TiO2 nanofibers and nanotubes synthesized by general and emulsion electrospinning
processes, respectively [20]. They reported that Ag-deposition on the TiO2 nanotubes enhanced the
specific surface area from 60.58 to 76.93 m2 g−1. In contrast, the specific surface area of TiO2 nanofiber
(53.17 m2 g−1) slightly decreased after Ag-loading (51.62 m2 g−1). Those results are also in accordance
with the shapes of the catalyst surfaces.

The BJH (Barret–Joyner–Halenda) model was used to estimate the pore-size distribution of the
samples in the range of 1.7–100 nm diameter. As shown in Figure 6, the surface of the NT-A catalyst
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possessed higher volumes of pores in the diameter range of 3–8.5 nm compared to those of NT-U.
Ag-loading on the NT-U significantly enhanced the volumes of the pores in this diameter range, while
it just slightly increased for the NT-A catalyst. Besides, much lower volumes of pores in the diameter
range of 10–100 nm appeared for NT-A and Ag/NT-A catalysts, but still higher than for NT-U and
Ag/NT-U. The higher volumes of pores with smaller diameters resulted in larger specific surface area
of the catalysts, as indicated in Table 1. Besides, Figure 6 also suggests that silveration of NT-U resulted
in the increase of the volumes of pores with smaller diameters by the decrease of volumes of pores
with longer ones, partly covering the surfaces of larger pores.
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The XRD patterns of NT-U and NT-A catalysts are shown in Figure 7. Both catalysts displayed
diffraction peaks located at 25.09◦, 37.57◦, 47.51◦, 53.69◦, and 62.43◦, corresponding to (101), (004),
(200), (211), and (204) crystal planes (respectively) of the anatase structure of TiO2 (JCPDS card number
21–1272) [22]. That clearly indicated that both NT-U and NT-A existed in pure anatase phase. The
average of the crystallite size was calculated from broadening of XRD peaks by using the Scherrer
equation. The NT-U catalyst displayed a higher crystallite size compared to that of NT-A, as shown in
Table 1. The crystallite sizes of NT-U and NT-A were 25.2 and 19.0 nm, respectively, which implies that
applications of different raw materials and preparation methods led to the formation of catalysts with
identical crystalline phases, but different crystallite sizes.Nanomaterials 2020, 10, x FOR PEER REVIEW 10 of 19 
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Figure 7. XRD patterns of the catalysts with 10−5 mol g−1 Ag concentration.
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Furthermore, no distinct silver signal was observed in the XRD spectra of Ag/NT-U and Ag/NT-A
under various Ag loadings, as shown in Figure S3. It is highly likely that the low amount of
Ag-loading remained below the detection limit of the equipment. As a result, all diffraction peaks
of the silver-modified catalysts (Ag/NT-U and Ag/NT-A) are rather similar to the unmodified ones
(NT-U and NT-A). In addition, silver-modification did not significantly affect the crystallinity of the
catalysts either (Figure S3 and Table S1) [31,32]. Zhou et al. obtained a pure anatase phase for rod-like
N-doped TiO2/Ag composites prepared by sol–gel method. The average crystallite size of the samples
was 16.4 nm [33]. In addition, Gao et al. also reported a pure anatase phase of Ag/N-TiO2 prepared by
hydrothermal method, with the average crystallite size of about 36.1 nm [10].

3.3. Band-Gap Energy

The optical properties of the catalysts were investigated by using DRS analysis. The band-gap
energy was calculated from DRS spectra by application of the Kubelka–Munk function [22]. The
summary of the band-gap energies of all samples is shown in Figure 8 and Table 1. Compared to bare
TiO2 (3.18 eV), N-doping resulted in longer-wavelength absorption edge extending into the visible
range, owing to a narrowed band-gap energy. In addition, Ag deposition also played a crucial role in
the enhancement of light absorption, due to the surface plasmon resonance effect of Ag nanoparticles,
which is owed to the high refractive index of the TiO2 in the surrounding medium [29,34–36]. The
band-gap energies of catalysts with various silver-doping concentrations are shown in Table S1 and
Figure S4.
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Figure 8. Effect of Ag-doping on the band-gap energies of (a) NT-U and (b) NT-A catalysts.

3.4. Evaluation of Photoactivity by Application of Coumarin

Coumarin was used as a single probe in order to detect the formation of reactive species
during the photocatalysis. Coumarin possibly reacts with •OH and other reactive species to produce
various hydroxylated coumarins (OHC, including 29% of 7-OHC [37]) and non-fluorescence products,
respectively [15]. The concentration of coumarin from absorption spectra and that of 7-OHC from
emission spectra were determined by using standard calibration curves [22].

As shown in Figure 9a, after 240-min irradiation time, the NT-U catalyst produced a lower
concentration of 7-OHC (or •OH) than NT-A did. The 7-OHC formations for NT-U and NT-A were
1.43 × 10−4 and 2.84 × 10−4 mM, respectively. This tendency was in agreement with the coumarin
degradation, where NT-U and NT-A were able to degrade 6.26% and 11.82% of coumarin, respectively.
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Figure 9. (a) 7-OHC formation vs. coumarin degradation and (b) formation of OHC vs.
non-identified products.

Furthermore, the amount of OHC was calculated from that of 7-OHC, according to coumarin
degradation via •OH reaction, and non-identified products were obtained from the difference between
the amounts of totally degraded coumarin and formed OHC, representing the coumarin degradation
through the reactions with other reactive species [22]. Figure 9b clearly shows that after 240 min
irradiation, only 5.10 × 10−4 mM (NT-U) and 9.78 × 10−4 mM (NT-A) of coumarin reacted with •OH.
However, more coumarin reacted with other reactive species; 53.7 × 10−4 mM and 96.6 × 10−4 mM for
NT-U and NT-A, respectively.

The better photocatalytic performance of NT-A might be due to its hollow structure. This feature
is crucial in the photocatalytic performance of this catalyst, owing to its large surface area (61 m2 g−1)
and thus more efficient adsorption of coumarin, compared to that of the non-hollow-structured NT-U
(32 m2 g−1). Liu et al. reported that mesoporous nitrogen-doped TiO2 displayed a higher photocatalytic
activity than the non-porous materials did under both UV and visible-light irradiations [38].

Besides specific surfaces areas, photocatalytic activities of Ag/N-TU and Ag/NT-A with various
concentrations of Ag (as nanoparticles) were also investigated in coumarin solutions (Figure S5).
The photocatalytic performances were evaluated on the basis of the initial rates of 7-OHC formation.
Silver-modification on the surface of NT-U catalyst remarkably enhanced the formation of 7-OHC to
the initial rate of 14.9 × 10−7 mM min−1 at the optimum Ag concentration of 10−6 mol g−1, as shown
in Figure 10a. It is well known that silver-modification of such catalysts plays a crucial role in the
photocatalytic activity, specifically trapping photo-generated electrons, and thereby promoting effective
charge separations [27,39,40]. However, Ag-loading above 10−6 mol g−1 reduces the photocatalytic
activity because too much silver on the catalyst surface could be detrimental to photonic efficiency.
This phenomenon may be interpreted by consideration of several factors. As discussed above, silver
nanoparticles can enhance the specific surface area of NT-U, which contributes to a better photocatalytic
efficiency, along with increased charge separation. However, the coverage of the active excitable sites
on the catalyst surface reduces the number of photons utilized for excitation of the semiconductor.
Hence, these opposite effects led to a maximum efficiency at 10−6 mol g−1 silver concentration. The
decrease of the active sites will be the dominant effect at higher Ag concentrations. Earlier literature
also mentioned similar tendencies [34,41–44], but those studies dealt only with silveration of bare
TiO2 catalysts (prepared by various methods) which were mostly applied for degradation of dyes or
bacteria. In addition, Gao et al. also reported Ag-loading on the nitrogen-doped TiO2 catalyst via
hydrothermal procedure [10]. In this case, however, compared to Ag/NT-U produced in our work,
besides the different preparation method, a rather high Ag concentration (0.92 mol%) proved to be
the optimum for photocatalytic degradation of RhB under visible light. This value is two orders of
magnitude higher than 10−6 mol g−1, which corresponds to 0.008 mol%.
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A significantly different tendency was observed with silver-modification on the surface of the
hollow-structured NT-A catalyst (62 m2 g−1 specific surface area). A monotonous decrease in the
photocatalytic activity was observed upon increasing the Ag concentration (to 10−6 and 10−5 mol g−1),
compared to the case of the unmodified NT-A (Figure 10b). While no appreciable increase of the
specific surface area was caused by the Ag-loading of NT-A (see in Table 1), the accessible active
sites monotonously decreased in this case too. Therefore, the latter effect determined the results
of silveration.

Besides the formation of 7-OHC, transformation of coumarin into other hydroxylated derivatives
and via reactions of other photogenerated reactants (such as e− and •O2

−) was also determined
(Figure 10c). In accordance with the results regarding 7-OHC formation, silver-loading of NT-U (with
10−6 mol g−1 Ag concentration) led to a significant increase of the transformation (degradation) in
reactions with both •OH (0.52–0.95%) and other reactive species (5.74–12.60%). In the case of NT-A,
Ag-loading (at the same concentration) moderately decreased the formation of •OH (1.09–0.72%) and
other reactive species (10.73–9.20%) in agreement with Figure 10b.

3.5. Evaluation of Photoactivity by Application of 1,4-hydroquinone

The photocatalytic efficiencies of the catalysts prepared were also investigated by the degradation
of 1,4-HQ, using a method based on the luminescence of the starting compound (see Section 2.6).
Additionally, blind probes (as comparisons) were measured: in the absence of catalyst (i.e., photolysis
designated as “1,4-HQ + Vis”) and with catalyst in the dark (“1,4-HQ + NT-U”). In both blind probes,
a negligible change of the initial concentration of 1,4-HQ was observed (Figure 11a). However, in the
presence of catalysts, 1,4-HQ successfully decomposed to 100% after 180-min and 240-min irradiation
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times with NT-A and NT-U, respectively. In addition, the initial rates of photodegradation were
5.1 × 10−3 and 10 × 10−3 mM min−1 for NT-U and NT-A, respectively (Figure 11b).
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Figure 11. (a) C/C0 and (b) degradation rate of 1,4-HQ over various catalysts.

These results are in full agreement with those obtained for the degradation of coumarin. The
same is valid for the observations with the silverized catalysts with 10−6 mol g−1 Ag concentration.
Accordingly, the photocatalytic degradation of 1,4-HQ on Ag/NT-U was significantly more efficient than
on the unmodified NT-U catalyst. In contrast, Ag-loading of NT-A slightly decreased the degradation
efficiency. The comparisons of the rate data obtained for the unmodified and silverized catalysts are
shown in Table 2. Besides the rates of 1,4-HQ degradation and their ratios (Ag/NT:NT), similar types of
data are also shown regarding the reactions of coumarin with reactive species other than •OH radical
(i.e., e− and •O2

−). The ratios of the corresponding rates measured under the same conditions agree
well; 1.88 vs. 2.00 for Ag/NT-U vs. NT-U, and 0.92 vs. 0.91 for Ag/NT-A vs. NT-A, regarding 1,4-HQ
vs. coumarin. These agreements indicate that, similarly to coumarin, hydroxylation is not the main
degradation route for 1,4-HQ. This observation confirms our previous results [45], showing that the
cleavage of the aromatic ring takes place via reactions other than hydroxylation, and it needs the
presence of dissolved oxygen.

Table 2. Ratios (Ag/NT: NT) of 1,4-HQ degradation and coumarin reaction with other reactive species.

Catalyst v0 (1,4-HQ)
/10−3 mM min−1 Ratio v0 (Other Reactive Species)

/10−3 mM min−1 Ratio

NT-U 5.10
1.88

2.33
2.00

Ag/NT-U 10−6 9.60 4.68

NT-A 10.00
0.92

3.79
0.91

Ag/NT-A 10−6 9.20 3.44

HPLC analyses were also performed in order to investigate the degradation of 1,4-HQ on the
NT-U catalyst. The concentrations of 1,4-HQ measured by using HPLC technique were compared to
those obtained by the luminescence method. The results regarding the photocatalytic degradation
of 1,4-HQ were in full agreement, as shown in Figure 12. This comparison confirmed the reliable
applicability of the faster and simpler luminescence method.
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Figure 12. Comparison of HPLC and luminescence method for monitoring of photocatalytic 1,4-HQ
degradation over NT-U catalyst.

TOC measurements were also carried out to clarify the mineralization process. The TOC
representing the intermediates was estimated from the difference between the total TOC concentration
of the reaction mixture and that of the unreacted 1,4-HQ. The result indicated that the TOC concentration
of intermediate products increased during the photodegradation, while the total TOC of the reaction
mixture steadily dropped from 14.6 to 7.4 mg dm−3 (Figure 13). It implies that a considerable part of
the intermediates was mineralized to CO2 and H2O.
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Figure 13. The change of the total organic carbon (TOC) values during the photocatalytic degradation
of 1,4-HQ over NT-U catalyst.

The intermediates formed from 1,4-HQ are mostly short-chain acids, as observed earlier in
similar systems [24,46–49]. Generally, the produced reactive oxygen species attack the phenyl ring
of 1,4-HQ, producing dihydroxy derivatives (via •OH reaction) or promoting aromatic ring cleavage
(via •O2

− reaction). The mineralization of the intermediates, according to the TOC results, along with
our earlier observation [45] that •OH alone cannot cleave aromatic rings, confirm that other reactive
photogenerated species (e− and •O2

−) play crucial roles in the degradation of these aromatic compounds.
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3.6. Antibacterial Effect

The antibacterial effects of the catalysts were studied using Vibrio fisheri bacteria, as described in
the SI (Text S1). The catalysts were fixed in an acrylate-based polymer on the surface of plastic sheets.
The toxicity effects were measured by inhibition of the bioluminescence intensity of the bacterial
suspension in contact with the catalysts (Figure S6, Tables S2 and S3). A commercially available plastic
sheet with antibacterial surface was used as a control sample for comparison. Table 3 indicates that
silver doping on both NT-U and NT-A could enhance the toxicity effect compared to the unmodified
catalysts. The effect of Ag could be attributed to the fact that when Ag nanoparticles interact with
microorganisms such as bacteria, silver ions (Ag+) are released and damage these organisms by
attacking the negatively-charged cell walls, thereby deactivating cellular enzymes and disrupting
membrane permeability; accordingly, cell lysis and cell death occur [50–52]. The maximum effects
were observed at 10−6 mol g−1 Ag concentration for both Ag/NT-U and Ag/NT-A, with the values of
98% and 61.2%, respectively (Table 3).

Table 3. Antibacterial effects of various catalysts compared to the control sample after 90-min contact.

Ag-Loading/mol g−1 Ag/NT-U/% Ag/NT-A/%

0 40.4 30.0
10−6 98.0 61.2
10−5 70.0 52.2
10−4 46.8 40.5

4. Conclusions

In this study, visible-light-active N-TiO2 photocatalysts were successfully synthesized through
sol–gel (NT-U) and co-precipitation (NT-A) methods. The two differently prepared N-TiO2 catalysts
exhibited different morphologies (hollow NT-A and non-hollow NT-U) and photoactivities in both
coumarin and 1,4-HQ solutions. A facile photo-deposition method was used to decorate N-TiO2

surfaces with Ag nanoparticles. The Ag concentration played a critical role in the photoactivity of
Ag/N-TiO2. The optimum Ag concentration (as low as 10−6 mol g−1) doubled the photocatalytic
efficiency of non-hollow NT-U. However, Ag-loading on the hollow surface of NTA was not favorable
for photocatalytic enhancement. Comparing the catalysts with different structures regarding the
photocatalytic performance, silverized non-hollow NT-U proved competitive with the hollow NT-A
catalyst without Ag-loading. Since the purpose of silveration was also to make these catalysts efficiently
antibacterial, Ag-NT-U with 10−6 mol g−1 Ag concentration proved to be optimal, considering both
photocatalytic and disinfectional activities.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/11/2261/s1.
Text S1. Sample preparation for antibacterial study. Figure S1: Hollow-diameter distribution of Ag/NT-A. Figure
S2: HAADF-TEM images and element maps of (a) Ag/NT-A 10−5, (b) Ag/NT-U 10−5, and (c) Ag/NT-U 10−6 (10−5
and 10−6 are the Ag concentrations in mol g−1). Figure S3: XRD patterns of (a) Ag/NT-U and (b) Ag/NT-A with
different Ag-loadings. Table S1: Crystallite sizes and band-gap energies of Ag/NT-U and Ag/NT-A with different
Ag-loadings. Figure S4: Band-gap energies of (a) Ag/NT-U and (b) Ag/NT-A with different Ag-loadings. Figure
S5:(a,b) 7-OHC formation and (c,d) coumarin degradation over Ag/NTU and Ag/NT-A with different Ag-loadings.
Figure S6: Luminescence intensity of bacterial suspension in the presence of (a) Ag/NT-U and (b) Ag/NT-A
catalysts (with 10−6 mol g−1 Ag concentration) compared to the reference and control samples. Table S2: Relative
decomposition of bacteria in the presence of NT-U and Ag/NT-U (with 10−6 mol g−1 Ag concentration) catalysts
and the control sample. Table S3: Relative decomposition of bacteria in the presence of NT-A and Ag/NT-A (with
10−6 mol g−1 Ag concentration) catalysts and the control sample.
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