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Abstract: Many theoretical and experimental studies have shown that the addition of nanoparticles
into conventional fluids may generate nanofluids with significantly improved heat transfer properties.
In the present work, the effect of nanoparticle aggregation on the thermal conductivity of nanofluids
is studied, considering also the effect of surfactants that are typically added to stabilise the nanofluid.
A method for simulating aggregate formation is developed here that allows tailoring of the fractal
dimension and the number density of the nanoparticles to desired values. The method is shown
to be computationally simple and fast. Data that are extracted from electron microscope images
are compared with simulation results regarding surface porosity and the autocorrelation function.
The surfactants are modelled as a layer around the particles, and the effective thermal conductivity
is calculated with a meshless numerical technique. Significant increase in conductivity is observed
for small values of the fractal dimension and for large number density of particles in the aggregate.
The simulations are in good agreement with experimental results. It is also concluded that prediction
of the conductivity of such nanofluids requires the knowledge of the type and the amount of the
surfactant added.
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1. Introduction

The term “nanofluids” was first introduced in 1995 [1] and defines a new class of fluids, which are
created by the dispersion and suspension of particles smaller than 100 nm. The nanofluids are
suspensions with comparative advantages, such as higher thermal conductivity, greater stability,
and reduced corrosion. Due to their small size, nanoparticles have the ability to circulate smoothly in
channels and pores of micrometre diameter, thus, minimising pore blocking, while their size prevents
their sedimentation, making the suspensions more stable. Based on such advantages, nanofluids can be
used in a variety of applications. Their use would allow for smaller and lighter machines, pumps and
refrigerators, hence improving heating and cooling systems [2,3]. From experimental measurements
made for the heating of buildings using nanofluids, it has been found that their application can
significantly reduce energy requirements.

In addition, nanoparticles dispersed into bioliquids could be used in medicine as transport vehicles
either for drugs, or for radiation, thus offering new treatment techniques. The application of nanofluids
is already being considered for its safety and efficiency in nuclear reactors. Moreover, in the case of
renewable energy sources nanofluids can be used to improve heat transfer from solar panels to heat
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storage tanks. Applications can be found even in the space sector, where similar devices develop very
high amounts of heat.

In view of the theoretical study of nanoparticles behaviour, a large number of models have been
developed in order to predict their properties. A classification of these models can be performed based
on the main mechanism taken into account for the calculation of the thermal conductivity. Based on
this criterion, they are divided into models based on the classical effective-medium theory, the existence
of a nanolayer, the effect of Brownian motion [4,5], and the aggregation mechanism [6–8].

Brownian motion, also called thermal motion, is the result of various forces and is believed
to affect indirectly the formation of aggregates, the presence of which significantly improves
the thermal conductivity of nanofluids. Recent experimental studies [9–13] argue that when
nanoparticles accumulate in small aggregates, they lead to a large increase in the effective conductivity.
Additionally, a large increase in effective thermal conductivity is accompanied by a large increase
in viscosity, which is indicative of the effect of aggregation [13]. Furthermore, some studies
conclude that nanoparticles showing good dispersion do not present an unusual increase in thermal
conductivity [14–16].

Nanocolloid aggregates are expected to transfer heat more efficiently compared to fully dispersed
particles of the same volume fraction, due to the increased contact of the particles with each other and
with the walls. Considering the nanofluid as a sum of aggregates and taking into account the fractal
dimension of each nanofluid, efforts were made to predict the thermal conductivity [9].

On the other hand, larger mass aggregates can block heat transfer or cause sedimentation. As a
result, aggregates can have a positive or a negative effect on the thermal conductivity of nanofluids,
depending on the conditions. It is generally considered that the aggregation of nanoparticles is more
likely to occur in nanofluids with a larger volume fraction due to the reduced distance between the
particles which, in this case, increases the probability of aggregation. Particle clusters can result from
collisions between nanoparticles. The aggregation and dispersion of particles, as well as the formation
of clusters, are controlled by a variety of external and internal forces between the base fluid and the
nanoparticles, as well as between the nanoparticles themselves [9,10,17].

Various predictive models have been proposed in the literature that attempt to estimate the
thermal conductivity of aggregates. Evans [18] developed a three-level homogenisation model to
predict the thermal conductivity of nanofluids based on the morphology of the aggregates. Another
study [19] presents a prediction model for the calculation of the thermal conductivity of aggregates,
extending Maxwell’s theory to non-spherical particles. Aggregates are treated as spheres with effective
thermal conductivity and effective volume fraction. That study suggests that fractal structures can
be represented by a single parameter, and presents a method for calculating this parameter by
numerical simulations.

At the same time, a great number of models are based on the hypothesis of the presence of a
nanostructure of a certain type around the nanoparticles [20,21]. The fluid molecules that are close to
the nanoparticles can form an ordered layer, an almost solid structure, called a nanolayer. This layer
can act as a thermal bridge between a solid nanoparticle and the liquid medium, leading to an increase
in the thermal conductivity of the nanoparticle.

One of the first models based on the nanolayer approach, which aims to calculate the thermal
conductivity of nanoparticles, is a modification of Maxwell’s model [20]. Maxwell’s model accurately
predicts the conductivity of spherical particles suspensions, in the absence of thermal interactions
among them, and is expressed as

ke f f =
kp + 2k f + 2

(
kp − k f

)
fp

kp + 2k f − 2
(
kp − k f

)
fp

k f , (1)

where kp is the conductivity of the particles, k f is the conductivity of the base fluid, and fp is the volume
fraction of the particles. In order to include the effect of the nanolayer on the model, four assumptions
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were made [20]. First, the molecules within the nanolayer are more ordered than those of the liquid
medium. Second, the thermal conductivity of the ordered layer kl is much greater than that of the
liquid medium. Third, the nanolayer can be combined with the particle to form an effective, thermally
equivalent particle. Finally, the volume fraction of the particles is so small that there is no overlap
between the effective particles.

Assuming a layer of thickness δ, the volume fraction of the effective particle will be fpe = fp(1 + β)3,
where β = δ/rp and rp the particle radius. Associating the above with the effective medium theory
and Maxwell’s relation, a relation for the effective thermal conductivity kpe of the effective particles is
obtained [20]

kpe =
2(1− γ) + (1 + β)3(1 + 2γ)

(γ− 1) + (1 + β)3(1 + 2γ)
γkp, (2)

where γ = kl/kp is the ratio of the thermal conductivity of the nanolayer to that of the nanoparticle.
Eventually, the thermal conductivity of the nanofluid will be

ke f f =
kpe + 2k f + 2

(
kpe − k f

)
(1 + β)3 fp

kpe + 2k f − 2
(
kpe − k f

)
(1 + β)3 fp

k f . (3)

This model includes the effect of the nanolayer and suggests that very thin nanolayers significantly
affect the thermal conductivity of nanofluids, especially when the particle diameter is less than 10 nm.
The thickness δ is considered to be between 0–2 nm. Subsequent research has focused on determining
the thickness of the nanolayer and its thermal conductivity [21–23].

In addition, the use of surfactants is very common when creating nanofluids [24,25]. Surfactants change
the interfacial tension between a liquid and a solid and the surface tension between two liquids.
Surfactants have been used in a wide range of applications, such as pharmaceuticals, crystal growth
and detergents, among others, due to their increased spreading and wetting capability [26].
Recent studies [27,28] examine the rheological and thermal properties of water-based solutions varying
the type and the amount of surfactant. It is pointed out that each surfactant affects the properties of the
base fluid differently. Moreover, surfactants seem to be a key factor in the preparation and modification
of nanofluids. They are adsorbed on the interface between the base fluid and the nanoparticles,
and prevent the formation of large aggregates that would precipitate. However, most studies focusing
on the changes in thermophysical properties omit the effect of surfactants. Recent experimental
studies [24,29] show a maximum value on the effective thermal conductivity for a certain level of the
surfactant concentration. Beyond that, the thermal conductivity decreases significantly. Zhai et al. [30]
detected different morphology of the aggregates by changing the amount and the type of the surfactant.
They pointed out that large aggregates will sediment and they found an optimal volume fraction of
surfactants for stable and high conductive Al2O3/ethylene glycol nanofluid.

In this paper, an algorithm for modelling particle aggregate formation is developed and encoded.
This method allows the reconstruction of aggregate systems with predefined characteristics, such as the
number of particles in the aggregate, and the fractal dimension. The results are compared with images
from an electron microscope, through several criteria in addition to visual resemblance, mainly the
value of the surface porosity and the recovery of the correlation function as extracted from the image.
In addition, a method for the modelling the effects of the nanolayer and the surfactants is presented.
The Meshless Local Petrov–Galerkin (MLPG) method [31–33] is used for the solution of the heat
transfer equation throughout the working domain and for the calculation of the effective conductivity.
Approaches to field functions and their derivatives are made using the Discretisation-Corrected Particle
Strength Exchange (DC PSE) method [34], which has been shown to provide stable and fast solutions
to such problems, and the integration is performed in cubic sectors around each node. The numerical
method that was developed [35] for calculating temperature distribution and effective conductivity
can be extended to calculations for a three-phase system, like the one encountered here.
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The effective conductivity of the nanofluids as predicted by the present method is compared to
the effective conductivity of corresponding systems resulting from known aggregation modelling
methods. The comparison reveals a satisfactory agreement as discussed in detail. The effect of particle
aggregation on the thermal conductivity is studied by changing the number of particles in the aggregate
and the fractal dimension of the aggregates. Also, the effect of the nanolayer and the surfactants
on the effective conductivity is examined, and the results are compared with predictions of analytic
expressions from the literature.

2. Aggregates and Nanolayer Modelling

Particle aggregates may result from a number of forces. The exact mechanism is unknown,
and similarly undetermined is the effect of various additional surfactants on aggregation. The effect
of temperature on the morphology of the aggregates is also unclear. In studies conducted thus
far [10,19], the morphology of the aggregates is considered to have the typical characteristics of
particle–particle, particle–aggregate, and aggregate–aggregate clustering. Thus, descriptive models
such as Diffusion-limited Aggregation (DLA), Diffusion-limited Cluster Cluster Aggregation (DLCCA),
Reaction-limited Aggregation (RLA), and Ballistic Aggregation (BA) are widely used to describe the
process of aggregation for various suspended nanoparticles, and the morphology of the nanofluid [35,36].
The majority of the established aggregation models mostly study spherical particles, and this particle
geometry was used in the present work as a reference base. However, a variety of non-spherical
particles has also been reported in the literature [37]. The fractal character can be quantified through
the calculation of the radius of gyration. The radius of gyration of a body is defined as the radial
distance from the centre of mass at which, if the total mass of the body is considered to be concentrated,
the moment of its inertia would be the same as the real one. For a system of N particles with the same
mass, the above definition is expressed as

Rg =

√∑
i(ri − rc)

2

N
, (4)

where ri is the position vector of the centre of particle i, and rc is the position vector of the centre of
mass. As mentioned above, the fractal dimension, d f , is used as a measure for the morphology of
aggregates [10,38]. Essentially, it is a measure that indicates how the aggregation spreads in space.
The higher its value, the denser the aggregate. Of course, the maximum value can be equal to the
working spatial dimensions (2 in 2D, 3 in 3D). The fractal dimension correlates the number of particles
in the aggregate with its radius of gyration.

N = kg
(
Rg/rp

)d f , (5)

where kg is the structure factor. The linear-fitted slope of the points (N,Rg/rp) on a double logarithmic
diagram determines the fractal dimension, and the point of intersection with the y-axis provides
the logarithm of the structure factor. The structure factor is dependent on the connectivity of the
particles and the dispersion of the particle size. For monodispersed particles the structure factor can
be considered constant, kg = 1.5 [39], whereas kg tends to unity in the limiting case of infinitely
polydispersed particles, independently of the agglomeration mechanism [40].

In the DLA model, one particle acts as a core for aggregation, and the rest travel in space by
random motion until they come in contact with the aggregate or diverge sufficiently. In the DLCCA
model the particles are randomly placed in space, and random motion occurs. As soon as two particles
come in contact, a bond is formed. An important limitation is that immobilisation always takes place at
the first contact of the particles. The Reaction-limited Cluster Aggregation (RLCA) model introduces
a probability that determines how often collisions will form bonds. Another probability, which will
determine if a collision causes a particle or a part of the aggregate to detach from the aggregate, can also
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be defined. This is naturally justified in the case of nanofluids, where there is an additional repulsive
force due to the surfactants and the surface charge, which the particles must overcome before they are
affected by the short-range van der Waals attractive interactions.

In the work of Meakin and Joulien [39] it is shown that although the process determines the
fractal dimension, the fractal dimension cannot determine the process. For example, aggregates of the
same fractal dimension as the RLCA method are formed by using the DLCCA method and allowing a
restructuring of the particles when they come in contact. Moreover, structures with large deviations in
the fractal dimension can be formed by changing the probability of attachment or detachment [39].

Aiming to study the effect of aggregation and the morphology of aggregates on the thermal
conductivity of nanofluids, a technique has been developed and is presented here, where the fractal
dimension is predetermined and drives the formation of aggregates. Thus, the addition of particles is
performed in a way that meets these fractal dimension requirements. More specifically, the desired
fractal dimension, or a range of values for it, is initially determined. Then, permissible values for the
number of particles per aggregate are determined and, finally, the volume fraction of nanoparticles
and the number of aggregates are defined.

The process initiates with a random deposition of a core particle in space. Then, two directional
angles are stochastically selected (θ ∈ [0, 2π],ϕ ∈ [0, π]), which determine the point on the surface
of the original particle in a local spherical coordinate system, where contact with the second will
be made. In general, each subsequent particle appears on the surface of a particle of the aggregate,
under the condition of no overlap with any other particle. The process is repeated for a third particle,
and then the radius of gyration of the aggregate and its fractal dimension are calculated. The particles
that form the aggregate are divided into two categories, namely, those in which the centre lies within
the radius of gyration, and those in which the centre lies beyond this radius, as shown in Figure 1a
(blue-coloured are the particles within the radius of gyration, red-coloured the particles beyond the
radius). Depending on whether the desired fractal dimension is less or greater than the one calculated,
the next particle will appear on the surface of a randomly selected particle of the corresponding
category. Figure 1b shows the addition of a new particle (in green) that reduces the fractal dimension,
while Figure 1c shows the addition of a new particle (in green) that increases the fractal dimension.
After calculating the resulting fractal dimension, it is examined whether it approached the predefined
value. If not, the added particle is deleted, otherwise the particle remains in place. A new particle
appears in the same fashion and the process continues until the aggregate has the desired number of
particles. Then, the next particle is deposited at another random point in space, which acts as a core
for a new aggregate, and the process is repeated, with the limitation that aggregates do not overlap.
This method can stabilise the fractal dimension even in a very small number of particles, as shown in
Figure 2.

This methodology, in addition to achieving the desired fractal dimension, has the advantage of
being straightforward and fast for calculations. Table 1 shows the comparison of the time required to
build two particle systems with the DLA method and with the present method. The first case involves
an aggregate containing 30 particles, while the second one involves a system of aggregates containing
300 particles. The superiority of the method in the aggregate formation time is evident, as it can
produce structures in less than 1% of the time required by the DLA method.

Table 1. Time required to construct an aggregate and an aggregate system, with the Diffusion-limited
Aggregation (DLA) method and with the present method.

Number of Particles/Aggregate(s) DLA Present Method

30 particles/single aggregate 25 s 0.2 s

300 particles/aggregate system 303 s 1.3 s
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Figure 3 shows a system of nanoparticle aggregates, which includes 50 aggregates consisting
of 10 to 18 particles. Their fractal dimension, d f , ranges between 1.8 and 2.2., and the volume
fraction is fp = 0.02. Figure 3 also shows an image from electron microscopy (TEM) of a nanofluid
consisting of copper particles in water with the same characteristics [10]. The thresholding technique
is used to create binary images from the original TEM images to simulate projection onto a plane.
Respectively, in Figure 4, images from an electron microscope of two other nanocomposites [41] and the
corresponding simulation results are shown for visual comparison. The nanocomposites contain nickel
particles with a volume fraction of fp = 0.0574 for particle diameter 20 nm, and a volume fraction of
fp = 0.0552 for particle diameter 70 nm. Again, the thresholding technique is used to create binary
images from the original TEM images in order to be able to compare projected images with simulations.
It is observed that in the larger particle case, larger and denser the aggregates are formed, as shown in
the TEM images. The fractal dimension of the aggregates has been found to take values from 1.8 to
2.5 [42–44]. The depth of the images from the electron microscope is 100 nm.Nanomaterials 2020, 10, x FOR PEER REVIEW 8 of 24 
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Figure 3. Upper: Simulation example with parameters from experimental data and projection on a
2D plane. Bottom: Comparison of the resulting image with an image from an electron microscope
(TEM) [10] following thresholding.
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Figure 4. Upper: Simulation examples. Bottom: Comparison of the results with images from an
electron microscope (TEM) [41] following thresholding. (a) Nickel particles with radius of 10 nm
(b) nickel particles with radius of 35 nm.

In the absence of accurate information about the fractal dimension or the number of particles
in the aggregate, the 2D areal porosity and the autocorrelation function (Figure 5) are computed.
Several aggregate systems were constructed by varying the average number of particles (N) and the
fractal dimension (d f ) of the aggregates. A projection of a thin section (100 nm) of the nanofluid on a
2D plane is used to compare the autocorrelation function and the areal porosity of the simulations
with those extracted from the TEM images. Figure 6 shows the L2 norm of the autocorrelation function
(Figure 6a,c) and the percentage error in the areal porosity (Figure 6b,d) for particle radius rp = 10 nm
(Figure 6a,b) and rp = 35 nm (Figure 6c,d). The simulation results were derived from the average of 5
simulations, with 10 projected sections each.

Using a specific combination of the morphological characteristics—different for each case—seems
to minimise the errors in the areal porosity and the autocorrelation function. In the case of 10 nm,
aggregates are selected to consist of 40 to 50 particles, with a fractal dimension between 2.0 and 2.2.
Respectively, in the case of 35 nm, the aggregates are selected to consist of 80 to 100 particles, with a
fractal dimension between 2.3 and 2.5. Figure 5 shows the autocorrelation function of the simulation
results for the aforementioned characteristics and the TEM images. The dimensionless distance is
defined as the ratio of the actual distance to the radius of the particle, rp. Figure 4 shows the same
simulations for the sake of visual comparison with the TEM images.

For the nanolayer modelling, the process is also straightforward. Considering the radius of the
nanoparticles constant, rp, a thickness, δ, is defined for the surfactant nanolayer. For fully dispersed
particles, the only restriction is that there is to be no overlapping of the particles. In the case of clusters,
overlapping cannot be avoided. The nanolayer is tested in order to avoid any overlapping between
parts of neighbouring aggregates. Figure 7 shows such a system of nanoparticle clusters, with a volume
fraction fp = 0.01 and a nanolayer thickness of 45% of the particle radius. In this approach, we assume
that the surfactant forms a spherical shell around each particle. In reality, it is expected to have a



Nanomaterials 2020, 10, 2288 9 of 21

somewhat different distribution, especially in the case of particle aggregates. The thickness of the layer
can be calculated by

δ =
3

√
3
(

fp + fl
)
V

4πNP
− rp , (6)

where fl is the volume fraction of the surfactant, V is the total volume of the working domain and NP

is the total number of particles.

Figure 5. Autocorrelation function of the TEM image (continuous line), and the simulation results
(red stars), for (a) particle radius 35 nm and (b) particle radius 10 nm.

Figure 6. Error in L2 norm of the autocorrelation function (a,c) and the percentage error in the areal
porosity (b,d) as functions of the average number of particles per aggregate, for different values of the
fractal dimension, for rp = 35 nm (a,b) and rp = 10 nm (c,d).
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3. Effective Conductivity Calculation

Heat transfer is caused by a temperature difference that is imposed on the material in a certain
direction, in this case, along the vertical axis. Periodic conditions are applied at the other transverse
boundaries of the medium. The simulations for the solution of the heat conduction problem are
performed with innovative meshless methods, which offer accurate and fast solutions in a wide range
of conditions. In fact, in the particle aggregate case, the lack of mesh allows easy local increase of spatial
discretisation at the interface of the nanoparticles and the base fluid, where steep gradients develop.
The numerical solution of the energy equation is performed using the Meshless Local Petrov–Galerkin
(MLPG) method [33]. This method is based on the expression of partial differential equations in their
local weak form, i.e., their integration in local sub-sectors. The approach to variables and derivatives is
achieved with the DC PSE method [34]. All integrals are calculated in cubic sectors around each node,
as this has been shown to increase the stability of the method [32,35], and square grids are used with
increased resolution in the area around the interfaces. A complete analysis of the mesh construction
and the approach to variables and integrals is given in [35]. The dimensionless weighted integral form
of the heat equation in the Ωx sector is given by the relation∫

Ωx

∇(k∇T)vdΩ = 0, (7)

where v is the weight function of integration (here, the step function), and k = k(x) is the thermal
conductivity. Two step functions Φp, Φl, are defined, with values equal to unity in the particle area
(Φp) or the layer area (Φl), and zero elsewhere. Using the deviation theory, the following weak form
of the energy equation is obtained∫

∂Ωx

(
krp − 1

)
Φp∇Tn̂d(∂Ωx) +

∫
∂Ωx

(krl − 1)Φl∇Tn̂d(∂Ωx) +

∫
∂Ωx

∇Tn̂d(∂Ωx), (8)

where krp =
kp
k f

is the ratio of the thermal conductivity of the particles to that of the base fluid,

and krl =
kl
k f

is the ratio of the thermal conductivity of the nanolayer to that of the base fluid. Solving the
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above equation offers the temperature distribution throughout the domain space. It is, thus, possible to
calculate the effective thermal conductivity of the area from the following integral

ke f f =

∫
S

k
∂T
∂n

dS. (9)

The surfaces S in which the calculations are made are vertical to the heat flow. At least 10
such surfaces equidistantly distributed along the imposed heat gradient axis are used to determine
the conductivity, and their mean value determines the effective thermal conductivity. The present
method for effective conductivity calculations can be extended to consider different nanoparticle
shapes. The check for overlapping must take into account the equations that describe the external
surfaces of the nanoparticles. The possible rotation of nanoparticles can also be taken into account,
most simply in a random fashion around the centre of mass.

4. Results and Discussion

4.1. Comparison with Other Aggregation Models

In an earlier work of the authors [35], the effect of aggregation on the thermal conductivity was
studied using aggregates derived from the DLA and the ballistic-type deposition method. It was
observed that aggregates with the same fractal dimension and the same volume fraction, resulting from
different aggregation methods, had, practically, the same thermal conductivity. Figure 8 shows the
comparison of the results of these previous simulations with the results of the aggregation method
developed here. The volume fraction of particles is fp = 0.01, and the particles are organised
into aggregates consisting of N = 20 particles. The conductivity of the particles is considered

krp =
kp
k f

= 100 times larger than that of the base fluid. The simulation points are derived from the
mean of 10 simulations with the same characteristics. The results are quite similar, which supports the
belief that the mechanism for aggregation is not significant for the effective conductivity in contrast
with the significance of the morphological characteristics of the aggregates. It also appears that the
present method produces aggregates that are similar to those resulting from methods that describe the
physical process of particle aggregation.Nanomaterials 2020, 10, x FOR PEER REVIEW 13 of 24 
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4.2. Dependence of Conductivity on the Fractal Dimension and the Number of Particles in the Aggregate

A parametric study of the effect of the fractal dimension and the number of particles in the aggregate
is presented next, using the methodology that is developed in the present work. The conductivity of the
nanoparticles is chosen to be 130 times greater than that of the base fluid (krp = 130), which is relevant
in several practical nanofluids, like water-Fe, water-CuO, and engine oil-Al2O3. The simulation points
are derived from the average of ten simulations with the same characteristics (volume fraction fp,
number of particles per aggregate N, fractal dimension d f ).

Figure 9 shows the dimensionless effective thermal conductivity as a function of the fractal
dimension for two values of the particle volume fraction and for two different numbers of particles
per aggregate. Figure 9 also shows the conductivity prediction according to Maxwell’s model. A first
remark is that, even for small volume fractions of the particles ( fp = 0.03), a noticeable change of the
conductivity is obtained by modifying the fractal dimension, while the effective-medium theory and,
specifically, the Maxwell’s relation (Equation (1)), remains insensitive to the fractal dimension.

More specifically, the effective thermal conductivity apparently decreases with increasing fractal
dimension. That is, the more cohesive the aggregate becomes, the lower the conductivity of the
nanofluid. The rate of reduction is affected by both the volume fraction of the particles and the number
of particles that form the aggregate.

Figure 10 shows the effect on conductivity by changing the number of particles in the aggregate,
for two volume fractions of the particles and the same fractal dimension d f = 1.9. There is a significant
increase in conductivity even for aggregates with a small number of particles. When the aggregates
consist of six particles, a 20% increase is observed in the conductivity for volume fraction fp = 0.03
(blue points). The more particles in the aggregate, the greater the increase. For 50 particles in the
aggregate, the conductivity of the nanofluid increases by 35%. For this volume fraction, Maxwell’s
relation predicts an increase of less than 10% (blue dotted line).Nanomaterials 2020, 10, x FOR PEER REVIEW 14 of 24 
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4.3. Dependence of Conductivity on Volume Fraction and Particle Conductivity

Furthermore, the variation in the effective conductivity by increasing the particle volume fraction
and the ratio of the conductivity of the particles and the fluid is examined. Figure 11 shows the increase
in conductivity with the addition of more particles for three characteristic cases. For fully dispersed
particles (N = 1) the simulation results are identical to those of Maxwell’s model. A substantial
increase of 20% for the nanofluid conductivity is observed, even for quite coherent (d f = 2.2) and small
(N = 12) aggregates.

Figure 12 shows the thermal conductivity as a function of the ratio of the conductivity of the
particles and that of the base fluid, for three characteristic cases. For fully dispersed particles (N = 1),
the more conductive the particles are, the higher the effective conductivity. Beyond a certain value
(krp ∼ 50), the nanofluid conductivity appears to become progressively less sensitive to the particle
conductivity. On the other hand, for the same volume fraction ( fp = 0.02), with the particles organised
into aggregates of N = 35 particles with fractal dimension d f = 2.2, the effective conductivity continues
to increase monotonically with the increase of the particle conductivity. Furthermore, the case of
N = 5 particles in the aggregate and a volume fraction of fp = 0.03, is compared with the case of
N = 35 particles and a volume fraction of fp = 0.02. Both cases have the same fractal dimension,
equal to d f = 2.2. For small conduction ratios, a nanofluid with a larger volume fraction has a higher
effective conductivity. On the contrary, for more conductive particles the behaviour changes, and a
nanofluid with a lower volume fraction is more conductive. Therefore, with appropriate aggregation
one can have greater effective conductivity with a lower volume fraction of particles. This is attributed
to the fact that, for the same fractal dimension, larger aggregates transfer heat more efficiently to the
fluid, as they create longer conductive paths.
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4.4. Effect of Nanolayer/Surfactants

The effect of nanolayer and surfactants is also examined. The nanolayer is expected to have
a conductivity between the value of the base fluid and that of the particles. On the other hand,
depending on the case, the conductivity of the surfactants can be lower than that of the base fluid.
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Figure 13 shows the effective conductivity of a nanofluid that contains fully dispersed particles
in the presence of a nanolayer, as a function of the ratio of the nanolayer conductivity to that of
the base fluid. The thickness of the nanolayer is assumed to be 15% of the particle radius, and the
volume fraction ranges from fp = 0.01 to fp = 0.03. The ratio of the particle conductivity to that of
the fluid is krp = 100. Figure 13 also shows the modified Maxwell’s model (M.M.) (Equation (3))
for the calculation of the effective conductivity of nanofluids that takes into account the existence
of a nanolayer. The results show that the effective conductivity of the nanofluid is lower than that
of the base fluid for nanolayer conductivity krl < 0.15, and increases dramatically by increasing the
nanolayer conductivity up to a certain krl limit (krl ∼10). The simulations are in good agreement with
the analytical model.

Figure 14 portrays thermal conductivity results for nanoparticles organised into aggregates
containing N = 10 particles each, with volume fraction fp = 0.02, and nanolayer thickness equal to
15% of the particle radius, varying with the fractal dimension. The conductivity of the nanolayer
ranges from krl = 0.1 to krl = 10. Figure 14 also shows the modified Maxwell’s model for these cases,
and depicts its significant deviation, since it does not take into account the effect of aggregation. As in
the case without a nanolayer, small values of the fractal dimension enhance nanofluid conductivity
substantially. In the presence of a conductive nanolayer, and with N = 10 particles in each aggregate,
a ~30% increase is obtained, as shown in Figure 14. In the absence of the nanolayer and for the same
aggregates (Figure 8), the increase is ~15%. Furthermore, the presence of aggregates outweighs the
decrease in conductivity due to low nanolayer conductivity, noted in Figure 13. That is, even for a less
conductive nanolayer compared to the base fluid, the resulting nanofluids have increased effective
thermal conductivity.Nanomaterials 2020, 10, x FOR PEER REVIEW 17 of 24 
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4.5. Comparison with Experimental Data

The predictions of the effective conductivity for the nanofluids that were studied above are
compared in this section with experimental measurements from the literature. In the context of
work [41], an epoxy nanocomposite material was formulated, containing nickel nanoparticles (Ni).



Nanomaterials 2020, 10, 2288 16 of 21

A number of such samples were created by modifying the diameter of the nickel particles and their
thermal conductivity was measured. The results are shown in Figure 15, along with the results of our
simulations. The simulation points are derived from 10 simulations with the same characteristics, and
the standard deviation of the results is shown in Figure 15. The results of the simulations are in good
agreement with the experimental data.Nanomaterials 2020, 10, x FOR PEER REVIEW 18 of 24 
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Figure 15. Comparison of experimental results [41] (dots) and simulation results (squares). Red dots,
particles of radius rp = 10 nm, red squares, simulation of N ∼ 50 particles per aggregate and
fractal dimension, d f ∼ 2.1, blue dots, particles of radius rp = 35 nm, blue squares, simulation of
N ∼ 100 particles per aggregate and fractal dimension, d f ∼ 2.4.
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Figure 16 compares simulations and experimental measurements for SiO2 nanoparticles dispersed
into water for various volume fractions. Their average radius of gyration and effective conductivity
were measured in the literature [45]. The aggregates consist of approximately N = 7 particles, and their
fractal dimension is approximately d f = 1.9 [19]. As shown in Figure 16, the effective conductivity
resulting from the simulations shows a constant deviation from the experimental data. This can be
attributed to the fact that, for the stabilisation of the nanofluid, the authors of [45] used the silane
N-[3-(trimethoxysilyl)propyl]ethylenediamine (TMPE), with a w/w concentration of 0.05 g/mL. This is
equivalent to a volume fraction of fl = 0.05. Thus, one can estimate the thickness of the nanolayer
from Equation (6), which ranges within 7–16% of the radius of the particles. The thermal conductivity
of silane is about 1/3 of the conductivity of water, while the conductivity of SiO2 is 2 times greater than
that of water. The thermal conductivity of the materials is shown in Table 2. Taking this into account,
the agreement between simulations and experiment improves drastically, as shown in Figure 16.

Figure 16. Comparison of experimental results, extracted from [45] (black squares) and simulation
results, without the surfactant (blue dots) and with the surfactant (red dots).

Table 2. Thermal conductivity of the component materials [41,45–47].

Ni/epoxy (W/(mK)) SiO2/water+TMPE (W/(mK)) Cu/oil+O.A (W/(mK))

Nanoparticles 90 1.43 400

Base fluid 0.21 0.7 0.37

Surfactant - 0.25 0.2

Similarly, in the context of work [48], copper nanoparticles are dispersed into mineral oil, and the
nanofluid is stabilised by the addition of oleic acid (O.A). The volume fraction of the oleic acid changes
as follows, fl = 2.2 fp, where fp is volume fraction of copper particles. The particles are reported [10] to
be organised into aggregates of 14 particles, with a fractal dimension of d f = 2. Figure 17 shows the
experimental measurements and the results of the simulations with two options, namely, accounting
for the layer of the surfactant or ignoring it. The deviation of the simulations from the experiment is
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about 20% when ignoring the nanolayer and is reduced to less than 3% when the nanolayer is included
in the simulations.

Figure 17. Comparison of experimental results [48] (black squares) and simulation results, without the
surfactant (blue dots) and with the surfactant (red dots).

5. Conclusions

In the present paper, the effect of the aggregation of nanoparticles on the thermal conductivity
of nanofluids was studied, accounting also for the role of surfactants. To this end, a method for
reconstructing particle aggregates is proposed, with desired morphological characteristics. The fractal
dimension and the number of particles in the aggregate are predetermined and eventually matched by
the resulting aggregates. In order to ensure successful reconstruction, the morphological characteristics
for the nanofluids are chosen through the minimisation of the deviation in the autocorrelation function
and the areal porosity of the simulations from those that are extracted from the electron microscope
images. The method is also extended to include a nanolayer around the particles, simulating the
presence of surfactants. The numerical method that is used here for the solution of the conduction
equation allows for fast calculation of the thermal conductivity in large two-phase and three-phase
nanoparticle systems, practically without any instability problems.

The nature of the surfactant affects aggregation through the intermolecular forces that are
developed at the particle interfaces. Consideration of such effects at the molecular level would require
a force field description at a totally different scale of simulation and would, inevitably, increase
aggregation simulation by orders of magnitude. The proposed model uses as input some readily
measurable quantities, like the fractal dimension, the number density of the aggregates and the amount
of surfactant and converges quickly.

The results of the method were compared with ones from other aggregation methods, and a good
agreement was obtained. In addition to its simplicity in implementation, the new method proves much
faster than other aggregation models that simulate the aggregation process physically. The change in
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the effective conductivity was studied by changing the fractal dimension of the aggregates and the
number of particles in the aggregate. It has been shown that aggregation, even with a small number of
particles, leads to a notable increase in the effective conductivity. The fractal dimension and the number
of particles in the aggregate were found to play key roles in the thermal behaviour of the nanofluids,
since significant differences are observed upon their variation. Considerable increase in conductivity
occurs for small values of the fractal dimension and large numbers of particles in the aggregate.

The effective thermal conductivity is significantly affected by the nanolayer conductivity. Maxwell’s
modified model (M.M) for calculating effective conductivity, which takes into account the existence
of a nanolayer, is in very good agreement with simulation results for fully dispersed particles only,
for all the particle volume fractions studied here. However, the M.M model fails considerably as
soon as the particles are organised into aggregates, since it does not take into account the effect of
aggregation. The simulations are in satisfactory agreement with experimental results. It is shown that
knowledge of the type and the amount of the surfactants used is required to predict the conductivity
of the nanofluids accurately. Simulations that ignore the existence of surfactants may lead to large
deviations of the nanofluid conductivity from experimental data.
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