Controlling the Oxidation of Magnetic and Electrically Conductive Solid-Solution Iron-Rhodium Nanoparticles Synthesized by Laser Ablation in Liquids
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nakamula, I.; Yamanoi, Y.; Imaoka, T.; Yamamoto, K.; Nishihara, H. A Uniform Bimetallic Rhodium/Iron Nanoparticle Catalyst for the Hydrogenation of Olefins and Nitroarenes. Angew. Chem. Int. Ed. 2011, 50, 5830–5833. [Google Scholar] [CrossRef] [PubMed]
- Elsayed, I.; Mashaly, M.; Eltaweel, F.; Jackson, M.A.; Hassan, E.B. Dehydration of glucose to 5-hydroxymethylfurfural by a core-shell Fe3O4@SiO2-SO3H magnetic nanoparticle catalyst. Fuel 2018, 221, 407–416. [Google Scholar] [CrossRef]
- Yiu, H.H.P.; Keane, M.A. Enzyme-magnetic nanoparticle hybrids: New effective catalysts for the production of high value chemicals. J. Chem. Technol. Biotechnol. 2012, 87, 583–594. [Google Scholar] [CrossRef]
- Wilhelm, C.; Gazeau, F. Universal cell labelling with anionic magnetic nanoparticles. Biomaterials 2008, 29, 3161–3174. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.; Webster, T.J. Nanotechnology for bone materials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2009, 1, 336–351. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Lee, J.S.; Zhang, M. Magnetic nanoparticles in MR imaging and drug delivery. Adv. Drug Deliv. Rev. 2008, 60, 1252–1265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadovnikov, A.V.; Grachev, A.A.; Gubanov, V.A.; Odintsov, S.A.; Martyshkin, A.A.; Sheshukova, S.E.; Sharaevskii, Y.P.; Nikitov, S.A. Spin-wave intermodal coupling in the interconnection of magnonic units. Appl. Phys. Lett. 2018, 112, 142402. [Google Scholar] [CrossRef]
- Swisher, J.; Robbins, M.; Sherwood, R.; Fuchs, E.; Lockwood, W.; Keilp, J. Polymer-coated metal and alloy particles for magnetic recording. IEEE Trans. Magn. 1971, 7, 155–158. [Google Scholar] [CrossRef]
- Zhang, H.-W.; Liu, Y.; Sun, S. Synthesis and assembly of magnetic nanoparticles for information and energy storage applications. Front. Phys. China 2010, 5, 347–356. [Google Scholar] [CrossRef]
- Barcikowski, S.; Baranowski, T.; Durmus, Y.; Wiedwald, U.; Gökce, B. Solid solution magnetic FeNi nanostrand-polymer composites by connecting-coarsening assembly. J. Mater. Chem. C 2015, 3, 10699–10704. [Google Scholar] [CrossRef] [Green Version]
- Beck, G.; Barcikowski, S.; Chakravadhanula, V.S.K.; Comesaña-Hermo, M.; Deng, M.; Farle, M.; Hilgendorff, M.; Jakobi, J.; Janek, J.; Kienle, L.; et al. An approach for transparent and electrically conducting coatings: A transparent plastic varnish with nanoparticulate magnetic additives. Thin Solid Film. 2015, 595, 96–107. [Google Scholar] [CrossRef] [Green Version]
- Rashid, H.; Mansoor, M.A.; Haider, B.; Nasir, R.; Hamid, S.B.A.; Abdulrahman, A. Synthesis and characterization of magnetite nano particles with high selectivity using in-situ precipitation method. Sep. Sci. Technol. 2020, 55, 1207–1215. [Google Scholar] [CrossRef] [Green Version]
- Khalil, M.I. Co-precipitation in aqueous solution synthesis of magnetite nanoparticles using iron(III) salts as precursors. Arab. J. Chem. 2015, 8, 279–284. [Google Scholar] [CrossRef] [Green Version]
- Jamshidiyan, M.; Shirani, A.; Alahyarizadeh, G. Solvothermal synthesis and characterization of magnetic Fe3O4 nanoparticle by different sodium salt sources. Mater. Sci. 2017, 35, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Shen, F.; Hong, R. Solvothermal synthesis of magnetic Fe3O4 microparticles via self-assembly of Fe3O4 nanoparticles. Particuology 2011, 9, 179–186. [Google Scholar] [CrossRef]
- Wu, L.; Mendoza-Garcia, A.; Li, Q.; Sun, S. Organic Phase Syntheses of Magnetic Nanoparticles and Their Applications. Chem. Rev. 2016, 116, 10473–10512. [Google Scholar] [CrossRef]
- Shen, B.; Sun, S. Chemical Synthesis of Magnetic Nanoparticles for Permanent Magnet Applications. Chemistry 2020, 26, 6757–6766. [Google Scholar] [CrossRef]
- De Carvalho, J.; Medeiros, S.N.; Morales, M.; Dantas, A.L.; Carriço, A. Synthesis of magnetite nanoparticles by high energy ball milling. Appl. Surf. Sci. 2013, 275, 84–87. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Gökce, B.; Barcikowski, S. Laser Synthesis and Processing of Colloids: Fundamentals and Applications. Chem. Rev. 2017, 117, 3990–4103. [Google Scholar] [CrossRef]
- Streubel, R.; Barcikowski, S.; Gokce, B. Continuous multigram nanoparticle synthesis by high-power, high-repetition-rate ultrafast laser ablation in liquids. Opt. Lett. 2016, 41, 1486–1489. [Google Scholar] [CrossRef]
- Kohsakowski, S.; Santagata, A.; Dell’Aglio, M.; De Giacomo, A.; Barcikowski, S.; Wagener, P.; Gökce, B. High productive and continuous nanoparticle fabrication by laser ablation of a wire-target in a liquid jet. Appl. Surf. Sci. 2017, 403, 487–499. [Google Scholar] [CrossRef]
- Jakobi, J.; Petersen, S.; Menéndez-Manjón, A.; Wagener, P.; Barcikowski, S. Magnetic Alloy Nanoparticles from Laser Ablation in Cyclopentanone and Their Embedding into a Photoresist. Langmuir 2010, 26, 6892–6897. [Google Scholar] [CrossRef]
- Sá, S.; Silva, H.; Brandão, L.; Sousa, J.M.; Mendes, A. Catalysts for methanol steam reforming—A review. Appl. Catal. B Environ. 2010, 99, 43–57. [Google Scholar] [CrossRef]
- Fallot, M.; Hocart, R. On the Appearance of Ferromagnetism upon Elevation of the Temperature of Iron and Rhodium. Rev. Sci. 1939, 8, 498–500. [Google Scholar]
- Vogler, C.; Abert, C.; Bruckner, F.; Suess, D. Noise Reduction Based on an Fe−Rh Interlayer in Exchange-Coupled Heat-Assisted Recording Media. Phys. Rev. Appl. 2017, 8, 054021. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.-W.; Victora, R.H. Approaching the Grain-Size Limit for Jitter Using FeRh/FePt in Heat-Assisted Magnetic Recording. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Wolloch, M.; Gruner, M.E.; Keune, W.; Mohn, P.; Redinger, J.; Hofer, F.; Suess, D.; Podloucky, R.; Landers, J.; Salamon, S.; et al. Impact of lattice dynamics on the phase stability of metamagnetic FeRh: Bulk and thin films. Phys. Rev. B 2016, 94, 174435. [Google Scholar] [CrossRef] [Green Version]
- Eggert, B.; Schmeink, A.; Lill, J.; Liedke, M.; Kentsch, U.; Butterling, M.; Wagner, A.; Pascarelli, S.; Potzger, K.; Lindner, J.; et al. Magnetic response of FeRh to static and dynamic disorder. RSC Adv. 2020, 10, 14386–14395. [Google Scholar] [CrossRef]
- Astefanoaei, I.; Gimaev, R.; Zverev, V.; Stancu, A. Modelling of working parameters of Gd and FeRh nanoparticles for magnetic hyperthermia. Mater. Res. Express 2019, 6, 125089. [Google Scholar] [CrossRef]
- Astefanoaei, I.; Dumitru, I.; Chiriac, H.; Stancu, A. Controlling temperature in magnetic hyperthermia with low Curie temperature particles. J. Appl. Phys. 2014, 115, 17B531. [Google Scholar] [CrossRef]
- Carrillo, P.; Shi, R.; Teeluck, K.; Senanayake, S.D.; White, M.G. In Situ Formation of FeRh Nanoalloys for Oxygenate Synthesis. ACS Catal. 2018, 8, 7279–7286. [Google Scholar] [CrossRef]
- Meng, Y.; Gao, Y.; Li, K.; Tang, H.; Wang, Y.; Wu, Z. FeRh and Nitrogen Codoped Graphene, a Highly Efficient Bifunctional Catalyst toward Oxygen Reduction and Oxygen Evolution Reactions. J. Phys. Chem. C 2020, 124, 9142–9150. [Google Scholar] [CrossRef]
- Swartzendruber, L.J. The Fe−Rh (Iron-Rhodium) system. Bull. Alloy Phase Diagr. 1984, 5, 456–462. [Google Scholar] [CrossRef]
- Jia, Z.; Harrell, J.W.; Misra, R.D.K. Synthesis and magnetic properties of self-assembled FeRh nanoparticles. Appl. Phys. Lett. 2008, 93, 022504. [Google Scholar] [CrossRef]
- Ciuculescu, D.; Amiens, C.; Respaud, M.; Falqui, A.; Lecante, P.; Benfield, R.E.; Jiang, L.; Fauth, K.; Chaudret, B. One-pot synthesis of core-shell FeRh nanoparticles. Chem. Mater. 2007, 19, 4624–4626. [Google Scholar] [CrossRef]
- Ciuculescu, D.; Amiens, C.; Respaud, M.; Lecante, P.; Falqui, A.; Chaudret, B. Synthesis and Characterization of FeRh Nanoparticles. Mod. Phys. Lett. B 2007, 21, 1153–1159. [Google Scholar] [CrossRef]
- Ko, H.Y.Y.; Suzuki, T. Self-assembly and magnetic properties of FePt, FeRh nanoparticles, and FePt/FeRh nanocomposite particles. IEEE Trans. Magn. 2007, 43, 885–887. [Google Scholar] [CrossRef]
- Palmer, M.; Martinez, K.A.; Gadgil, M.G.; Campbell, D.J. Demonstrations of Magnetism and Oxidation by Combustion of Iron Supplement Tablets. J. Chem. Educ. 2018, 95, 423–427. [Google Scholar] [CrossRef]
- Biacchi, A.J.; Schaak, R.E. The Solvent Matters: Kinetic versus Thermodynamic Shape Control in the Polyol Synthesis of Rhodium Nanoparticles. ACS Nano 2011, 5, 8089–8099. [Google Scholar] [CrossRef]
- Ishikawa, Y.; Kawaguchi, K.; Shimizu, Y.; Sasaki, T.; Koshizaki, N. Preparation of Fe-Pt alloy particles by pulsed laser ablation in liquid medium. Chem. Phys. Lett. 2006, 428, 426–429. [Google Scholar] [CrossRef]
- Amendola, V.; Scaramuzza, S.; Carraro, F.; Cattaruzza, E. Formation of alloy nanoparticles by laser ablation of Au/Fe multilayer films in liquid environment. J. Colloid Interface Sci. 2017, 489, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Wagener, P.; Jakobi, J.; Rehbock, C.; Chakravadhanula, V.S.K.; Thede, C.; Wiedwald, U.; Bartsch, M.; Kienle, L.; Barcikowski, S. Solvent-surface interactions control the phase structure in laser-generated iron-gold core-shell nanoparticles. Sci. Rep. 2016, 6, 23352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amendola, V.; Scaramuzza, S.; Agnoli, S.; Granozzi, G.; Meneghetti, M.; Campo, G.; Bonanni, V.; Pineider, F.; Sangregorio, C.; Ghigna, P.; et al. Laser generation of iron-doped silver nanotruffles with magnetic and plasmonic properties. Nano Res. 2015, 8, 4007–4023. [Google Scholar] [CrossRef]
- Amendola, V.; Riello, P.; Meneghetti, M. Magnetic Nanoparticles of Iron Carbide, Iron Oxide, Iron@Iron Oxide, and Metal Iron Synthesized by Laser Ablation in Organic Solvents. J. Phys. Chem. C 2011, 115, 5140–5146. [Google Scholar] [CrossRef]
- Marzun, G.; Bönnemann, H.; Lehmann, C.; Spliethoff, B.; Weidenthaler, C.; Barcikowski, S. Role of Dissolved and Molecular Oxygen on Cu and PtCu Alloy Particle Structure during Laser Ablation Synthesis in Liquids. ChemPhysChem 2017, 18, 1175–1184. [Google Scholar] [CrossRef]
- Wagener, P.; Schwenke, A.; Chichkov, B.N.; Barcikowski, S. Pulsed Laser Ablation of Zinc in Tetrahydrofuran: Bypassing the Cavitation Bubble. J. Phys. Chem. C 2010, 114, 7618–7625. [Google Scholar] [CrossRef]
- Lim, J.; Kim, S.; Armengol, R.A.; Kasian, O.; Choi, P.; Stephenson, L.T.; Gault, B.; Scheu, C. Atomic-Scale Mapping of Impurities in Partially Reduced Hollow TiO2 Nanowires. Angew. Chem. Int. Ed. 2020, 59, 5651–5655. [Google Scholar] [CrossRef] [Green Version]
- Thompson, K.; Lawrence, D.; Larson, D.; Olson, J.; Kelly, T.; Gorman, B. In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 2007, 107, 131–139. [Google Scholar] [CrossRef]
- Kalus, M.R.; Barsch, N.; Streubel, R.; Gokce, E.; Barcikowski, S.; Gokce, B. How persistent microbubbles shield nanoparticle productivity in laser synthesis of colloids—Quantification of their volume, dwell dynamics, and gas composition. Phys. Chem. Chem. Phys. 2017, 19, 7112–7123. [Google Scholar] [CrossRef]
- Jung, H.J.; Choi, M.Y. Specific Solvent Produces Specific Phase Ni Nanoparticles: A Pulsed Laser Ablation in Solvents. J. Phys. Chem. C 2014, 118, 14647–14654. [Google Scholar] [CrossRef]
- Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Phys. B 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Aschauer, U.J.; Braddell, R.; Brechbühl, S.A.; Derlet, P.M.; Spaldin, N.A. Strain-induced structural instability in FeRh. Phys. Rev. B 2016, 94, 014109. [Google Scholar] [CrossRef] [Green Version]
- Semisalova, A. FMR Study of the Magnetic Anisotropy in Fe50Rh50 Core/Shell Nanoparticles. Master’s (Diploma) Thesis, Lomonosov Moscow State University, Moscow, Russia, 2009. [Google Scholar]
- Kuncser, V.; Rosenberg, M.; Principi, G.; Russo, U.; Hernando, A.; Navarro, E.; Filoti, G. Magnetic interactions in nanocrystalline FeRh alloys studied by in field Mössbauer spectroscopy. J. Alloys Compd. 2000, 308, 21–29. [Google Scholar] [CrossRef]
- Filoti, G.; Kuncsea, V.; Navarro, E.; Hernando, A.; Rosenberg, M. Hyperfine fields and Fe magnetic moments in Fe-Rh alloys; a Mössbauer spectroscopy study. J. Alloy Compd. 1998, 278, 60–68. [Google Scholar] [CrossRef]
- Trunova, A.; Lindner, J.; Meckenstock, R.; Spasova, M.; Farle, M.; Ciuculescu, D.; Amiens, C.; Chaudret, B.; Respaud, M. Temperature dependent magnetic characterisation of core/shell nanoparticles. J. Magn. Magn. Mater. 2009, 321, 3502–3506. [Google Scholar] [CrossRef]
- Trunova, A.; Meckenstock, R.; Barsukov, I.; Hassel, C.; Margeat, O.; Spasova, M.; Lindner, J.; Farle, M. Magnetic characterization of iron nanocubes. J. Appl. Phys. 2008, 104, 093904. [Google Scholar] [CrossRef]
- Platow, W.; Anisimov, A.N.; Farle, M.; Baberscheke, K. Magnetic Anisotropy and the Temperature Dependent Magnetic Order-Disorder Transition in Fe/Cu(001). Phys. Status Solidi A 1999, 173, 145–151. [Google Scholar] [CrossRef]
- Sidorov, S.N.; Bronstein, L.M.; Davankov, V.A.; Tsyurupa, M.P.; Solodovnikov, S.P.; Valetsky, P.M.; Wilder, E.A.; Spontak, R.J. Cobalt Nanoparticle Formation in the Pores of Hyper-Cross-Linked Polystyrene: Control of Nanoparticle Growth and Morphology. Chem. Mater. 1999, 11, 3210–3215. [Google Scholar] [CrossRef]
- Pang, C.P.; Hsieh, C.T.; Lue, J.T. A study of magneto-optical effect in dilute Fe3O4 ferrofluid by attenuated total reflection, ferromagnetic resonance and Faraday rotation. J. Phys. D Appl. Phys. 2003, 36, 1764–1768. [Google Scholar] [CrossRef]
- Noginova, N.; Chen, F.; Weaver, T.; Giannelis, E.P.; Bourlinos, A.B.; Atsarkin, V.A. Magnetic resonance in nanoparticles: Between ferro- and paramagnetism. J. Phys. Condens. Matter 2007, 19, 246208. [Google Scholar] [CrossRef]
- Antoniak, C.; Lindner, J.; Farle, M. Magnetic anisotropy and its temperature dependence in iron-rich FexPt1-x nanoparticles. EPL Europhys. Lett. 2005, 70, 250–256. [Google Scholar] [CrossRef]
- Mancini, E.; Pressacco, F.; Haertinger, M.; Fullerton, E.E.; Suzuki, T.; Woltersdorf, G.; Back, C. Magnetic phase transition in iron-rhodium thin films probed by ferromagnetic resonance. J. Phys. D Appl. Phys. 2013, 46, 245302. [Google Scholar] [CrossRef]
- Merkel, D.G.; Lengyel, A.; Nagy, D.L.; Németh, A.; Horváth, Z.E.; Bogdán, C.; Gracheva, M.A.; Hegedűs, G.; Sajti, S.; Radnóczi, G.Z.; et al. Reversible control of magnetism in FeRh thin films. Sci. Rep. 2020, 10, 13923. [Google Scholar] [CrossRef] [PubMed]
- Zingsem, B.W.; Feggeler, T.; Terwey, A.; Ghaisari, S.; Spoddig, D.; Faivre, D.; Meckenstock, R.; Farle, M.; Winklhofer, M. Biologically encoded magnonics. Nat. Commun. 2019, 10, 4345. [Google Scholar] [CrossRef] [Green Version]
- Stashkevich, A.A.; Roussigneé, Y.; Djemia, P.; Billet, D.; Stognij, A.I.; Novitskii, N.N.; Wurtz, G.; Zayats, A.V.; Viau, G.; Chaboussant, G.; et al. Brillouin light scattering observation of the transition from the superparamagnetic to the superferromagnetic state in nanogranular (SiO2)Co films. J. Appl. Phys. 2008, 104, 93912. [Google Scholar] [CrossRef] [Green Version]
- Voronin, D.V.; Sadovnikov, A.V.; Shchukin, D.G.; Gorin, D.A.; Beginin, E.N.; Sharaevskii, Y.P.; Nikitov, S.A. Studying the spectra of thermal magnons in composite materials with embedded magnetite nanoparticles using Brillouin light-scattering spectroscopy. Tech. Phys. Lett. 2013, 39, 715–718. [Google Scholar] [CrossRef]
- Lu, H.; Liang, F.; Gou, J. Nanopaper enabled shape-memory nanocomposite with vertically aligned nickel nanostrand: Controlled synthesis and electrical actuation. Soft Matter 2011, 7, 7416–7423. [Google Scholar] [CrossRef]
Configuration | Solvent | Atmosphere |
---|---|---|
a1 | acetone | air |
a2 | acetone | argon |
a3 | acetone | N2/H2 |
b1 | acetonitrile | air |
b2 | acetonitrile | argon |
b3 | acetonitrile | N2/H2 |
Acetone | Acetonitrile | |
---|---|---|
air | 20.3 ± 1.7 at% | 21.5 ± 1.9 at% |
argon | 15.7 ± 1.6 at% | 15.9 ± 1.4 at% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nadarajah, R.; Tahir, S.; Landers, J.; Koch, D.; Semisalova, A.S.; Wiemeler, J.; El-Zoka, A.; Kim, S.-H.; Utzat, D.; Möller, R.; et al. Controlling the Oxidation of Magnetic and Electrically Conductive Solid-Solution Iron-Rhodium Nanoparticles Synthesized by Laser Ablation in Liquids. Nanomaterials 2020, 10, 2362. https://doi.org/10.3390/nano10122362
Nadarajah R, Tahir S, Landers J, Koch D, Semisalova AS, Wiemeler J, El-Zoka A, Kim S-H, Utzat D, Möller R, et al. Controlling the Oxidation of Magnetic and Electrically Conductive Solid-Solution Iron-Rhodium Nanoparticles Synthesized by Laser Ablation in Liquids. Nanomaterials. 2020; 10(12):2362. https://doi.org/10.3390/nano10122362
Chicago/Turabian StyleNadarajah, Ruksan, Shabbir Tahir, Joachim Landers, David Koch, Anna S. Semisalova, Jonas Wiemeler, Ayman El-Zoka, Se-Ho Kim, Detlef Utzat, Rolf Möller, and et al. 2020. "Controlling the Oxidation of Magnetic and Electrically Conductive Solid-Solution Iron-Rhodium Nanoparticles Synthesized by Laser Ablation in Liquids" Nanomaterials 10, no. 12: 2362. https://doi.org/10.3390/nano10122362
APA StyleNadarajah, R., Tahir, S., Landers, J., Koch, D., Semisalova, A. S., Wiemeler, J., El-Zoka, A., Kim, S. -H., Utzat, D., Möller, R., Gault, B., Wende, H., Farle, M., & Gökce, B. (2020). Controlling the Oxidation of Magnetic and Electrically Conductive Solid-Solution Iron-Rhodium Nanoparticles Synthesized by Laser Ablation in Liquids. Nanomaterials, 10(12), 2362. https://doi.org/10.3390/nano10122362