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Abstract: We present a study on the magnetic hyperthermia properties of graphene oxide/magnetite
(GO/MNP) nanocomposites to investigate their heat production behavior upon the modification
of the oxidation degree of the carbonaceous host. Avoiding the harsh chemical conditions of the
regular in situ co-precipitation-based routes, the oppositely charged MNPs and GO nanosheets were
combined by the heterocoagulation process at pH ~ 5.5, which is a mild way to synthesize composite
nanostructures at room temperature. Nanocomposites prepared at 1/5 and 1/10 GO/MNP mass ratios
were reduced by NaBH4 and L-ascorbic acid (LAA) under acidic (pH ~ 3.5) and alkaline conditions
(pH ~ 9.3). We demonstrate that the pH has a crucial effect on the LAA-assisted conversion of
graphene oxide to reduced GO (rGO): alkaline reduction at higher GO loadings leads to doubled
heat production of the composite. Spectrophotometry proved that neither the moderately acidic nor
alkaline conditions promote the iron dissolution of the magnetic core. Although the treatment with
NaBH4 also increased the hyperthermic efficiency of aqueous GO/MNP nanocomposite suspensions,
it caused a drastic decline in their colloidal stability. However, considering the enhanced heat
production and the slightly improved stability of the rGO/MNP samples, the reduction with LAA
under alkaline condition is a more feasible way to improve the hyperthermic efficiency of magnetically
modified graphene oxides.

Keywords: magnetite nanoparticles; graphene oxide; graphite oxide; heteroaggregation; chemical
reduction; ascorbic acid; nanocomposite dispersion; heat production; magnetic hyperthermia

1. Introduction

Magnetic nanomaterials attract rising attention in biomedical applications, such as easily
controllable targeted drug-delivery vehicles for cancer therapy [1–3]. Superparamagnetic iron oxide,
i.e., magnetite nanoparticles (MNPs) have great potential for biomedical use (MRI contrast enhancement,
targeted drug delivery, etc.). Although the MNPs have inherent unique magnetic properties, they should
be biocompatibilized, e.g., with carboxylate-type compounds [4] for their application in living systems.
Beside carrying and releasing the active compound into the tumor tissues, magnetic particles are able
to produce heat locally in an alternating magnetic field due to magnetic hyperthermia (MH). Since the
cancer cells are more sensitive to the local temperature changes than the healthy ones, the MH may
result in a larger extent or larger rate of tumor cell death. For this reason, this technique has been
proposed to be used as an alternative therapeutic method first in 1957 by Gilchrist et al. [5], but it is
still the subject of numerous studies recently.

Nanoparticles intended to be used in biomedicine should fulfil three main criteria: (i) they
have to be non-toxic, (ii) biocompatible and (iii) stable in biological milieu. Carbon-based materials,
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especially carbon nanoparticles are extensively examined for biomedical use, and it has been already
found that graphene oxide (GO) is capable of delivering non-water-soluble compounds, e.g., drug
molecules to target locations [6]. GO is a hydrophilic, carbonaceous material, with high surface area
and tunable pH dependent surface charge properties. Most commonly, graphite oxide is synthesized
via oxidation reaction using KMnO4 and concentrated H2SO4, and this synthesis method is industrially
scalable [7]. The rich surface chemistry of GO, which allows for an easy application of a wide range
of surface functionalization reaction schemes, makes it an excellent platform for the formulation of
solid-state nanocomposites or aqueous nanocomposite dispersions [8–14]. According to the results
published by Bai et al. [15], the conductive properties of the GO may have beneficial effect to
the hyperthermic efficiency of the magnetic nanoparticles. The GO/MNP composite dispersed in
physiological saline solution at 50 mg/mL concentration reached 92.8 ◦C in 500 s after exposed to
30 kA/m AC (alternating current) magnetic field at 80 kHz. Based on this enormous heat production,
the authors suggested the composite for magnetic hyperthermia applications.

While GO/MNP nanocomposites can be obtained under various conditions, almost exclusively
in situ methods are used for their preparation, i.e., MNPs are fabricated in the presence of GO
lamellae [16–23]. In general, harsh conditions (e.g., strongly alkaline medium, high salt concentration)
are applied to produce iron oxide nanoparticles, and the synthesis or work-up is often combined
with ultrasonication as well [19,20], which may have a detrimental effect on the carbonaceous sheets.
Urbas et al. reported on a composite formation via covalent binding of oleate coated MNPs on activated
GO flakes [21]. Multifunctional magnetic nanocarpets delivering doxorubicin (DOX) were synthesized
by Sasikala et al. [22], and it was found that the improved antitumor activity combined with enhanced
hyperthermic efficiency (23 ◦C temperature increase in 900 s, at ~12.5 kA/m and ~293 kHz) makes
these nanocomposites ideal for cancer theranostics. Electrostatic interaction was used to prepare
Fe3O4@Graphene Oxide composites by Hu et al. [23], building it from GO modified with positively
charged polyelectrolyte (poly(diallyldimethylammonium chloride), PDDA) and silica-coated MNPs
for environmental purposes, extending thereby the class of magnetically modified supports such
as layered silicates [24–27], mesoporous materials [28–31] or porous hydrogel matrices [32]. Earlier,
we have proposed a mild one-pot synthesis method to fabricate GO/MNP nanocomposites, which was
the first of its kind because, unlike other methods based on an in situ particle growth in a GO matrix,
it entirely relied on the electrostatic attraction between unmodified GO sheets and bare MNPs [33].

The conductivity of the GO sheets greatly depends on the oxidation degree of the carbonaceous
host [34]. The GO particles can be reduced by various methods, either in chemical [35,36], thermal or
light-driven ways [37]. Among numerous compounds used for GO reduction, two categories may
be distinguished based on the reaction mechanism, in general. The chemicals used for reduction
traditionally in synthetic chemistry (e.g., NaBH4, LiAlH4) form the “well-supported” group, because the
mechanism of the reaction is already well-known, while the other compounds applied for GO reduction
(e.g., hydrazine, hydroquinone, L-ascorbic acid, etc.) with a not yet fully clarified reaction path belong
to “proposed” category [35]. Due to the elimination of the oxygen-containing functional groups in
the reduction process, the material changes its color from brown to black, moreover, it becomes more
hydrophobic leading to easier aggregation [38]. The efficiency of the reduction can be monitored by
the change of the C/O ratio or measuring the conductivity of the carbonaceous compound.

Among various possible methods, Fernández-Merino et al. have carried out the reduction of GO
by L-ascorbic acid at 95 ◦C in various solvents (water, dimethyl formamide, N-methyl pyyrolidone) [39].
They found that the alkaline medium increases the stability of the GO lamellae due to the electrostatic
repulsion. Only aqueous reduction was examined by Zhang et al. [40], and it was shown that increasing
the concentration of the ascorbic acid the reaction time could be reduced down to few hours starting
from 48 h, which was necessary for the completion of the process. A new green synthesis was established
by Habte et al. using H2SO4/H3PO4 acids and potassium permanganate to prepare and ascorbic acid
to reduce graphene oxide with better control on the degree of oxidation [41]. Stepwise reduction
was achieved by another research group using Zn powder and sonication to generate hydrogen
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under acidic conditions [38] by changing the mass of the added solid metal. Reduced GO/MNP
composites were prepared mainly for environmental purposes, i.e., for toxic pollution and heavy metal
removal using hydrazine as reducing agent [16,42]. In both cases rGO was prepared first, and then the
composite was synthesized, adding iron precursors and ammonia solution to initiate the formation of
magnetic nanoparticles in situ. According to our knowledge, among the numerous papers published
on the synthesis and application of GO/MNP nanocomposite materials, it is only our recent study [33]
which demonstrates the theranostic potential of GO/MNP composites prepared by heterocoagulation.
However, the effect of post-reduction on the heat evolution caused by these composites in an alternating
magnetic field has yet been almost completely disregarded.

Therefore, our main aim is to reveal the effect of reduction conditions on the hyperthermic
efficiency of GO/MNP nanocomposites synthesized by the heterocoagulation method. We compare the
heat production capabilities of nanocomposites reduced by L-ascorbic acid under acidic and alkaline
conditions to those obtained by NaBH4 as a commonly applied, strong reducing agent. Heat generation
in an alternating magnetic field will be measured for composites with 1/5 and 1/10 GO/MNP mass
ratios before and after reduction by NaBH4 and LAA at various aqueous suspension concentrations.

2. Materials and Methods

2.1. Materials

FeCl2·4H2O, FeCl3·6H2O, KMnO4, NaNO3, concentrated H2SO4, 25 wt% NH3 and 30 wt%
H2O2 solution were of analytical grade (Molar Chemicals Ltd., Halásztelek, Hungary) and used
without further purification. Reduction was carried out by NaBH4 and L-ascorbic acid (Spektrum 3D,
Debrecen, Hungary). Constant electrolyte concentration and pH were set and maintained using NaOH,
HCl and NaCl in analytical purity (Reanal, Budapest, Hungary). Hydroxylamine, ammonium acetate,
glacial acetic acid, FeSO4·7H2O and 1,10-phenantroline used for spectrophotometric determination of
dissolved iron were purchased from Sigma-Aldrich. Ultrapure water produced by a Zeener Power
RO&UP system was used as dispersion medium and the experiments were carried out mainly at
room temperature (25 ◦C). Magnetic nanoparticles were synthesized by a traditional co-precipitation
method using Fe(II) and Fe(III) salts under strongly alkaline conditions and purified by dialysis
against dilute (0.001 M) HCl, as was described in detail elsewhere [4,33]. Graphite oxide was
prepared by the Hummers–Offeman method, using KMnO4, and NaNO3 for oxidation of graphite
flakes (SGA20 graphite powder, Kropfmühl GmbH, Germany) under highly acidic circumstances
(cc. H2SO4) [33,43]. The product was purified by dialysis against water to eliminate the excess of salts
originating from synthesis.

2.2. Synthesis of the Nanocomposites by Heterocoagulation

GO/MNP nanocomposites with 1/5 and 1/10 weight ratios were fabricated by heterocoagulation of
oppositely charged GO and MNP at pH ~5 [33] as the schematic drawing shows in Figure 1. This simply
involved the rapid mixing of the suspensions of GO and MNP in volume ratios which fit to the particle
mass concentrations specified in Table 1, keeping them under vigorous stirring for 15–20 min at room
temperature. Aqueous samples were then stored undisturbed in a fridge until use.
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Table 1. Reduction reaction conditions and sample concentrations.

NaBH4
Acidic (pH ~ 3.4–3.7)

~25◦C, 4 days
Alkaline (pH ~ 9.2–9.5)

~95 ◦C, 30 min

GO/MNP 1/0
GO:1 g/L, MNP: 0 g/L 50 mM LAA 5 mM LAA: 5 mM,

NH3: 5 µL/mL

GO/MNP 1/5
GO: 1 g/L, MNP: 5 g/L 50 mM LAA 5 mM LAA: 5 mM,

NH3: 5 µL/mL

GO/MNP 1/10
GO: 0.5 g/L, MNP: 5 g/L 50 mM LAA 5 mM LAA: 5 mM,

NH3: 5 µL/mL

2.3. Reduction of the Composites

GO/MNP nanocomposites with 1/0, 1/5 and 1/10 compositions were reduced using L-ascorbic
acid (LAA) and NaBH4. First, 100 mL stock suspension of GO/MNP composites was prepared at
each GO/MNP ratio with the indicated GO and MNP concentrations (Table 1) corresponding to
the 1/0, 1/5 and 1/10 compositions, respectively. Smaller portions of these suspensions were taken
and used for further studies; thus, the magnetite concentration was kept constant (5 g/L) in each
experiment. The reduction reaction with LAA was carried out by two methods, i.e., under acidic (pH
~ 3.5) and alkaline circumstances (pH ~ 9.3). Room temperature and longer reaction time (4 days)
was applied for acidic conditions, and elevated temperature (~95 ◦C) was used for 30 min in alkaline
medium. The concentration of the added organic acid was selected based on previous experiences [44].
The reaction conditions and the sample concentrations are summarized in Table 1.

2.4. Experimental Methods

2.4.1. Structure and Morphology

The crystalline structure of synthesized magnetite, graphene oxide nanosheets and GO/MNP
nanocomposites were identified by Philips PW 1830 X-ray diffractometer (Philips, Eindhoven,
the Netherlands) operating in Bragg-Brentano focusing geometry with CuKα radiation. Powder
samples were used for the analysis and the crystallite size of the MNPs was determined from
the broadening of the most intensive peak of the XRD pattern by using the Scherrer equation [45].
The morphology of the individual particles and the nanocomposite samples was studied by transmission
electron microscopy using a Jeol JEM-1400+ device (JEOL Ltd., Tokyo, Japan) operating at 80 kV
accelerating voltage. The primary particle size and the size distribution of MNPs were determined by
JMicrovison software version 1.2.7 counting ~100 particles.

2.4.2. Laser Doppler Electrophoresis Measurements

The zeta potential of the magnetite, the GO sheets and their pristine and reduced composite
forms were determined in a Nano ZS dynamic light scattering (DLS) apparatus (Malvern Instruments,
Malvern, Worcestershire, UK) with a 4 mW He-Ne laser source (λ = 633 nm). Disposable zeta cells
(DTS 1070) (Malvern Instruments, Malvern, Worcestershire, UK) were used to record the electrophoretic
mobilities at 25 ± 0.1 ◦C and the Smoluchowski equation was applied to calculate the zeta potentials.
The accuracy of the measurements is ±5 mV, and the zeta-standard of Malvern (55 ± 5 mV) was used
for calibration. The dispersions were diluted to give an optimal intensity of ~100 cps. The samples
were homogenized in an ultrasonic bath for 10 s, after which 2 min relaxation was allowed before the
measurements. The electrolyte concentration was kept at constant value (I = 10 mM).

2.4.3. Dynamic Light Scattering Experiments

The average particle size of individual magnetite and GO nanoparticles was determined at
25 ± 0.1 ◦C using a NanoZS apparatus (Malvern Instruments, Malvern, Worcestershire, UK) operating
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in backscattering mode at an angle of 173◦. The intensity average hydrodynamic diameter (Z-Ave)
values were calculated using the second- or third order cumulant fit of the autocorrelation functions,
depending on the degree of polydispersity. The individual MNP and GO particles and the various
composite samples were studied at the same conditions as in the electrophoresis measurements.

2.4.4. Magnetic Hyperthermia Measurements

The calorimetric measurements were performed using a magneTherm TM (nanoTherics Ltd.,
Keele, Staffordshire, UK) instrument. The magnetic hyperthermic efficiency was measured at a resonant
frequency of 109.4 kHz with magnetic field value of B = 24.7 mT by using a 17-turn coil/198 nF capacitor.
One milliliter dispersion was tested with a dispersion concentration of 5 g/L for magnetite and 0, 0.5 and
1 g/L for GO. The measurement time was 5 min. The specific absorption rate (SAR, W/g magnetite)
values for the different field strength values were calculated according to

SAR =
Cp,s ×

mwater
msolid

∆T
∆t

(1)

where Cp,s is the specific heat capacity of the medium (water), mwater and msolid are the masses of the
medium and the nanoparticles, and ∆T

∆t is the rate of temperature change at t = 0. For better comparison,
the SAR values published in literature are usually related only to the iron content of MNPs instead of
the whole mass of nanoparticles.

2.4.5. Determination of Dissolved Iron Concentration

The amount of dissolved iron in the presence of organic acid (LAA) was determined by
spectrophotometry applying the protocol recommended by Mykhalyk et al. [46]. Briefly, the composite
samples were treated with concentrated HCl first, to dissolve their iron content into Fe3+ ions. Then,
hydroxylamine and hydrochloric acid are added to the solution in the presence of an ammonium
acetate/glacial acetic acid buffer and 1,10-phenantroline was used as indicator. The absorbance of the
formed ferroin complex [Fe(o-phen)3]2+ was measured in acidic media at λ = 510 nm.

3. Results

3.1. Structural Characterization

The crystalline structure of the synthesized nanocomposites and their starting compounds
was studied by X-ray diffraction. A characteristic region of diffraction patterns of the original GO,
the magnetite nanoparticles and the 1/5 GO/MNP nanocomposite is presented in Figure 2. At a
diffraction angle of 10.4◦, graphite oxide shows a sharp diffraction peak revealing its highly ordered
layered structure composed of parallelly oriented graphene oxide particles, which are well observable
in the corresponding TEM image in Figure 3. The position of this (002) reflection usually varies
strongly with the ambient humidity conditions and spans the c-axis repeat distance range of ca. 6–9 Å.
Another band also appears in the X-ray pattern of graphite oxide: the second one usually has definitely
lower intensity, but its 2Θ angle is twice as large as for the first one. However, since the latter is a
second order “overtone” band (originating from interference of wave trains reflecting from the lattice
planes with a distance shift of two wavelengths), both bands refer to the same periodical distance of
~8.5 Å. Magnetite usually represents six characteristic peaks corresponding to the spinel structure of
the iron oxide sample. The reflections at 30.34◦ and at 35.4◦ are the most intense bands belonging
to the (220) and (311) lattice planes of face-centered cubic structure. The diffractogram of the 1/5
GO/MNP composite resembles more the magnetite than the GO sample showing the same characteristic
reflections at 30.34◦ and at 35.6◦. Since the magnetite phase is dominant in the composite samples,
magnetite-related features are highly expected in their XRD pattern as well. However, the total absence
of the graphite oxide-related band is a very remarkable feature of the pattern of GO/MNP, because one
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could justifiably expect a contribution from such a strong and narrow GO reflection in a sample that
contains more than 15 wt% of GO. One may assume that the absence of this band is due to the leaching
of the carbonaceous sheets upon synthesis, which results in a significant deviation from the original,
1/5 mass ratio. However, we need to point out that, unlike for many other synthesis protocols, the mass
ratio of the two phases cannot change upon the heteroaggregation process, because there is virtually no
loss of particles (e.g., via leaching, chemical transformation), and thus the mass of the nanocomposite
equals to the mass of NMP and GO mixed together in a predetermined amount. Therefore, the lack of
the ~8.5 Å basal spacing in the nanocomposite samples clearly substantiates that the carbonaceous
sheets have become highly dispersed (exfoliated) upon the synthesis process. This strong assumption
is justified if one considers that a randomly distributed and oriented platelet-structure composed of
individual graphene oxide particles can be retained in the coherent composite structure even after
the removal of the solvent (water) content of the system. As a result, while the amount of GO in
the composite powder is still relatively high (ca. 15 wt%), it is not present as stacked, multi-layered
particles that could give rise to a strong X-ray reflection. The average crystallite size of the magnetite
counterpart calculated by the Scherrer equation for the most intense reflection at 35.6◦ 2Θ is ~9 nm,
which is somewhat smaller than the primary particle diameter determined by the TEM images (~10 nm).
This latter indicates a common phenomenon for SPIONs (superparamagnetic iron oxide nanoparticles):
a thin amorphous layer is present on the MNP’s surface, which does not show the crystallite structure
characteristic to the core of the particle.
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Figure 2. XRD patterns of individual MNP and GO nanoparticles and of the 1/5 GO/MNP
nanocomposites in powder form.

Transmission electron microscopy images of some selected samples (GO, MNP, 1/5 GO/MNP
composite before and after reduction) are presented in Figure 3 for comparison. The GO sample
consists of folded paper-like layers, indicating the highly delaminated, single-layer state of graphene
oxide. The average primary particle size of individual magnetite nanoparticles (top panel, right) was
9.5 ± 1.2 nm, which remained almost unchanged in the pristine GO/MNP composite (9.4 ± 1.3 nm,
bottom panel left), while it became larger with slightly broader size distribution due to the reductive
treatment (12.6 ± 2.3 nm, bottom panel right). As can be seen, the reduction process changes the
morphological attributes of GO/MNP composites, because the distribution of the MNPs greatly changed.
Before the reduction reaction, the magnetic nanoparticles are more or less well-distributed showing an
average size of ~9.5 nm (bottom panel, left), but afterwards, the nanomagnets form bigger clusters
according to the image of the rGO/MNP taken at lower magnification in Figure 3 (bottom, right).
This change can be interpreted by considering the modification of the surface charging of GO during
the reduction procedure. Lowering the oxidation degree of GO leads to diminution of the functional
groups resulting in lower surface charge on the carbonaceous lamellae at the same pH [34,47]. Since the
interaction between the magnetite nanoparticles and GO sheets is based on electrostatic attraction [33],
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changes of the composite’s character might be expected after reduction. Here, we did not observe
lowering of the iron oxide content in the rGO/MNP composite, as can be seen in Figure 3, only the
modified distribution of the MNPs was detected.
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and after reduction with LAA. The red scale bar corresponds to 100 nm to assist better visibility and
easier comparison.

3.2. Surface Charge Characteristics

The pH-dependent surface charging of GO and magnetite nanoparticles was investigated by
electrophoretic mobility measurements in order to find the optimal pH range for the composite
formation by heterocoagulation process. The calculated zeta potential (ZP) values of the nanomagnets
and GO particles are presented in Figure 4. Graphene oxide sheets exhibit negative charge, the ZP is
lower than −30 mV, over the whole pH range studied due to the dissociation of the acidic functional
groups. The highly negatively charged surface usually leads to long-term kinetic stability, but in the
case of GO the relatively large extension of lamellae in two dimensions (equivalent hydrodynamic
spherical diameter ~800 nm) results in particle sedimentation. Magnetite nanoparticles are amphoteric
type of materials, which means that the surface charge is changing depending on the pH of the medium.
MNPs are highly positively charged (~40 mV, Figure 4, circles) at low pH, while they become negatively
charged in the alkaline pH range after a charge reversal at pH ~ 8, where the MNP surface is neutral [48].
Varying amounts of negative charges develop on GO lamellae depending on the dissociation of acidic
functional groups in the studied pH range [43,47]. The measured zeta potential descends to −50 mV,
when the GO reaches its fully deprotonated state (Figure 4, open squares). In order to maximize
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the electrostatic attraction between GO and MNP but keeping the pH close to the physiological one,
the composite formation process was carried out at pH ~ 5.5 where the compounds are highly and
oppositely charged, as indicated by the red-highlighted region in Figure 4.
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Regarding the possibility to monitor the progress of the reduction process, we considered using
two main methods to provide data that would allow comparison of each stages of reduction for the
individual carbon phases and their composites. In the case of pure graphene oxide, the C/O ratio
has long been used to follow and compare the efficiency of the reduction [49]. Unfortunately, for the
present system, the C/O ratio will not provide the sought data, because the reduced composite samples
still contain magnetite and some organic compound as well. Since these two materials contain oxygen
and carbon too, which may also transform during the reduction step influencing the amount of carbon
and oxygen, the C/O ratio would not be informative. Conductivity measurements are also used to
monitor the oxidation degree of graphene/graphene oxide samples [50], but grain boundary issues and
the presence of organic compounds may also have disturbing effect, as in the case of C/O ratio.

3.3. Heat Generation in Nanocomposite Dispersions

The heat production of the pristine and the reduced GO/MNP nanocomposites with various
compositions was studied by calorimetric measurements. Time-resolved temperature measurements
were performed, and the original magnetite (MNP) and the reduced graphene oxide (rGO) dispersions
were used as reference. In our previous work [33], we demonstrated that the 1/50 GO/MNP composite
aqueous dispersions exhibited even higher heat production than the pure magnetite sample, likely due
to the contribution of Joule loss generated by the GO sheets. In that case the amount of GO was almost
negligible (less than 2 wt%) compared to the mass of MNPs. Since we intended to investigate the
composition dependency of hyperthermic efficiency at much larger GO contents, we have chosen the
1/5 and 1/10 GO/MNP ratios in the present study.

3.3.1. GO/MNP Composites before Reduction

First, we determined the heat production of the pristine composites at 1/5 and 1/10 GO/MNP
compositions, and, as the left panel of Figure 5 shows, no difference between the samples could be
observed. The composites exhibited almost the same rate of temperature increase, the calculated SAR
was 9.2 and 8.8 W/g, which was significantly higher than that of the GO sample and it almost reached
the level produced by the magnetite itself (11.6 W/g). Since all dispersions contained the magnetic
nanoparticles at equal concentrations (5 g/L), the deviation should be assigned to the presence of the GO
lamellae. The minor deviation (only 0.5 ◦C) in the final ∆T between pure magnetite and the composite
samples indicates that the GO sheets do not attenuate the heat production on a significant scale. As the
pure GO sample also produces some moderate temperature rise in 300 s (less than 3 ◦C), two possible
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processes can be considered. One may originate from the electrolyte content of the aqueous dispersion
of the GO and the second one is likely due to the resistance heating effect caused by Joule-losses of
graphene oxide particles as we suggested in our previous work [33]. A GO/MNP nanocomposite of
nearly 1/1 mass ratio was proposed by Bai et al. as thermoseeds in magnetic hyperthermia treatment
of cancers, based on their excellent heating abilities [15]. This magnetic nanomaterial dispersed in
physiological saline solution reached 92.8 ◦C in 500 s. Such a colossal temperature rise is indeed
quite promising for biomedical application but considering the very high suspension concentration
(50 mg/mL) and the strong magnetic field applied in that publication (30 kA/m), the heat generation
of the composites prepared in our study is comparably efficient. Although the SAR value (~24 W/g)
estimated for that case is still higher, compared to our measurements recorded at 19.5 kA/m (24.7 mT)
in dispersions containing 5 mg/mL MNP, our composites also show promising hyperthermic potential
by taking into account the quadratic dependence of the heat production from the magnetic field
strength [4]. Besides the high particle concentration, which is ten times larger than ours, the electrolyte
content of the medium (physiological saline solution was used in this case) probably also contributes
to the measured enormous temperature rise.Nanomaterials 2020, 10, x FOR PEER REVIEW 10 of 17 
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3.3.2. Heat Production of rGO/MNP Composites Obtained by Borohydride Treatment

On the right side of Figure 5, the temperature differences are presented for the MNP, GO and
GO/MNP composites measured after the reduction using NaBH4, which is a frequently used compound
for GO reduction [35,37]. The picture is definitely different compared to the pristine samples (Figure 5,
left side). After the reduction, both the 1/5 and 1/10 composites showed significant heat production:
the respective SAR values are 12.7 and 16.2 W/g (Table 2) calculated by considering only the initial
part of the heating curves, where the slope is slightly lower for the 1/5 GO/MNP. If we consider the
whole interval, this variance almost disappears, and hardly different SAR values (20.0 and 18.8 W/g)
can be obtained. The heat production of MNP does not change significantly as a result of the reduction:
the final ∆T is less only by 0.2 ◦C after treating the sample with NaBH4. We note that the reduced
composites were not stable: the solid material started to sediment almost immediately after addition
of the reducing agent. Although the borohydride reduction of GO/MNP composites apparently
improved their magnetic hyperthermia applicability, it also raises stability issues. This problem poses
the argument for favoring milder reducing agents, such as the frequently used ascorbic acid [35,41].
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Table 2. Summary of calculated specific absorption rate (SAR) values (in W/g) obtained for GO and
GO/MNP samples.

Without Reduction
After Reduction with

NaBH4 LAA, pH ~ 3.5 LAA, pH ~ 9.3

GO 3.6 7.1 2.6 1.9
1/5 GO/MNP 9.2 12.7 7.6 20.3
1/10 GO/MNP 8.8 16.2 11.8 11.6

It is known that the magnetic properties of nanoparticles play an important role in their behavior
in an alternating magnetic field [51]. An inverse relationship between the SAR value and the average
particle size was published earlier for MNPs [52], but the colloidal stability was not considered carefully.
Later, this finding was supplemented by taking into account the aggregation properties of the magnetic
nanoparticles, i.e., counting on the dipole–dipole and the exchange interactions as well [51]. Since both
the dipole–dipole interaction and the exchange coupling is influenced by the interparticle distance, it is
not surprising that any slight change in the colloidal state, which is related to the particle interactions,
may lead to the notable alteration of magnetic properties. If the particles are able to approach each
other closer, a collective magnetic state might be created, where the moments will be randomly oriented
or aligned to the AC field. This cooperative effect among magnetic nanoparticles may lead to more
pronounced hyperthermic effect, but if the particle aggregates become too large, they start to sediment,
thereby disappearing from the observed area in which the measurement is carried out. However,
for these samples, the stability issue is even more complicated, since the magnetic nanoparticles
interact with the carbonaceous lamellae; furthermore, any organic compounds present in the dispersion
medium may have an influence on the colloidal stability, i.e., the spatial distribution of the particles
as well. In our case the heating curves are not perfectly straight lines, but they do show linearity
within broad intervals of magnetic field strength. Despite the careful isolation of the sample from
the environment, we cannot prevent some heat loss, which is normal for non-adiabatic calorimetric
measurements and makes it more realistic [53]. The slight bending on several heat curves may be due
to the change in particle distribution inside the measuring vial. If the GO loses some functional groups
during the reduction process, the decreased surface charge of lamellae may result in a change of the
planar distribution of MNPs, leading to their clustering similar to that observed on the TEM image of
the LAA-reduced 1/5 rGO/MNP sample (Figure 3).

3.3.3. Heat Production of rGO/MNP Composites Obtained by Ascorbic Acid Treatment

According to the method applied earlier [39], we carried out the reduction in alkaline media,
by adding small portion of ammonia to the mixture of GO/MNP and LAA. In parallel, the reduction
process was performed also in acidic conditions. The final pHs of the mixtures were 9.3 and 3.5,
respectively. Figure 6 shows how the different reaction conditions affect the hyperthermic efficiency of
the studies materials and the calculated SAR values are summarized in Table 2.

Under acidic conditions, the heat production of rGO and 1/5 rGO/MNP samples becomes worse
than that of pristine MNP and only the sample of 1/10 composition shows the same efficiency.
The calculated SAR value was 11.8 W/g for the 1/5 rGO/MNP, while the original MNP exhibited
11.6 W/g. The difference between 1/5 and 1/10 samples may be attributed to the low pH, where the
LAA is partially protonated, and its amount is likely not enough to reach the same degree of reduction
for the 1/5 sample with double GO content. Contrary to this, the alkaline conditions significantly
improved the temperature rise measured for the composites, especially in the case of 1/5 rGO/MNP,
where the SAR value increased from 9.2 up to 20.3 W/g after reducing it by LAA/NH3 mixture.
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The heat dissipation efficiency in the AC magnetic field strongly reflects not only the propensity
of magnetic dipoles, but also their different types interactions. Although SAR values decrease with
aggregation at first glance, Ovejero et al. [54] have revealed that inter-aggregate dipolar interactions
cause an enhancement in the magnetization, while intra-aggregate dipolar interactions lead to a
decline (demagnetization). Therefore, any change in the spatial distribution of magnetic dipoles
(i.e., the nanomagnets) may result in different dynamic magnetic properties (e.g., hysteresis loop).
In the case of GO/MNP nanocomposites, the surface densities of MNPs on GO lamellae can be tuned by
their mass ratio. As we have demonstrated in an earlier publication, the 1/50 GO/MNP nanocomposite
exhibited even higher heat production than the pure magnetite sample [33], which may be the
consequence of the inter-aggregate dipolar interactions between surface-bound MNPs. The performance
of 1/10 and 1/5 GO/MNP composites was far from that of 1/50 sample. We tried to improve them by
reducing GO, which may lead to the clustering of MNPs on rGO surface as seen on the TEM image of
the 1/5 rGO/MNP sample (Figure 3).

The 1/10 rGO/MNP sample also presented slightly higher heat production, but the SAR increase
was only 2.3 W/g compared to the pristine 1/10 GO/MNP sample, reaching 11.6 W/g for the reduced
composite. It is interesting to note, that the amount of added LAA was equal in all cases, but the
mass of the GO changed, since the MNP concentration was kept constantly at 5 g/L. In the 1/10
composite, the amount of the carbonaceous host was half compared to the 1/5 sample, so the LAA could
reduce the GO to a greater extent, leading to almost complete transformation from GO to graphitic
carbon. As in the case of NaBH4, due to the overly strong reduction and the large excess of reductant,
the treatment resulted in weaker heat producing samples, which is contrary to the aim of this study.
Thus, we investigated the effect of the added amount of LAA on the hyperthermic efficiency of the
reduced composites next.

The heating curves recorded for the 1/10 rGO/MNP composites treated by LAA in various
concentrations at pH 9.3 are presented in Figure 7. At first glance, the samples behave in a slightly
different way in AC field following the reduction with 5 and 7.5 mM LAA than that reduced with
2.5 mM LAA. The hyperthermic performance of the 1/5 rGO/MNP composites were not influenced by
the added LAA amount used in the reduction stage of its synthesis, while in the case of the 1/10 ratio
the lowest reductant concentration (2.5 mM) leads to much lower heat production. The latter exhibits a
temperature increase (ca. 3.8 ◦C) which is smaller even than that found for the pristine 1/10 GO/MNP
sample (Figure 5, left). Based on this observation, a concentration threshold of ca. 5 mM can be
established regarding the amount of LAA necessary to maintain a fairly good hyperthermia performance
for the 1/10 composition. However, while both MNP/GO samples develop a practically relevant heat
production capability upon borohydride reduction, it seems that only the nanocomposite containing
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larger amounts of GO (1/5 GO/MNP mass ratio) bears a noticeable increase in the heating rates as
compared to the naked MNP particles. This finding, however, does not justify the greater practical
utility of the nanocomposite dispersion obtained by borohydride assisted reduction, because the
biomedical applicability may also be influenced by the size features of the dispersed heat-generating
particles and their distribution in the aqueous medium. We have demonstrated in an earlier study that,
depending on the GO/MNP mass ratio, the hydrodynamic diameter of the composites may change
drastically [33]. Herein, due to the extensive aggregation found for the samples reduced by NaBH4,
DLS was inadequate for providing a reliable estimate of the average size of aggregates in that system.
Therefore, a meaningful comparison can only be provided by visual observation of the composite
dispersions. These substantiate that the LAA-reduced samples remain dispersed in water for a much
longer time as compared to borohydride-reduced composites, which form large flocculated particles
reminiscent of light carbon soot materials obtained, e.g., upon pyrolysis of graphite oxide. It is clear
then that the added LAA behaves not only as a reducing agent, but it contributes to the particle
stabilization as well.
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Based on our previous experience [44] and due to the applied strong acidic and alkaline conditions
we tested the probable dissolution of the ferrous ions from the crystallite structure of the magnetic core.
The iron content was measured by spectrophotometric method [46], and the amount of the dissolved
iron was found to be below the detection limit, which is ca. 0.5 mg/mL in our case. It can be concluded
that neither the acidic nor the alkaline reduction promoted the dissolution of the solid matrix during
the treatment of GO/MNP composites with LAA.

4. Discussion

4.1. Perspectives on Magnetic Hyperthermia of rGO/MNP Composites

Relatively few papers [55–57] were published on the possible application of graphene
oxide/magnetite nanocomposites for magnetic hyperthermia, and only one was found related to the
study of the heat production of reduced GO/MNP in an AC magnetic field [58]. Rodrigues et al. reported
on interesting multifunctional graphene-based magnetic nanocarriers for combined hyperthermia
and drug delivery [55]. They found high heating efficiency (SAR, >300 W/g) and dual pH and
thermal stimuli-responsive drug-controlled release under an alternating magnetic field (f = 340 kHz,
H = 21.0 kA/m) of the graphene-based yolk-shell magnetic nanoparticles functionalized with copolymer
Pluronic F-127 and loaded with doxorubicin drug molecules. Although this nanostructure is really
promising for cancer treatment, the studied composite material was prepared by a complex multistep
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synthesis method unlike our composite material, which involves no functionalizing agents or loaded
molecules. GO/MNP nanocomposites of various compositions were synthesized in situ for in vitro
apatite mineralization by Miyazaki et al. [56]. In harmony with their previous results, both the
osteoconductivity and the magnetically induced thermal response studied in agar phantom improved
at higher Fe3O4 content of the nanocomposite. Albeit reduced GO/MNP was discussed throughout
the paper, none of the broad classes of reducing agents were directly applied, only the possible
decomposition (resulting in a loss of oxygen content, which is often misinterpreted as a true chemical
reduction) of GO during the co-precipitation of magnetic nanoparticles was assumed. A solvent
evaporation method was applied by Sugumaran et al. to reside iron oxide nanoparticles of various
core sizes in the GO sheet based host [57]. The PEGylated GO/MNP composites with the largest MNP
core size showed not only outstanding hyperthermic efficiency with SAR value higher than 5000
W/g, but they exhibited excellent colloid stability as well. Finally, the sole previous study focusing
on naked rGO/MNP samples was published by Gupta et al. [58] using hydrazine to chemically
reduce the composite following its synthesis process via co-precipitation. However, their study
differs from ours in many respects such as (i) the type of reducing agent, (ii) the synthesis pathway
(classical in situ co-precipitation vs. heterocoagulation) and, most importantly, (iii) their composite
material was also loaded with drug molecules to enhance the magnetic thermotherapy. Despite their
finding that the DOX-loaded rGO/MNP showed significant enhancement in the synergistic antitumor
therapeutic efficacy in the AC magnetic field, the heat production slightly decreased related to the
pristine magnetite.

4.2. Utility of rGO/MNP Composites Synthesized in This Study

Compared to the aforementioned studies, the present is unique in terms of the fabrication
of the bare rGO/MNP composites directly employed for magnetic hyperthermia. Contrary to the
exclusively used in situ co-precipitation, we successfully applied heterocoagulation to prepare GO/MNP
nanocomposites from separately synthesized and purified GO and magnetite dispersions. The mild
method allows us to use only electrostatic attraction to reside the MNPs on the carbonaceous host
without applying harsh chemical circumstances. Aiming to achieve only partial reduction of GO
content in the composites, the strong reducing agent, the NaBH4, was found to be too aggressive
of a compound for this purpose, although the heat production apparently slightly increased but
the colloidal stability of the reduced samples diminished substantially. Depending on the reaction
conditions (e.g., pH, reactant concentration), LAA revealed excellent ability for partial reduction
of GO sheets into rGO form leading to increased thermal response in moderate AC magnetic field
(109.5 kHz, 24.5 mT). For fine tuning of the hyperthermic efficiency by changing the oxidation state
of the carbonaceous host, the LAA proved to be a good candidate, due not only to the enhanced
thermal response of 1/5 rGO/MNP obtained by alkaline reduction, but also to the improvement of
the colloidal stability. Since this latter property, among other criteria (biocompatibility, non-toxicity,
etc.), is crucial for biomedical application but aggregation properties have yet barely been studied in
relation to magnetic hyperthermia of MNPs and their composite materials, we believe that the further
optimization of this method to afford high-stability efficient nanocomposites has high potential for
cancer theranostics.
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