Recent Developments in Lead and Lead-Free Halide Perovskite Nanostructures towards Photocatalytic CO2 Reduction
Abstract
:1. Introduction
2. Fundamentals of Photocatalytic CO2 Reduction
3. Lead Halide Perovskites for Photocatalytic CO2 Reduction
4. Lead-Free Halide Perovskites
5. Summary and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 2019, 119, 3962–4179. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-M.; Razzaq, A.; Park, Y.H.; Sorcar, S.; Park, Y.; Grimes, C.A.; In, S.-I. Hybrid CuxO–TiO2 Heterostructured Composites for Photocatalytic CO2 Reduction into Methane Using Solar Irradiation: Sunlight into Fuel. ACS Omega 2016, 1, 868–875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.; Razzaq, A.; Sorcar, S.; Park, Y.; Grimes, C.A.; In, S.-I. Hybrid mesoporous Cu2ZnSnS4(CZTS)–TiO2 photocatalyst for efficient photocatalytic conversion of CO2 into CH4 under solar irradiation. RSC Adv. 2016, 6, 38964–38971. [Google Scholar] [CrossRef]
- Parayil, S.K.; Razzaq, A.; Park, S.-M.; Kim, H.R.; Grimes, C.A.; In, S.-I. Photocatalytic conversion of CO2 to hydrocarbon fuel using carbon and nitrogen co-doped sodium titanate nanotubes. Appl. Catal. A Gen. 2015, 498, 205–213. [Google Scholar] [CrossRef]
- Kim, H.R.; Razzaq, A.; Grimes, C.A.; In, S.-I. Heterojunction pnp Cu2O/S-TiO2/CuO: Synthesis and application to photocatalytic conversion of CO2 to methane. J. CO2 Util. 2017, 20, 91–96. [Google Scholar] [CrossRef]
- Sorcar, S.; Hwang, Y.; Lee, J.; Kim, H.; Grimes, K.M.; Grimes, C.A.; Jung, J.-W.; Cho, C.-H.; Majima, T.; Hoffmann, M.R.; et al. CO2, water, and sunlight to hydrocarbon fuels: A sustained sunlight to fuel (Joule-to-Joule) photoconversion efficiency of 1%. Energy Environ. Sci. 2019, 12, 2685–2696. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Flores, M.C.; Razzaq, A.; Sorcar, S.; Hiragond, C.B.; Kim, H.R.; Park, Y.H.; Hwang, Y.; Kim, H.S.; Kim, H.; et al. Gas Phase Photocatalytic CO2 Reduction,“A Brief Overview for Benchmarking”. Catalysts 2019, 9, 727. [Google Scholar] [CrossRef] [Green Version]
- Hiragond, C.; Ali, S.; Sorcar, S.; In, S.-I. Hierarchical Nanostructured Photocatalysts for CO2 Photoreduction. Catalysts 2019, 9, 370. [Google Scholar] [CrossRef] [Green Version]
- Sorcar, S.; Thompson, J.; Hwang, Y.; Park, Y.H.; Majima, T.; Grimes, C.A.; Durrant, J.R.; In, S.-I. High-rate solar-light photoconversion of CO2 to fuel: Controllable transformation from C1 to C2 products. Energy Environ. Sci. 2018, 11, 3183–3193. [Google Scholar] [CrossRef]
- Sorcar, S.; Hwang, Y.; Grimes, C.A.; In, S.-I. Highly enhanced and stable activity of defect-induced titania nanoparticles for solar light-driven CO2 reduction into CH4. Mater. Today 2017, 20, 507–515. [Google Scholar] [CrossRef]
- Ali, S.; Lee, J.; Kim, H.; Hwang, Y.; Razzaq, A.; Jung, J.-W.; Cho, C.-H.; In, S.-I. Sustained, Photocatalytic CO2 Reduction to CH4 in a Continuous Flow Reactor by Earth-Abundant Materials: Reduced Titania-Cu2O Z-Scheme Heterostructures. Appl. Catal. B Environ. 2020, 279, 119344. [Google Scholar] [CrossRef]
- Kumar, A.; Thakur, P.R.; Sharma, G.; Naushad, M.; Rana, A.; Mola, G.T.; Stadler, F.J. Carbon nitride, metal nitrides, phosphides, chalcogenides, perovskites and carbides nanophotocatalysts for environmental applications. Environ. Chem. Lett. 2019, 17, 655–682. [Google Scholar] [CrossRef]
- Das, S.; Daud, W.M.A.W. A review on advances in photocatalysts towards CO2 conversion. Rsc Adv. 2014, 4, 20856–20893. [Google Scholar] [CrossRef]
- Razzaq, A.; Sinhamahapatra, A.; Kang, T.-H.; Grimes, C.A.; Yu, J.-S.; In, S.-I. Efficient solar light photoreduction of CO2 to hydrocarbon fuels via magnesiothermally reduced TiO2 photocatalyst. Appl. Catal. B Environ. 2017, 215, 28–35. [Google Scholar] [CrossRef]
- Akhundi, A.; Habibi-Yangjeh, A.; Abitorabi, M.; Rahim Pouran, S. Review on photocatalytic conversion of carbon dioxide to value-added compounds and renewable fuels by graphitic carbon nitride-based photocatalysts. Catal. Rev. 2019, 61, 595–628. [Google Scholar] [CrossRef]
- Wu, H.; Li, X.; Tung, C.; Wu, L. Semiconductor Quantum Dots: An Emerging Candidate for CO2 Photoreduction. Adv. Mater. 2019, 31, 1900709. [Google Scholar] [CrossRef] [PubMed]
- Jiao, X.; Zheng, K.; Liang, L.; Li, X.; Sun, Y.; Xie, Y. Fundamentals and challenges of ultrathin 2D photocatalysts in boosting CO2 photoreduction. Chem. Soc. Rev. 2020, 49, 6592–6604. [Google Scholar] [CrossRef]
- Nguyen, T.P.; Nguyen, D.L.T.; Nguyen, V.-H.; Le, T.-H.; Vo, D.-V.N.; Trinh, Q.T.; Bae, S.-R.; Chae, S.Y.; Kim, S.Y.; Le, Q. Van Recent Advances in TiO2-Based Photocatalysts for Reduction of CO2 to Fuels. Nanomaterials 2020, 10, 337. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Razzaq, A.; Kim, Y.K.; Kim, S.; In, S.-I. Synthesis and characterization of platinum modified TiO2-embedded carbon nanofibers for solar hydrogen generation. RSC Adv. 2014, 4, 51286–51293. [Google Scholar] [CrossRef]
- Razzaq, A.; In, S.-I. TiO2 Based Nanostructures for Photocatalytic CO2 Conversion to Valuable Chemicals. Micromachines 2019, 10, 326. [Google Scholar] [CrossRef] [Green Version]
- Zubair, M.; Razzaq, A.; Grimes, C.A.; In, S.-I. Cu2ZnSnS4 (CZTS)-ZnO: A noble metal-free hybrid Z-scheme photocatalyst for enhanced solar-spectrum photocatalytic conversion of CO2 to CH4. J. CO2 Util. 2017, 20, 301–311. [Google Scholar] [CrossRef]
- Razzaq, A.; Ali, S.; Asif, M.; In, S.-I. Layered Double Hydroxide (LDH) Based Photocatalysts: An Outstanding Strategy for Efficient Photocatalytic CO2 Conversion. Catalysts 2020, 10, 1185. [Google Scholar] [CrossRef]
- Hiragond, C.B.; Lee, J.; Kim, H.; Jung, J.-W.; Cho, C.-H.; In, S.-I. A novel N-doped graphene oxide enfolded reduced titania for highly stable and selective gas-phase photocatalytic CO2 reduction into CH4: An in-depth study on the interfacial charge transfer mechanism. Chem. Eng. J. 2020, 127978. [Google Scholar] [CrossRef]
- Zeng, S.; Kar, P.; Thakur, U.K.; Shankar, K. A review on photocatalytic CO2 reduction using perovskite oxide nanomaterials. Nanotechnology 2018, 29, 52001. [Google Scholar] [CrossRef] [PubMed]
- Jena, A.K.; Kulkarni, A.; Miyasaka, T. Halide perovskite photovoltaics: Background, status, and future prospects. Chem. Rev. 2019, 119, 3036–3103. [Google Scholar] [CrossRef] [PubMed]
- Johnsson, M.; Lemmens, P. Crystallography and chemistry of perovskites. Handb. Magn. Adv. Magn. Mater. 2007. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Wang, R.; Yang, Y. The surface of halide perovskites from nano to bulk. Nat. Rev. Mater. 2020, 5, 807–827. [Google Scholar] [CrossRef]
- Teh, Y.W.; Chee, M.K.T.; Kong, X.Y.; Yong, S.-T.; Chai, S.-P. An insight into perovskite-based photocatalysts for artificial photosynthesis. Sustain. Energy Fuels 2020, 4, 973–984. [Google Scholar] [CrossRef]
- Hemminger, J.C.; Carr, R.; Somorjai, G.A. The photoassisted reaction of gaseous water and carbon dioxide adsorbed on the SrTiO3 (111) crystal face to form methane. Chem. Phys. Lett. 1978, 57, 100–104. [Google Scholar] [CrossRef]
- Luo, C.; Zhao, J.; Li, Y.; Zhao, W.; Zeng, Y.; Wang, C. Photocatalytic CO2 reduction over SrTiO3: Correlation between surface structure and activity. Appl. Surf. Sci. 2018, 447, 627–635. [Google Scholar] [CrossRef]
- Kwak, B.S.; Do, J.Y.; Park, N.-K.; Kang, M. Surface modification of layered perovskite Sr2TiO4 for improved CO2 photoreduction with H2O to CH4. Sci. Rep. 2017, 7, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Ouyang, S.; Xi, G.; Kako, T.; Ye, J. The effects of crystal structure and electronic structure on photocatalytic H2 evolution and CO2 reduction over two phases of perovskite-structured NaNbO3. J. Phys. Chem. C 2012, 116, 7621–7628. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, M.; Chen, W.; Mao, L.; Shangguan, W. Ag loaded on layered perovskite H2SrTa2O7 to enhance the selectivity of photocatalytic CO2 reduction with H2O. J. Alloys Compd. 2019, 786, 149–154. [Google Scholar] [CrossRef]
- Fan, J.; Jia, B.; Gu, M. Perovskite-based low-cost and high-efficiency hybrid halide solar cells. Photonics Res. 2014, 2, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, S.A.; Mhaisalkar, S.G.; Mathews, N.; Boix, P.P. Perovskite nanoparticles: Synthesis, properties, and novel applications in photovoltaics and LEDs. Small Methods 2019, 3, 1800231. [Google Scholar] [CrossRef] [Green Version]
- Kubicek, M.; Bork, A.H.; Rupp, J.L.M. Perovskite oxides–a review on a versatile material class for solar-to-fuel conversion processes. J. Mater. Chem. A 2017, 5, 11983–12000. [Google Scholar] [CrossRef]
- Chen, P.; Ong, W.; Shi, Z.; Zhao, X.; Li, N. Pb-Based Halide Perovskites: Recent Advances in Photo (electro) catalytic Applications and Looking Beyond. Adv. Funct. Mater. 2020, 30, 1909667. [Google Scholar] [CrossRef]
- Tabish, A.; Varghese, A.M.; Wahab, M.A.; Karanikolos, G.N. Perovskites in the Energy Grid and CO2 Conversion: Current Context and Future Directions. Catalysts 2020, 10, 95. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Sinha, I. Halide perovskite-based photocatalysis systems for solar-driven fuel generation. Sol. Energy 2020, 208, 296–311. [Google Scholar] [CrossRef]
- Shyamal, S.; Pradhan, N. Halide Perovskite Nanocrystal Photocatalysts for CO2 Reduction: Successes and Challenges. J. Phys. Chem. Lett. 2020, 11, 6921–6934. [Google Scholar] [CrossRef]
- Han, C.; Zhu, X.; Martin, J.S.; Lin, Y.; Spears, S.; Yan, Y. Recent Progress in Engineering Metal Halide Perovskites for Efficient Visible-Light-Driven Photocatalysis. ChemSusChem 2020, 13, 4005–4025. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Pradhan, B.; Hofkens, J.; Roeffaers, M.B.J.; Steele, J.A. Solar-Driven Metal Halide Perovskite Photocatalysis: Design, Stability, and Performance. ACS Energy Lett. 2020, 5, 1107–1123. [Google Scholar] [CrossRef]
- Li, P.; Liu, L.; An, W.; Wang, H.; Guo, H.; Liang, Y.; Cui, W. Ultrathin porous g-C3N4 nanosheets modified with AuCu alloy nanoparticles and C-C coupling photothermal catalytic reduction of CO2 to ethanol. Appl. Catal. B Environ. 2020, 266, 118618. [Google Scholar] [CrossRef]
- Li, K.; Peng, B.; Peng, T. Recent advances in heterogeneous photocatalytic CO2 conversion to solar fuels. ACS Catal. 2016, 6, 7485–7527. [Google Scholar] [CrossRef]
- Lingampalli, S.R.; Ayyub, M.M.; Rao, C.N.R. Recent progress in the photocatalytic reduction of carbon dioxide. ACS Omega 2017, 2, 2740–2748. [Google Scholar] [CrossRef] [Green Version]
- Qin, D.; Zhou, Y.; Wang, W.; Zhang, C.; Zeng, G.; Huang, D.; Wang, L.; Wang, H.; Yang, Y.; Lei, L. Recent advances in two-dimensional nanomaterials for photocatalytic reduction of CO2: Insights into performance, theories and perspective. J. Mater. Chem. A 2020, 8, 19156–19195. [Google Scholar] [CrossRef]
- Thompson, W.A.; Sanchez Fernandez, E.; Maroto-Valer, M.M. Review and Analysis of CO2 Photoreduction Kinetics. ACS Sustain. Chem. Eng. 2020, 8, 4677–4692. [Google Scholar] [CrossRef] [Green Version]
- Chang, X.; Wang, T.; Gong, J. CO 2 photo-reduction: Insights into CO 2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci. 2016, 9, 2177–2196. [Google Scholar] [CrossRef]
- Peng, C.; Reid, G.; Wang, H.; Hu, P. Perspective: Photocatalytic reduction of CO2 to solar fuels over semiconductors. J. Chem. Phys. 2017, 147, 30901. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Mori, T.; Ye, J. Polymeric carbon nitrides: Semiconducting properties and emerging applications in photocatalysis and photoelectrochemical energy conversion. Sci. Adv. Mater. 2012, 4, 282–291. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.; Lin, Y.; Sun, Y.; Beard, M.C.; Yan, Y. Lead-halide perovskites for photocatalytic α-alkylation of aldehydes. J. Am. Chem. Soc. 2019, 141, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Kishan, K.Y.; Bisht, N.; Hiragond, C.; Dey, A.; Khanna, P.K.; More, P. V Room temperature thermoelectric performance of Methyl Ammonium Lead Iodide Perovskite and their MWCNT-PANI composites. Mater. Today Chem. 2020, 17, 100275. [Google Scholar] [CrossRef]
- Zhu, X.; Lin, Y.; San Martin, J.; Sun, Y.; Zhu, D.; Yan, Y. Lead halide perovskites for photocatalytic organic synthesis. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yang, M.; Li, Z.; Crisp, R.; Zhu, K.; Beard, M.C. Comparison of recombination dynamics in CH3NH3PbBr3 and CH3NH3PbI3 perovskite films: Influence of exciton binding energy. J. Phys. Chem. Lett. 2015, 6, 4688–4692. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, P.; Zhu, X.; Zhang, Q.; Wang, Z.; Liu, Y.; Zou, G.; Dai, Y.; Whangbo, M.; Huang, B. Composite of CH3NH3PbI3 with reduced graphene oxide as a highly efficient and stable visible-light photocatalyst for hydrogen evolution in aqueous HI solution. Adv. Mater. 2018, 30, 1704342. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, P.; Guan, Z.; Liu, J.; Wang, Z.; Zheng, Z.; Jin, S.; Dai, Y.; Whangbo, M.-H.; Huang, B. Enhancing the Photocatalytic Hydrogen Evolution Activity of Mixed-Halide Perovskite CH3NH3PbBr3–xIx Achieved by Bandgap Funneling of Charge Carriers. ACS Catal. 2018, 8, 10349–10357. [Google Scholar] [CrossRef]
- Cardenas-Morcoso, D.; Gualdrón-Reyes, A.F.; Ferreira Vitoreti, A.B.; García-Tecedor, M.; Yoon, S.J.; Solis de la Fuente, M.; Mora-Seró, I.; Gimenez, S. Photocatalytic and Photoelectrochemical Degradation of Organic Compounds with All-Inorganic Metal Halide Perovskite Quantum Dots. J. Phys. Chem. Lett. 2019, 10, 630–636. [Google Scholar] [CrossRef] [Green Version]
- Gao, G.; Xi, Q.; Zhou, H.; Zhao, Y.; Wu, C.; Wang, L.; Guo, P.; Xu, J. Novel inorganic perovskite quantum dots for photocatalysis. Nanoscale 2017, 9, 12032–12038. [Google Scholar] [CrossRef]
- Mu, Y.; Zhang, W.; Guo, X.; Dong, G.; Zhang, M.; Lu, T. Water-Tolerant Lead Halide Perovskite Nanocrystals as Efficient Photocatalysts for Visible-Light-Driven CO2 Reduction in Pure Water. ChemSusChem 2019, 12, 4769–4774. [Google Scholar] [CrossRef]
- Wu, L.; Mu, Y.; Guo, X.; Zhang, W.; Zhang, Z.; Zhang, M.; Lu, T. Encapsulating Perovskite Quantum Dots in Iron-Based Metal–Organic Frameworks (MOFs) for Efficient Photocatalytic CO2 Reduction. Angew. Chemie Int. Ed. 2019, 58, 9491–9495. [Google Scholar] [CrossRef]
- Hou, J.; Cao, S.; Wu, Y.; Gao, Z.; Liang, F.; Sun, Y.; Lin, Z.; Sun, L. Inorganic colloidal perovskite quantum dots for robust solar CO2 reduction. Chem. Eur. J. 2017, 23, 9481–9485. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.-H.; Zhou, J.; Zhao, X.; Sun, C.-Y.; You, S.-Q.; Wang, X.-L.; Su, Z.-M. Enhanced CO2 photoreduction via tuning halides in perovskites. J. Catal. 2019, 369, 201–208. [Google Scholar] [CrossRef]
- Tang, C.; Chen, C.; Xu, W.; Xu, L. Design of doped cesium lead halide perovskite as a photo-catalytic CO2 reduction catalyst. J. Mater. Chem. A 2019, 7, 6911–6919. [Google Scholar] [CrossRef]
- Shyamal, S.; Dutta, S.K.; Pradhan, N. Doping Iron in CsPbBr3 Perovskite Nanocrystals for Efficient and Product Selective CO2 Reduction. J. Phys. Chem. Lett. 2019, 10, 7965–7969. [Google Scholar] [CrossRef]
- Liu, Y.-W.; Guo, S.-H.; You, S.-Q.; Sun, C.-Y.; Wang, X.-L.; Zhao, L.; Su, Z.-M. Mn-doped CsPb(Br/Cl)3 mixed-halide perovskites for CO2 photoreduction. Nanotechnology 2020, 31, 215605. [Google Scholar] [CrossRef]
- Dong, G.-X.; Zhang, W.; Mu, Y.-F.; Su, K.; Zhang, M.; Lu, T.-B. A halide perovskite as a catalyst to simultaneously achieve efficient photocatalytic CO2 reduction and methanol oxidation. Chem. Commun. 2020, 56, 4664–4667. [Google Scholar] [CrossRef]
- Chen, Y.-X.; Xu, Y.-F.; Wang, X.-D.; Chen, H.-Y.; Kuang, D.-B. Solvent selection and Pt decoration towards enhanced photocatalytic CO2 reduction over CsPbBr3 perovskite single crystals. Sustain. Energy Fuels 2020, 4, 2249–2255. [Google Scholar] [CrossRef]
- Zhu, J.; Zhu, Y.; Huang, J.; Hou, L.; Shen, J.; Li, C. Synthesis of monodisperse water-stable surface Pb-rich CsPbCl3 nanocrystals for efficient photocatalytic CO2 reduction. Nanoscale 2020, 12, 11842–11846. [Google Scholar] [CrossRef]
- Hiragond, C.B.; Kim, H.; Lee, J.; Sorcar, S.; Erkey, C.; In, S.-I. Electrochemical CO2 Reduction to CO Catalyzed by 2D Nanostructures. Catalysts 2020, 10, 98. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Razzaq, A.; In, S.-I. Development of graphene based photocatalysts for CO2 reduction to C1 chemicals: A brief overview. Cat. Today 2019, 335, 39–54. [Google Scholar] [CrossRef]
- Xu, Y.-F.; Yang, M.-Z.; Chen, B.-X.; Wang, X.-D.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction. J. Am. Chem. Soc. 2017, 139, 5660–5663. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Regue, M.; Isaacs, M.A.; Freeman, E.; Eslava, S. All-Inorganic CsPbBr3 Nanocrystals: Gram-Scale Mechanochemical Synthesis and Selective Photocatalytic CO2 Reduction to Methane. ACS Appl. Energy Mater. 2020, 3, 4509–4522. [Google Scholar] [CrossRef]
- Wang, X.; Li, K.; He, J.; Yang, J.; Dong, F.; Mai, W.; Zhu, M. Defect in reduced graphene oxide tailored selectivity of photocatalytic CO2 reduction on Cs4PbBr6 pervoskite hole-in-microdisk structure. Nano Energy 2020, 78, 105388. [Google Scholar] [CrossRef]
- Mu, Y.; Zhang, W.; Dong, G.; Su, K.; Zhang, M.; Lu, T. Ultrathin and Small-Size Graphene Oxide as an Electron Mediator for Perovskite-Based Z-Scheme System to Significantly Enhance Photocatalytic CO2 Reduction. Small 2020, 16, 2002140. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, J.; Li, N.; Du, X.; Ma, J.; He, C.; Li, Z. Direct Z-Scheme 0D/2D Heterojunction of CsPbBr3 Quantum Dots/Bi2WO6 Nanosheets for Efficient Photocatalytic CO2 Reduction. ACS Appl. Mater. Interfaces 2020, 12, 31477–31485. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.-F.; Yang, M.-Z.; Chen, H.-Y.; Liao, J.-F.; Wang, X.-D.; Kuang, D.-B. Enhanced solar-driven gaseous CO2 conversion by CsPbBr3 nanocrystal/Pd nanosheet Schottky-junction photocatalyst. ACS Appl. Energy Mater. 2018, 1, 5083–5089. [Google Scholar] [CrossRef]
- Pan, A.; Ma, X.; Huang, S.; Wu, Y.; Jia, M.; Shi, Y.; Liu, Y.; Wangyang, P.; He, L.; Liu, Y. CsPbBr3 Perovskite Nanocrystal Grown on MXene Nanosheets for Enhanced Photoelectric Detection and Photocatalytic CO2 Reduction. J. Phys. Chem. Lett. 2019, 10, 6590–6597. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Wang, X.; Liao, J.; Chen, B.; Chen, H.; Kuang, D. Amorphous-TiO2-Encapsulated CsPbBr3 Nanocrystal Composite Photocatalyst with Enhanced Charge Separation and CO2 Fixation. Adv. Mater. Interfaces 2018, 5, 1801015. [Google Scholar] [CrossRef]
- Xu, F.; Meng, K.; Cheng, B.; Wang, S.; Xu, J.; Yu, J. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef]
- Lu, Y.; Ma, Y.; Zhang, T.; Yang, Y.; Wei, L.; Chen, Y. Monolithic 3D cross-linked polymeric graphene materials and the likes: Preparation and their redox catalytic applications. J. Am. Chem. Soc. 2018, 140, 11538–11550. [Google Scholar] [CrossRef]
- Jiang, Y.; Liao, J.-F.; Xu, Y.-F.; Chen, H.-Y.; Wang, X.-D.; Kuang, D.-B. Hierarchical CsPbBr3 nanocrystal-decorated ZnO nanowire/macroporous graphene hybrids for enhancing charge separation and photocatalytic CO2 reduction. J. Mater. Chem. A 2019, 7, 13762–13769. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, X. Nanostructure engineering and doping of conjugated carbon nitride semiconductors for hydrogen photosynthesis. Angew. Chemie 2013, 125, 1779–1782. [Google Scholar] [CrossRef]
- Ou, M.; Tu, W.; Yin, S.; Xing, W.; Wu, S.; Wang, H.; Wan, S.; Zhong, Q.; Xu, R. Amino-assisted anchoring of CsPbBr3 perovskite quantum dots on porous g-C3N4 for enhanced photocatalytic CO2 reduction. Angew. Chemie 2018, 130, 13758–13762. [Google Scholar] [CrossRef]
- Guo, X.-X.; Tang, S.-F.; Mu, Y.-F.; Wu, L.-Y.; Dong, G.-X.; Zhang, M. Engineering a CsPbBr3-based nanocomposite for efficient photocatalytic CO2 reduction: Improved charge separation concomitant with increased activity sites. RSC Adv. 2019, 9, 34342–34348. [Google Scholar] [CrossRef] [Green Version]
- Kong, Z.-C.; Liao, J.-F.; Dong, Y.-J.; Xu, Y.-F.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y. Core@shell CsPbBr3@Zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction. ACS Energy Lett. 2018, 3, 2656–2662. [Google Scholar] [CrossRef]
- Wan, S.; Ou, M.; Zhong, Q.; Wang, X. Perovskite-type CsPbBr3 quantum dots/UiO-66 (NH2) nanojunction as efficient visible-light-driven photocatalyst for CO2 reduction. Chem. Eng. J. 2019, 358, 1287–1295. [Google Scholar] [CrossRef]
- Hawecker, J.; Lehn, J.-M.; Ziessel, R. Efficient photochemical reduction of CO2 to CO by visible light irradiation of systems containing Re(bipy)(CO)3X or Ru(bipy)32+–Co2+ combinations as homogeneous catalysts. J. Chem. Soc. Chem. Commun. 1983, 536–538. [Google Scholar] [CrossRef]
- Hawecker, J.; Lehn, J.; Ziessel, R. Photochemical and electrochemical reduction of carbon dioxide to carbon monoxide mediated by (2, 2′-bipyridine) tricarbonylchlororhenium (I) and related complexes as homogeneous catalysts. Helv. Chim. Acta 1986, 69, 1990–2012. [Google Scholar] [CrossRef]
- Hori, H.; Johnson, F.P.A.; Koike, K.; Ishitani, O.; Ibusuki, T. Efficient photocatalytic CO2 reduction using [Re(bpy)(CO)3{P(OEt)3}]+. J. Photochem. Photobiol. A Chem. 1996, 96, 171–174. [Google Scholar] [CrossRef]
- Asai, Y.; Katsuragi, H.; Kita, K.; Tsubomura, T.; Yamazaki, Y. Photocatalytic CO2 reduction using metal complexes in various ionic liquids. Dalt. Trans. 2020, 49, 4277–4292. [Google Scholar] [CrossRef]
- Arias-Rotondo, D.M.; McCusker, J.K. The photophysics of photoredox catalysis: A roadmap for catalyst design. Chem. Soc. Rev. 2016, 45, 5803–5820. [Google Scholar] [CrossRef] [PubMed]
- Kong, Z.-C.; Zhang, H.-H.; Liao, J.-F.; Dong, Y.-J.; Jiang, Y.; Chen, H.-Y.; Kuang, D.-B. Immobilizing Re(CO)3Br(dcbpy) Complex on CsPbBr3 Nanocrystal for Boosted Charge Separation and Photocatalytic CO2 Reduction. Sol. RRL 2020, 4, 1900365. [Google Scholar] [CrossRef]
- Chen, Z.; Hu, Y.; Wang, J.; Shen, Q.; Zhang, Y.; Ding, C.; Bai, Y.; Jiang, G.; Li, Z.; Gaponik, N. Boosting Photocatalytic CO2 Reduction on CsPbBr3 Perovskite Nanocrystals by Immobilizing Metal Complexes. Chem. Mater. 2020, 32, 1517–1525. [Google Scholar] [CrossRef]
- Que, M.; Zhao, Y.; Pan, L.; Yang, Y.; He, Z.; Yuan, H.; Chen, J.; Zhu, G. Colloidal Formamidinium Lead Bromide Quantum Dots for Photocatalytic CO2 Reduction. Mater. Lett. 2020, 282, 128695. [Google Scholar] [CrossRef]
- Bresolin, B.-M.; Park, Y.; Bahnemann, D.W. Recent progresses on metal halide perovskite-based material as potential photocatalyst. Catalysts 2020, 10, 709. [Google Scholar] [CrossRef]
- Li, J.; Cao, H.-L.; Jiao, W.-B.; Wang, Q.; Wei, M.; Cantone, I.; Lü, J.; Abate, A. Biological impact of lead from halide perovskites reveals the risk of introducing a safe threshold. Nat. Commun. 2020, 11, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Flora, G.; Gupta, D.; Tiwari, A. Toxicity of lead: A review with recent updates. Interdiscip. Toxicol. 2012, 5, 47–58. [Google Scholar] [CrossRef]
- Chu, L.; Ahmad, W.; Liu, W.; Yang, J.; Zhang, R.; Sun, Y.; Yang, J.; Li, X. Lead-free halide double perovskite materials: A new superstar toward green and stable optoelectronic applications. Nano-Micro Lett. 2019, 11, 16. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.; Xie, W.; Mathews, N.; Sherburne, M.; Ahuja, R.; Asta, M.; Mhaisalkar, S.G. Rational design: A high-throughput computational screening and experimental validation methodology for lead-free and emergent hybrid perovskites. ACS Energy Lett. 2017, 2, 837–845. [Google Scholar] [CrossRef]
- Kamat, P.V.; Bisquert, J.; Buriak, J. Lead-free perovskite solar cells. ACS Energy Lett. 2017, 2, 904–905. [Google Scholar] [CrossRef] [Green Version]
- Fan, Q.; Biesold-McGee, G.V.; Ma, J.; Xu, Q.; Pan, S.; Peng, J.; Lin, Z. Lead-Free Halide Perovskite Nanocrystals: Crystal Structures, Synthesis, Stabilities, and Optical Properties. Angew. Chemie Int. Ed. 2020, 59, 1030–1046. [Google Scholar] [CrossRef]
- Volonakis, G.; Filip, M.R.; Haghighirad, A.A.; Sakai, N.; Wenger, B.; Snaith, H.J.; Giustino, F. Lead-free halide double perovskites via heterovalent substitution of noble metals. J. Phys. Chem. Lett. 2016, 7, 1254–1259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slavney, A.H.; Hu, T.; Lindenberg, A.M.; Karunadasa, H.I. A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 2016, 138, 2138–2141. [Google Scholar] [CrossRef]
- Zhou, L.; Xu, Y.; Chen, B.; Kuang, D.; Su, C. Synthesis and Photocatalytic Application of Stable Lead-Free Cs2AgBiBr6 Perovskite Nanocrystals. Small 2018, 14, 1703762. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Huang, H.; Zhang, Z.; Wang, C.; Yang, Y.; Li, Q.; Xu, D. Lead-Free Perovskite Cs2AgBiBr6@g-C3N4 Z-scheme System for Improving CH4 Production in Photocatalytic CO2 Reduction. Appl. Catal. B Environ. 2020, 282, 119570. [Google Scholar] [CrossRef]
- Wang, X.-D.; Huang, Y.-H.; Liao, J.-F.; Jiang, Y.; Zhou, L.; Zhang, X.-Y.; Chen, H.-Y.; Kuang, D.-B. In situ construction of a Cs2SnI6 perovskite nanocrystal/SnS2 nanosheet heterojunction with boosted interfacial charge transfer. J. Am. Chem. Soc. 2019, 141, 13434–13441. [Google Scholar] [CrossRef] [PubMed]
- Bhosale, S.S.; Kharade, A.K.; Jokar, E.; Fathi, A.; Chang, S.; Diau, E.W.-G. Mechanism of Photocatalytic CO2 Reduction by Bismuth-Based Perovskite Nanocrystals at the Gas-Solid Interface. J. Am. Chem. Soc. 2019, 141, 20434–20442. [Google Scholar] [CrossRef]
- Lu, C.; Itanze, D.S.; Aragon, A.G.; Ma, X.; Li, H.; Ucer, K.B.; Hewitt, C.; Carroll, D.L.; Williams, R.T.; Qiu, Y. Synthesis of lead-free Cs3Sb2Br9 perovskite alternative nanocrystals with enhanced photocatalytic CO2 reduction activity. Nanoscale 2020, 12, 2987–2991. [Google Scholar] [CrossRef]
No. | Reaction | E0redox Vs. NHE | Product |
---|---|---|---|
1 | CO2 + e− → CO2●− | −1.90 V | CO2●− |
2 | CO2 + 2H+ + 2e− → CO + H2O | −0.53 V | Carbon monoxide |
3 | CO2 + 2H+ + 2e− → HCOOH | −0.61 V | Formic acid |
4 | CO2 + 4H+ + 4e− → HCHO + H2O | −0.48 V | Formaldehyde |
5 | CO2 + 6H+ + 6e− → CH3OH + H2O | −0.38 V | Methanol |
6 | CO2 + 8H+ + 8e− → CH4 + 2H2O | −0.24 V | Methane |
7 | 2CO2 + 8H+ + 8e− → CH3COOH + 2H2O | −0.31 V | Acetic acid |
8 | 2CO2 + 14H+ + 14e− → C2H6 + 4H2O | −0.51 V | Ethane |
No | Catalyst | Medium | Light Source | Product, Yield, and Reaction Time | Catalytic Stability |
---|---|---|---|---|---|
Lead-based halide perovskites | |||||
1 | Fe/CH3NH3PbI3 (MAPbI3) QDs [60] | EA/H2O | 300 W Xe-lamp with standard 400 nm filter | CO + CH4, 1559 µmol g−1 CO (34%) and CH4 (66%) | 80 h |
2 | CsPbBr3 QDs [61] | EA/H2O | 300 W Xe-lamp with standard AM 1.5 filter | CO, 20.9 µmol g−1 (average electron yield) | 8 h |
3 | CsPb(Br0.5/Cl0.5)3 [62] | EA | 300 W Xe-lamp with AM 1.5 filter | CO, 767 µmol g−1 (9 h) CH4, 108 µmol g−1 (9 h) | 9 h |
4 | Co- and Fe-CsPbBr3 [63] | A theoretical study, DFT calculations with DMol3 program | |||
5 | Fe(II)-CsPbBr3 [64] | EA/H2O | 300 W Xe-lamp (150 mW cm−2 light intensity) | CO, 6.1 µmol g−1 h−1 (3 h) CH4, 3.2 µmol g−1 h−1 (3 h) | - |
6 | Mn/CsPb(Br/Cl)3 [65] | EA | 300 W Xe-lamp with AM 1.5 filter | CO, 1917 µmol g−1 (9 h) CH4, 82 µmol g−1 (9 h) | 9 h |
7 | Co-CsPbBr3/Cs4PbBr6 [59] | H2O | Xe-lamp irradiation with a 400 nm filter (100 mW cm−2 light intensity) | CO, 239 µmol g−1 (20 h) CH4, 7 µmol g−1 (20 h) | - |
8 | Co-CsPbBr3/Cs4PbBr6 [66] | AN/H2O/MeOH | 300 W Xe-lamp (light intensity of 100 mW m−2) | CO, 1835 µmol g−1 (15 h) | - |
9 | Pt/CsPbBr3 [67] | EA | 150 W Xe-lamp with 380 nm cut off filter | CO, 5.6 µmol g−1 h−1 | 30 h |
10 | Ni and Mn-doped CsPbCl3 NCs [68] | CO2/ H2O | 300 W Xe-lamp with AM 1.5 filter | Ni = CO, 169.37 μmol g−1 h−1 Mn = 152.49 μmol g−1 h−1 | 6 h (3 runs) |
11 | CsPbBr3 QDs/GO [71] | EA | 100 W Xe-lamp with AM 1.5 filter | CO, 58.7 µmol g−1 (12 h) CH4, 29.6 µmol g−1 (12 h) H2, 1.58 µmol g−1 (12 h) | 12 h |
12 | Cs4PbBr6/rGO [73] | EA/H2O | 300 W Xe-lamp with 420 nm filter (light intensity, 100 mW cm−2) | CO, 11.4 μmol g−1 h−1 | 60 h |
13 | Cu-RGO-CsPbBr3 [72] | CO2/H2O | Xe-lamp irradiation with a 400 nm filter | CH4 12.7 μmol g–1 h–1 (4 h) | 12 h (3 cycles) |
14 | CsPbBr3/USGO/α-Fe2O3 [74] | ACN/H2O | 300 W Xe-lamp with 420 nm filter (light intensity, 100 mW cm−2) | CO, 73.8 μmol g−1 h−1 | 2 cycles |
15 | CsPbBr3/Bi2WO6 [75] | 300 W Xe-lamp with 420 nm filter (100 mW cm−2 light intensity) | CH4/CO, 503 μmol g–1 | 4 Runs (pristine samples) | |
16 | CsPbBr3/Pd Nanosheet [76] | H2O vapor | A 150 W Xe-lamp (Zolix) equipped with an AM 1.5 G and 420 nm optical filter (100 mW cm−2 light intensity) | CO, 12.63 µmol g−1 (3 h) CH4, 10.41 µmol g−1 (3 h) Electron consumption rate, 101.39 µmol g−1 (3 h) | - |
17 | CsPbBr3/MXene Nanosheets [77] | EA | 300 W Xe-lamp with 420 nm cut-off filter | CO, 26.32 µmol g−1 h−1 CH4, 7.25 µmol g−1 h−1 | - |
18 | Amorphous-TiO2/CsPbBr3 NCs [78] | EA/IPN | 150 W Xe-lamp with an AM 1.5 G filter | CO, 11.71 μmol g −1 CH4, 20.15 μmol g −1 H2, 4.38 μmol g −1 | 30 h |
19 | TiO2/CsPbBr3 [79] | ACN/H2O | 300 W Xe-arc lamp | CO, 9.02 μmol g–1 h–1 | 16 h |
20 | CsPbBr3 NCs- ZnO nanowire/graphene [81] | CO2/H2O | A 150 W Xe-lamp with an AM 1.5 G and 420 nm optical filter (100 mW cm−2 light intensity) | CH4, 6.29 µmol g−1 h−1 (3 h) CO, 0.8 µmol g−1 h−1 (3 h) Photoelectron consumption rate, 52.02 µmol g−1 h−1 (3 h) | 4 cycles |
21 | CsPbBr3 QDs/g-C3N4 [83] | ACN/H2O | 300 W Xe-lamp with a 420 nm cut-off filter | CO, 149 μmol g−1 h−1 | 3 Runs |
22 | CsPbBr3/g-C3N4 containing TiO species [84] | EA/H2O | Xe-lamp with a 400 nm cut off filter (100 mW cm−2 light intensity) | CO, 129 μmol g−1 (10 h) | - |
23 | CsPbBr3@Zeolitic Imidazolate [85] | CO2/ H2O | 100 W Xe-lamp with AM 1.5 G filter (light intensity was 150 mW cm−2) | The electron consumption rate for CH4, 29.630 μmol g–1 h–1 (3 h) | 6 cycles |
24 | CsPbBr3 QDs/UiO-66(NH2) nanojunction [86] | EA/H2O | 300 W Xe-lamp with a 420 nm UV-cut filter | CO, 98.57 μmo g−1 CH4, 3.08 μmol g−1 (12 h) | 3 cycles |
25 | [Ni(terpy)2]2+ (Ni(tpy)) CsPbBr3 NCs [93] | EA/H2O | 300 W Xe-lamp (Solaredge 700, 100 mW cm−2), λ > 400 nm | CO + CH4, 1724 μmol g−1 (4 h) | 16 h |
26 | CsPbBr3-Re(CO)3Br(dcbpy) (dcbpy¼4,4′- dicarboxy-2,2′-bipyridine) [92] | Toluene/IPN | 150 W Xe-lamp (≥420 nm) | CO, 509.14 μmol g−1 (15 h) | - |
27 | FAPbBr3 QDs [94] | EA/H2O | 300 W Xe-lamp (light intensity of 100 mW cm−2) | CO, 181.25 μmol g−1 h−1 | - |
Lead-free halide perovskites | |||||
28 | Cs2AgBiBr6 [104] | EA | 100 W Xe-lamp with an AM 1.5 G filter | CO, 14.1 μmol g−1 (6 h) CH4, 9.6 μmol g−1 (6 h) | 6 h |
29 | Cs2AgBiBr6@g-C3N4 Z-scheme [105] | EA/MeOH | Xe-lamp (80 mW cm−2 light intensity) | CO + CH4, 2.0 μmol g−1 h−1 | 12 h |
30 | Cs2SnI6/SnS2 Nanosheet [106] | CO2/H2O/MeOH | 150 mW cm−2 Xe-lamp with 400 nm filter | CH4, 6.09 μmol g−1 (3 h) | 9 h (3 cycles) |
31 | Bi-based perovskite NCs [107]
| TCM | 32 W UV-lamp, 305 nm | Cs3Bi2I9 = CO, 77.6 μmol g−1 and CH4, 14.9 μmol g−1 (10 h) Rb3Bi2I9 = CO, 18.2 μmol g−1 and CH4, 17.0 μmol g−1 (10 h) MA3Bi2I9 = CO, 7.2 μmol g−1 and CH4, 9.8 μmol g−1 (10 h) | - |
32 | Cs3Sb2Br9 [108] | Dried OC | 300 W Xe-lamp with AM 1.5 irradiation | CO, 510 μmol g−1 (4 h) | 9 h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hiragond, C.B.; Powar, N.S.; In, S.-I. Recent Developments in Lead and Lead-Free Halide Perovskite Nanostructures towards Photocatalytic CO2 Reduction. Nanomaterials 2020, 10, 2569. https://doi.org/10.3390/nano10122569
Hiragond CB, Powar NS, In S-I. Recent Developments in Lead and Lead-Free Halide Perovskite Nanostructures towards Photocatalytic CO2 Reduction. Nanomaterials. 2020; 10(12):2569. https://doi.org/10.3390/nano10122569
Chicago/Turabian StyleHiragond, Chaitanya B., Niket S. Powar, and Su-Il In. 2020. "Recent Developments in Lead and Lead-Free Halide Perovskite Nanostructures towards Photocatalytic CO2 Reduction" Nanomaterials 10, no. 12: 2569. https://doi.org/10.3390/nano10122569
APA StyleHiragond, C. B., Powar, N. S., & In, S. -I. (2020). Recent Developments in Lead and Lead-Free Halide Perovskite Nanostructures towards Photocatalytic CO2 Reduction. Nanomaterials, 10(12), 2569. https://doi.org/10.3390/nano10122569