Porous Si-SiO2 UV Microcavities to Modulate the Responsivity of a Broadband Photodetector
Abstract
:1. Introduction
2. Materials and Methods
2.1. Porous Silicon Microcavities Filters
2.2. Dry Oxidation in PS Microcavities Filters
2.3. Photocurrent Modulation by Porous Si-SiO2 Microcavities Filters
2.4. Theoretical Mechanism to Modulate the Responsivity of a Broadband Photodetector in the UV Optical Range with Porous Si-SiO2 Microcavities
3. Results and Discussion
3.1. Porous Silicon Microcavities Filters in the Blue Range
3.2. Porous Si-SO2 Microcavities Filters in the UV
3.3. Refractive Index of Porous Silicon and Porous Si-SiO2
3.4. Optical Losses Due to Light Absorption
3.5. Photocurrent and Responsivity Measurements of a Commercial Photodetector without and with Filters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ramizy, A.; Aziz, W.J.; Hassan, Z.; Omar, K.; Ibrahim, K. Improved performance of solar cell based on porous silicon surfaces. Opt. Int. J. Light Electron Opt. 2011, 122, 2075–2077. [Google Scholar] [CrossRef]
- Torres-Costa, V.; Martin-Palma, R. Application of nanostructured porous silicon in the field of optics. A review. J. Mater. Sci. 2010, 45, 2823–2838. [Google Scholar] [CrossRef]
- Pham, V.H.; Van Nguyen, T.; Bui, H. Nano porous silicon microcavity sensor for determination organic solvents and pesticide in water. Adv. Nat. Sci. Nanosci. Nanotechnol. 2014, 5, 045003. [Google Scholar] [CrossRef]
- Li, W.; Liu, Z.; Fontana, F.; Ding, Y.; Liu, D.; Hirvonen, J.T.; Santos, H.A. Tailoring porous silicon for biomedical applications: From drug delivery to cancer immunotherapy. Adv. Mater. 2018, 30, 1703740. [Google Scholar] [CrossRef] [PubMed]
- Acquaroli, L.N.; Kuchel, T.; Voelcker, N.H. Towards implantable porous silicon biosensors. RSC Adv. 2014, 4, 34768–34773. [Google Scholar] [CrossRef]
- Rodriguez, G.A.; Hu, S.; Weiss, S.M. Porous silicon ring resonator for compact, high sensitivity biosensing applications. Opt. Express 2015, 23, 7111–7119. [Google Scholar] [CrossRef] [Green Version]
- Ismail, R.A.; Alwan, A.M.; Ahmed, A.S. Preparation and characteristics study of nano-porous silicon UV photodetector. Appl. Nanosci. 2017, 7, 9–15. [Google Scholar] [CrossRef] [Green Version]
- Maier-Flaig, F.; Rinck, J.; Stephan, M.; Bocksrocker, T.; Bruns, M.; Kübel, C.; Powell, A.K.; Ozin, G.A.; Lemmer, U. Multicolor silicon light-emitting diodes (SiLEDs). Nano Lett. 2013, 13, 475–480. [Google Scholar] [CrossRef]
- Osorio, E.; Urteaga, R.; Acquaroli, L.N.; García-Salgado, G.; Juaréz, H.; Koropecki, R.R. Optimization of porous silicon multilayer as antireflection coatings for solar cells. Sol. Energy Mater. Sol. Cells 2011, 95, 3069–3073. [Google Scholar] [CrossRef]
- Aziz, W.J.; Ramizy, A.; Ibrahim, K.; Hassan, Z.; Omar, K. The effect of anti-reflection coating of porous silicon on solar cells efficiency. Opt. Int. J. Light Electron Opt. 2011, 122, 1462–1465. [Google Scholar] [CrossRef]
- Raut, H.K.; Nair, A.S.; Dinachali, S.S.; Ganesh, V.A.; Walsh, T.M.; Ramakrishna, S. Porous SiO2 anti-reflective coatings on large-area substrates by electrospinning and their application to solar modules. Sol. Energy Mater. Sol. Cells 2013, 111, 9–15. [Google Scholar] [CrossRef]
- Welser, R.E.; Sood, A.W.; Pethuraja, G.G.; Sood, A.K.; Yan, X.; Poxson, D.J.; Cho, J.; Schubert, E.F.; Harvey, J.L. Broadband nanostructured antireflection coating on glass for photovoltaic applications. In Proceedings of the 2012 38th IEEE Photovoltaic Specialists Conference, Austin, TX, USA, 3–8 June 2012; pp. 3339–3342. [Google Scholar]
- Zhong, F.; Wu, Z.; Guo, J.; Jia, D. Porous silicon photonic crystals coated with Ag nanoparticles as efficient substrates for detecting trace explosives using SERS. Nanomaterials 2018, 8, 872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McInnes, S.; Macdonald, T.; Parkin, I.; Nann, T.; Voelcker, N. Electrospun composites of polycaprolactone and porous silicon nanoparticles for the tunable delivery of small therapeutic molecules. Nanomaterials 2018, 8, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ksenofontova, O.; Vasin, A.; Egorov, V.; Soldatenkov, F.Y.; Terukov, E.; Ulin, V.; Ulin, N.; Kiselev, O. Porous silicon and its applications in biology and medicine. Tech. Phys. 2014, 59, 66–77. [Google Scholar] [CrossRef]
- Krüger, M.; Marso, M.; Berger, M.; Thönissen, M.; Billat, S.; Loo, R.; Reetz, W.; Lüth, H.; Hilbrich, S.; Arens-Fischer, R. Color-sensitive photodetector based on porous silicon superlattices. Thin Solid Films 1997, 297, 241–244. [Google Scholar] [CrossRef]
- Hunkel, D.; Marso, M.; Butz, R.; Arens-Fischer, R.; Lüth, H. Integrated photometer with porous silicon interference filters. Mater. Sci. Eng. B 2000, 69, 100–103. [Google Scholar] [CrossRef]
- Kochergin, V.; Foell, H. Commercial applications of porous Si: Optical filters and components. Phys. Status Solidi C 2007, 4, 1933–1940. [Google Scholar] [CrossRef]
- Jiménez Vivanco, M.d.R.; García, G.; Doti, R.; Faubert, J.; Lugo Arce, J.E. Time-Resolved Spectroscopy of Ethanol Evaporation on Free-Standing Porous Silicon Photonic Microcavities. Materials 2018, 11, 894. [Google Scholar] [CrossRef] [Green Version]
- Kochergin, V.; Sanghavi, M.; Swinehart, P.R. Porous silicon filters for low-temperature far IR applications. In Proceedings of the Infrared Spaceborne Remote Sensing 2005, San Diego, CA, USA, 29 August 2005; p. 58830T. [Google Scholar]
- Morales-Morales, F.; Palacios-Huerta, L.; Cabañas-Tay, S.; Coyopol, A.; Morales-Sánchez, A. Luminescent Si quantum dots in flexible and semitransparent membranes for photon down converting material. Opt. Mater. 2019, 90, 220–226. [Google Scholar] [CrossRef]
- Dovzhenko, D.; Osipov, E.; Martynov, I.; Samokhvalov, P.; Eremin, I.; Kotkovskii, G.; Chistyakov, A. Porous silicon microcavity modulates the photoluminescence spectra of organic polymers and quantum dots. Mater. Today. Proc. 2016, 3, 485–490. [Google Scholar] [CrossRef]
- Zhao, Y.; Gaur, G.; Retterer, S.T.; Laibinis, P.E.; Weiss, S.M. Flow-through porous silicon membranes for real-time label-free biosensing. Anal. Chem. 2016, 88, 10940–10948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, S.M.; Ouyang, H.; Zhang, J.; Fauchet, P.M. Electrical and thermal modulation of silicon photonic bandgap microcavities containing liquid crystals. Opt. Express 2005, 13, 1090–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, C.; Wada, T.; De Andrade, V.; Gürsoy, D.; Kato, H.; Chen-Wiegart, Y.-c.K. Imaging of 3D morphological evolution of nanoporous silicon anode in lithium ion battery by X-ray nano-tomography. Nano Energy 2018, 52, 381–390. [Google Scholar] [CrossRef]
- Chen, X.; Bi, Q.; Sajjad, M.; Wang, X.; Ren, Y.; Zhou, X.; Xu, W.; Liu, Z. One-dimensional porous silicon nanowires with large surface area for fast charge–discharge lithium-ion batteries. Nanomaterials 2018, 8, 285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres-Costa, V.; Mäkilä, E.; Granroth, S.; Kukk, E.; Salonen, J. Synaptic and Fast Switching Memristance in Porous Silicon-Based Structures. Nanomaterials 2019, 9, 825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishikura, N.; Fujii, M.; Nishida, K.; Hayashi, S.; Diener, J. Porous silicon based extended-bandwidth rugate filters for mid-infrared application. Infrared Phys. Technol. 2010, 53, 292–294. [Google Scholar] [CrossRef]
- Ilyas, S.; Böcking, T.; Kilian, K.; Reece, P.; Gooding, J.; Gaus, K.; Gal, M. Porous silicon based narrow line-width rugate filters. Opt. Mater. 2007, 29, 619–622. [Google Scholar] [CrossRef]
- Pérez, K.S.; Estevez, J.O.; Méndez-Blas, A.; Arriaga, J.; Palestino, G.; Mora-Ramos, M.E. Tunable resonance transmission modes in hybrid heterostructures based on porous silicon. Nanoscale Res. Lett. 2012, 7, 392. [Google Scholar] [CrossRef] [Green Version]
- Thanissen, M.; Berger, M.; Kruger, M.; Billat, S.; Loni, A.; Arens-Fischer, R.; Luth, H.; Theib, W. Microoptical applications of porous silicon superlattices. In Proceedings of the Digest IEEE/Leos 1996 Summer Topical Meeting, Advanced Applications of Lasers in Materials and Processing, Keystone, CO, USA, 5–9 August 1996; pp. 47–48. [Google Scholar]
- Massad-Ivanir, N.; Bhunia, S.K.; Jelinek, R.; Segal, E. Porous Silicon Bragg Reflector/Carbon Dot Hybrids: Synthesis, Nanostructure and Optical Properties. Front. Chem. 2018, 6, 574. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Li, S.; Chen, Q.; Cai, L. Optical characteristics and environmental pollutants detection of porous silicon microcavities. Sci. China Chem. 2011, 54, 1348. [Google Scholar] [CrossRef]
- Gelloz, B.; Koshida, N. Stabilization and operation of porous silicon photonic structures from near-ultraviolet to near-infrared using high-pressure water vapor annealing. Thin Solid Films 2010, 518, 3276–3279. [Google Scholar] [CrossRef]
- Morales, F.; García, G.; Luna, A.; López, R.; Rosendo, E.; Diaz, T.; Juárez, H. UV distributed Bragg reflectors build from porous silicon multilayers. J. Eur. Opt. Soc. Rapid Publ. 2015, 10. [Google Scholar] [CrossRef] [Green Version]
- Vivanco, M.d.R.J.; Salgado, G.G.; López, J.C.; Agarwal, V.; Caballero, G.N.; Becerril, T.F.D.; Andrés, E.R.; Solís, A.C.; Isasmendi, R.G.; Trujillo, R.R. Porous silicon-based UV microcavities (Conference Presentation). In Proceedings of the Nanophotonic Materials XV 2018, San Diego, CA, USA, 17 September 2018; p. 1072005. [Google Scholar]
- Torres-Costa, V.; Martín-Palma, R.; Martínez-Duart, J. All-silicon color-sensitive photodetectors in the visible. Mater. Sci. Eng. C 2007, 27, 954–956. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, G.; Abou-Galala, F.; Leonardi, M. Experimental performance evaluation of non-line-of-sight ultraviolet communication systems. In Proceedings of the Free-Space Laser Communications VII 2007, San Diego, CA, USA, 25 September 2007; p. 67090Y. [Google Scholar]
- Van Groesen, E.; Sopaheluwakan, A.; Andonowati, A. Direct characterization of states and modes in defect grating structures. J. Nonlinear Opt. Phys. Mater. 2004, 13, 155–173. [Google Scholar] [CrossRef] [Green Version]
- Van Groesen, E.W.; Sopaheluwakan, A.; Andonowati, A. Defect grating modes as superimposed grating states. In Proceedings of the 8th Annual Symposium IEEE/LEOS Benelux Chapter 2003, Enschede, The Netherlands, 20–21 November 2003; pp. 273–276. [Google Scholar]
- Lérondel, G.; Romestain, R.; Madéore, F.; Muller, F. Light scattering from porous silicon. Thin Solid Films 1996, 276, 80–83. [Google Scholar] [CrossRef]
- Ghulinyan, M.; Oton, C.; Bonetti, G.; Gaburro, Z.; Pavesi, L. Free-standing porous silicon single and multiple optical cavities. J. Appl. Phys. 2003, 93, 9724–9729. [Google Scholar] [CrossRef]
- Kruiger, M.; Berger, M.; Marso, M.; Thonissen, M.; Hilbrich, S.; Theib, W.; Loo, R.; Eickhoff, T.; Reetz, W.; Grosse, P. Integration of Porous Silicon Interference Filters in Si-Photodiodes. In Proceedings of the ESSDERC’96: Proceedings of the 26th European Solid State Device Research Conference, Bologna, Italy, 9–11 September 1996; pp. 891–894. [Google Scholar]
- Yao, Y.; Lee, K.T.; Sheng, X.; Batara, N.A.; Hong, N.; He, J.; Xu, L.; Hussain, M.M.; Atwater, H.A.; Lewis, N.S. Porous Nanomaterials for Ultrabroadband Omnidirectional Anti-Reflection Surfaces with Applications in High Concentration Photovoltaics. Adv. Energy Mater. 2017, 7, 1601992. [Google Scholar] [CrossRef] [Green Version]
- Sarto, F.; Nichelatti, E.; Flori, D.; Vadrucci, M.; Santoni, A.; Pietrantoni, S.; Guenster, S.; Ristau, D.; Gatto, A.; Trovò, M. Vacuum-ultraviolet optical properties of ion beam assisted fluoride coatings for free electron laser applications. Thin Solid Films 2007, 515, 3858–3866. [Google Scholar] [CrossRef]
- Ristau, D.; Günster, S.; Bosch, S.; Duparré, A.; Masetti, E.; Ferré-Borrull, J.; Kiriakidis, G.; Peiró, F.; Quesnel, E.; Tikhonravov, A. Ultraviolet optical and microstructural properties of MgF2 and LaF3 coatings deposited by ion-beam sputtering and boat and electron-beam evaporation. Appl. Opt. 2002, 41, 3196–3204. [Google Scholar] [CrossRef]
- Jerman, M.; Qiao, Z.; Mergel, D. Refractive index of thin films of SiO2, ZrO2, and HfO2 as a function of the films’ mass density. Appl. Opt. 2005, 44, 3006–3012. [Google Scholar] [CrossRef]
- Al-Kuhaili, M.; Durrani, S.; Khawaja, E. Characterization of hafnium oxide thin films prepared by electron beam evaporation. J. Phys. D Appl. Phys. 2004, 37, 1254. [Google Scholar] [CrossRef]
- Al-Kuhaili, M. Optical properties of hafnium oxide thin films and their application in energy-efficient windows. Opt. Mater. 2004, 27, 383–387. [Google Scholar] [CrossRef]
- Morton, D.E.; Jensen, T.R. Ion-Assisted Deposition of Moisture Stable HfO2 Thin-Films; Optical Society of America, OIC: Santa Ana Pueblo, NM, USA, 2001. [Google Scholar] [CrossRef]
- Jensen, T.R.; Warren, J.; Johnson, R.L. Ion-assisted deposition of moisture-stable hafnium oxide films for ultraviolet applications. Appl. Opt. 2002, 41, 3205–3210. [Google Scholar] [CrossRef]
- Patel, U.S.; Patel, K.H.; Chauhan, K.V.; Chawla, A.K.; Rawal, S.K. Investigation of various properties for zirconium oxide films synthesized by sputtering. Procedia Technol. 2016, 23, 336–343. [Google Scholar] [CrossRef] [Green Version]
- Jakšić, Z.; Maksimović, M.; Sarajlić, M. Silver–silica transparent metal structures as bandpass filters for the ultraviolet range. J. Opt. A. Pure Appl. Opt. 2004, 7, 51. [Google Scholar] [CrossRef]
- Li, W.-D.; Chou, S.Y. Solar-blind deep-UV band-pass filter (250–350 nm) consisting of a metal nano-grid fabricated by nanoimprint lithography. Opt. Express 2010, 18, 931–937. [Google Scholar] [CrossRef] [PubMed]
Filter | Porosity (%) | Average Thickness (nm) | |||
---|---|---|---|---|---|
MF1 | 36 | 64 | --------- | --------- | |
57 | 43 | ||||
MF2 | --------- | 0.23 | 98.51 | 1.27 | 46.5 |
0.25 | 78.86 | 20.89 | |||
MF3 | --------- | 0.78 | 97.88 | 1.34 | 47.9 |
0.15 | 79.02 | 20.83 | .8 | ||
MF4 | --------- | 1.42 | 97.14 | 1.44 | 47.7 |
0.22 | 78.91 | 20.87 | |||
MF5 | --------- | 2.92 | 95.41 | 1.67 | 47.5 |
0.01 | 79.23 | 20.76 | .1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jimenéz-Vivanco, M.R.; García, G.; Carrillo, J.; Morales-Morales, F.; Coyopol, A.; Gracia, M.; Doti, R.; Faubert, J.; Lugo, J.E. Porous Si-SiO2 UV Microcavities to Modulate the Responsivity of a Broadband Photodetector. Nanomaterials 2020, 10, 222. https://doi.org/10.3390/nano10020222
Jimenéz-Vivanco MR, García G, Carrillo J, Morales-Morales F, Coyopol A, Gracia M, Doti R, Faubert J, Lugo JE. Porous Si-SiO2 UV Microcavities to Modulate the Responsivity of a Broadband Photodetector. Nanomaterials. 2020; 10(2):222. https://doi.org/10.3390/nano10020222
Chicago/Turabian StyleJimenéz-Vivanco, María R., Godofredo García, Jesús Carrillo, Francisco Morales-Morales, Antonio Coyopol, Miguel Gracia, Rafael Doti, Jocelyn Faubert, and J. Eduardo Lugo. 2020. "Porous Si-SiO2 UV Microcavities to Modulate the Responsivity of a Broadband Photodetector" Nanomaterials 10, no. 2: 222. https://doi.org/10.3390/nano10020222
APA StyleJimenéz-Vivanco, M. R., García, G., Carrillo, J., Morales-Morales, F., Coyopol, A., Gracia, M., Doti, R., Faubert, J., & Lugo, J. E. (2020). Porous Si-SiO2 UV Microcavities to Modulate the Responsivity of a Broadband Photodetector. Nanomaterials, 10(2), 222. https://doi.org/10.3390/nano10020222