Laser Fragmentation Synthesis of Colloidal Bismuth Ferrite Particles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Educt Powder
2.2. Laser Fragmentation Setup
2.3. Analytical Instruments
3. Results and Discussion
3.1. Laser Fragmentation Using a Circular Colloid Jet
3.2. Fluence Simulation in Laser-Irradiated Colloid Jets of Different Geometries
3.3. Comparison of Laser Fragmentation Using Circular and Elliptical Colloid Jets
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Catalan, G.; Scott, J.F. Physics and Applications of Bismuth Ferrite. Adv. Mater. 2009, 21, 2463–2485. [Google Scholar] [CrossRef]
- Wu, J.; Fan, Z.; Xiao, D.; Zhu, J.; Wang, J. Multiferroic Bismuth Ferrite-Based Materials for Multifunctional Applications: Ceramic Bulks, Thin Films and Nanostructures. Prog. Mater. Sci. 2016, 84, 335–402. [Google Scholar] [CrossRef] [Green Version]
- Yi, H.T.; Choi, T.; Choi, S.G.; Oh, Y.S.; Cheong, S.-W. Mechanism of the Switchable Photovoltaic Effect in Ferroelectric BiFeO3. Adv. Mater. 2011, 23, 3403–3407. [Google Scholar] [CrossRef] [PubMed]
- Ji, W.; Yao, K.; Liang, Y.C. Bulk Photovoltaic Effect at Visible Wavelength in Epitaxial Ferroelectric BiFeO 3 Thin Films. Adv. Mater. 2010, 22, 1763–1766. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.F. Multiferroic Memories. Nat. Mater. 2007, 6, 256–257. [Google Scholar] [CrossRef] [PubMed]
- Seidel, J.; Eng, L.M. Shedding Light on Nanoscale Ferroelectrics. Curr. Appl. Phys. 2014, 14, 1083–1091. [Google Scholar] [CrossRef]
- Gao, T.; Chen, Z.; Huang, Q.; Niu, F.; Huang, X.; Qin, L.; Huang, Y. A Review: Preparation of Bismuth Ferrite Nanoparticles and Its Applications in Visible-Light Induced Photocatalyses. Rev. Adv. Mater. Sci. 2015, 40, 97–109. [Google Scholar]
- Wang, J. Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures. Science 2003, 299, 1719–1722. [Google Scholar] [CrossRef]
- Ghosh, S.; Dasgupta, S.; Sen, A.; Sekhar Maiti, H. Low-Temperature Synthesis of Nanosized Bismuth Ferrite by Soft Chemical Route. J. Am. Ceram. Soc. 2005, 88, 1349–1352. [Google Scholar] [CrossRef]
- Landers, J.; Salamon, S.; Escobar Castillo, M.; Lupascu, D.C.; Wende, H. Mössbauer Study of Temperature-Dependent Cycloidal Ordering in BiFeO 3 Nanoparticles. Nano Lett. 2014, 14, 6061–6065. [Google Scholar] [CrossRef] [PubMed]
- Shetty, S.; Palkar, V.; Pinto, R. Size Effect Study in Magnetoelectric BiFeO3 System. Pramana 2002, 58, 1027–1030. [Google Scholar] [CrossRef]
- Ghosh, S.; Dasgupta, S.; Sen, A.; Maiti, H.S. Low Temperature Synthesis of Bismuth Ferrite Nanoparticles by a Ferrioxalate Precursor Method. Mater. Res. Bull. 2005, 40, 2073–2079. [Google Scholar] [CrossRef]
- Usui, H.; Sasaki, T.; Koshizaki, N. Optical Transmittance of Indium Tin Oxide Nanoparticles Prepared by Laser-Induced Fragmentation in Water. J. Phys. Chem. B 2006, 110, 12890–12895. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Dong, C.-K.; Han, L.; Yang, J.; Du, X.-W. Top-Down Preparation of Active Cobalt Oxide Catalyst. ACS Catal. 2016, 6, 6699–6703. [Google Scholar] [CrossRef]
- Schmitz, T.; Wiedwald, U.; Dubs, C.; Gökce, B. Ultrasmall Yttrium Iron Garnet Nanoparticles with High Coercivity at Low Temperature Synthesized by Laser Ablation and Fragmentation of Pressed Powders. ChemPhysChem 2017, 18, 1125–1132. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Gökce, B.; Barcikowski, S. Laser Synthesis and Processing of Colloids: Fundamentals and Applications. Chem. Rev. 2017, 117, 3990–4103. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.X.; Hong, M.H.; Ong, T.S.; Lam, H.M.; Chen, W.Z.; Elim, H.I.; Ji, W.; Chong, T.C. Carbon Nanoparticles Based Nonlinear Optical Liquid. Carbon N. Y. 2004, 42, 2735–2737. [Google Scholar] [CrossRef]
- Chen, G.X.; Hong, M.H.; Lan, B.; Wang, Z.B.; Lu, Y.F.; Chong, T.C. A Convenient Way to Prepare Magnetic Colloids by Direct Nd:YAG Laser Ablation. Appl. Surf. Sci. 2004, 228, 169–175. [Google Scholar] [CrossRef]
- Waag, F.; Gökce, B.; Kalapu, C.; Bendt, G.; Salamon, S.; Landers, J.; Hagemann, U.; Heidelmann, M.; Schulz, S.; Wende, H.; et al. Adjusting the Catalytic Properties of Cobalt Ferrite Nanoparticles by Pulsed Laser Fragmentation in Water with Defined Energy Dose. Sci. Rep. 2017, 7, 13161. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, Y.; Koshizaki, N. Guided Slow Continuous Suspension Film Flow for Mass Production of Submicrometer Spherical Particles by Pulsed Laser Melting in Liquid. Sci. Rep. 2018, 8, 14208. [Google Scholar] [CrossRef]
- Mafuné, F.; Kohno, J.; Takeda, Y.; Kondow, T.; Sawabe, H. Formation of Gold Nanoparticles by Laser Ablation in Aqueous Solution of Surfactant. J. Phys. Chem. B 2001, 105, 5114–5120. [Google Scholar] [CrossRef]
- Werner, D.; Furube, A.; Okamoto, T.; Hashimoto, S. Femtosecond Laser-Induced Size Reduction of Aqueous Gold Nanoparticles: In Situ and Pump−Probe Spectroscopy Investigations Revealing Coulomb Explosion. J. Phys. Chem. C 2011, 115, 8503–8512. [Google Scholar] [CrossRef]
- Lau, M.; Barcikowski, S. Quantification of Mass-Specific Laser Energy Input Converted into Particle Properties during Picosecond Pulsed Laser Fragmentation of Zinc Oxide and Boron Carbide in Liquids. Appl. Surf. Sci. 2015, 348, 22–29. [Google Scholar] [CrossRef]
- Furlong, D.N.; Launikonis, A.; Sasse, W.H.F.; Sanders, J.V. Colloidal Platinum Sols. Preparation, Characterization and Stability towards Salt. J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases 1984, 80, 571. [Google Scholar] [CrossRef]
- Rehbock, C.; Merk, V.; Gamrad, L.; Streubel, R.; Barcikowski, S. Size Control of Laser-Fabricated Surfactant-Free Gold Nanoparticles with Highly Diluted Electrolytes and Their Subsequent Bioconjugation. Phys. Chem. Chem. Phys. 2013, 15, 3057–3067. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Angelo, D.; Filice, S.; Miritello, M.; Bongiorno, C.; Fazio, E.; Neri, F.; Compagnini, G.; Scalese, S. β-Bi 2 O 3 Reduction by Laser Irradiation in a Liquid Environment. Phys. Chem. Chem. Phys. 2018, 20, 10292–10301. [Google Scholar] [CrossRef]
- Sylvestre, J.P.; Poulin, S.; Kabashin, A.V.; Sacher, E.; Meunier, M.; Luong, J.H.T. Surface Chemistry of Gold Nanoparticles Produced by Laser Ablation in Aqueous Media. J. Phys. Chem. B 2004, 108, 16864–16869. [Google Scholar] [CrossRef]
- Shih, C.-Y.; Streubel, R.; Heberle, J.; Letzel, A.; Shugaev, M.V.; Wu, C.; Schmidt, M.; Gökce, B.; Barcikowski, S.; Zhigilei, L.V. Two Mechanisms of Nanoparticle Generation in Picosecond Laser Ablation in Liquids: The Origin of the Bimodal Size Distribution. Nanoscale 2018, 10, 6900–6910. [Google Scholar] [CrossRef] [Green Version]
- Zhigilei, L.V.; Garrison, B.J. Computer Simulation Study of Damage and Ablation of Submicron Particles from Short-Pulse Laser Irradiation. Appl. Surf. Sci. 1998, 127–129, 142–150. [Google Scholar] [CrossRef]
- Link, S.; El-Sayed, M.A. Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. J. Phys. Chem. B 1999, 103, 8410–8426. [Google Scholar] [CrossRef]
- Zhang, D.; Sugioka, K. Hierarchical Microstructures with High Spatial Frequency Laser Induced Periodic Surface Structures Possessing Different Orientations Created by Femtosecond Laser Ablation of Silicon in Liquids. Opto-Electronic Adv. 2019, 2, 19000201–19000218. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; You, L.; Du, J.; Wang, J.; Jin, Z.; Ma, G.; Leng, Y. Ultrafast Electron-Phonon Coupling and Photo-Induced Strain in the Morphotropic Phase Boundary of BixDy1−xFeO3 Films. Sci. Rep. 2018, 8, 3258. [Google Scholar] [CrossRef] [PubMed]
- Chandra Das, S.; Majumdar, A.; Katiyal, S.; Poojitha, B.; Saha, S.; Shripathi, T. Phase Pure Epitaxial Growth of BiFeO3 Films: An Effect of Oxygen Partial Pressure. Solid State Commun. 2017, 264, 10–15. [Google Scholar] [CrossRef]
- Béa, H.; Bibes, M.; Barthélémy, A.; Bouzehouane, K.; Jacquet, E.; Khodan, A.; Contour, J.-P.; Fusil, S.; Wyczisk, F.; Forget, A.; et al. Influence of Parasitic Phases on the Properties of BiFeO3 Epitaxial Thin Films. Appl. Phys. Lett. 2005, 87, 072508. [Google Scholar] [CrossRef] [Green Version]
- Jaber, N.; Wolfman, J.; Daumont, C.; Négulescu, B.; Ruyter, A.; Sauvage, T.; Courtois, B.; Bouyanfif, H.; Longuet, J.L.; Autret-Lambert, C.; et al. Laser Fluence and Spot Size Effect on Compositional and Structural Properties of BiFeO 3 Thin Films Grown by Pulsed Laser Deposition. Thin Solid Films 2017, 634, 107–111. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Wavelength (m) | 532 |
Beam quality factor (M2) | 1.2 |
Pulse length (ps) | 10 |
Beam diameter (mm) | 3 |
Parameter | Elliptical Jet | CIRCULAR Jet |
---|---|---|
Laser power (W) | 83.7 | 48.4 |
Pulse frequency (kHz) | 92.95 | 54.52 |
Pulse energy (µJ) | 900 | 888 |
Peak fluence of incident Gaussian beam (J/cm2) | 1.54 | 1.52 |
Focus length (mm) | 100 | 100 |
Distance from lens back (from housing) (mm) | 103.4 (100.96) | 103.4 (100.96) |
Colloid volume (mL) | 196 | 195 |
Orifice dimension (major axes) (µm) | 550 × 1200 | 1300 × 1300 |
Flow time (s) | 119 | 91 |
Pulse per particle | 1.16 | 1.13 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siebeneicher, S.; Waag, F.; Escobar Castillo, M.; Shvartsman, V.V.; Lupascu, D.C.; Gökce, B. Laser Fragmentation Synthesis of Colloidal Bismuth Ferrite Particles. Nanomaterials 2020, 10, 359. https://doi.org/10.3390/nano10020359
Siebeneicher S, Waag F, Escobar Castillo M, Shvartsman VV, Lupascu DC, Gökce B. Laser Fragmentation Synthesis of Colloidal Bismuth Ferrite Particles. Nanomaterials. 2020; 10(2):359. https://doi.org/10.3390/nano10020359
Chicago/Turabian StyleSiebeneicher, Simon, Friedrich Waag, Marianela Escobar Castillo, Vladimir V. Shvartsman, Doru C. Lupascu, and Bilal Gökce. 2020. "Laser Fragmentation Synthesis of Colloidal Bismuth Ferrite Particles" Nanomaterials 10, no. 2: 359. https://doi.org/10.3390/nano10020359
APA StyleSiebeneicher, S., Waag, F., Escobar Castillo, M., Shvartsman, V. V., Lupascu, D. C., & Gökce, B. (2020). Laser Fragmentation Synthesis of Colloidal Bismuth Ferrite Particles. Nanomaterials, 10(2), 359. https://doi.org/10.3390/nano10020359