Development of Crystalline Cu2S Nanowires via a Direct Synthesis Process and Its Potential Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Cu2S Nanowire Structure
2.2. Microstructure Characterization
2.3. Measurement of Photodegradation of RhB
2.4. The Electron Field Emission Measurements
3. Results
3.1. Growth and Structural Characterizations of Cu2S Nanowires
3.2. ElectronField Emission Property
3.3. Photocatalytic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Narayanan, R.; El-Sayed, M.A. Effect of Catalysis on the Stability of Metallic Nanoparticles: Suzuki Reaction Catalyzed by PVP-Palladium Nanoparticles. J. Am. Chem. Soc. 2003, 125, 8340–8347. [Google Scholar] [CrossRef]
- Peng, M.; Ma, L.-L.; Zhang, Y.-G.; Tan, M.; Wang, J.-B.; Yu, Y. Controllable synthesis of self-assembled Cu2S nanostructures through a template-free polyol process for the degradation of organic pollutant under visible light. Mater. Res. Bull. 2009, 44, 1834–1841. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, H.; Huo, K.; Cui, L.; Zhang, W.; Ni, H.; Zhang, Y.; Wu, Z.; Chu, P.K. Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials 2011, 32, 5706–5716. [Google Scholar] [CrossRef] [PubMed]
- Gentile, A.; Ruffino, F.; Grimaldi, M.G. Complex-Morphology Metal-Based Nanostructures: Fabrication, Characterization, and Applications. Nanomaterials 2016, 6, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beil. J. Nanotechnol. 2018, 9, 1050–1074. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar] [CrossRef]
- Yuan, Y.F.; Tu, J.P.; Wu, H.M.; Li, Y.; Shi, D.Q. Size and morphology effects of ZnO anode nanomaterials for Zn/Ni secondary batteries. Nanotechnology 2005, 16, 803–808. [Google Scholar] [CrossRef]
- Kar, P.; Farsinezhad, S.; Zhang, X.; Shankar, K. Anodic Cu2S and CuS nanorod and nanowall arrays: Preparation, properties and application in CO2 photoreduction. Nanoscale 2014, 6, 14305–14318. [Google Scholar] [CrossRef]
- Zhao, Y.; Burda, C. Development of plasmonic semiconductor nanomaterials with copper chalcogenides for a future with sustainable energy materials. Energy Environ. Sci. 2012, 5, 5564–5576. [Google Scholar] [CrossRef]
- Wang, S.; Yang, S. Growth behaviour of straight crystalline copper sulphide nanowires. Adv. Mater. Opt. Electron. 2000, 10, 39–45. [Google Scholar] [CrossRef]
- Li, L.; Zhang, W. Synthesis and light absorption properties of copper sulfide nanowire arrays on different substrates. Physica B 2018, 550, 26–31. [Google Scholar] [CrossRef]
- Hsu, Y.-K.; Chen, Y.-C.; Lin, Y.-G. Synthesis of copper sulfide nanowire arrays for high-performance supercapacitors. Electrochim. Acta 2014, 139, 401–407. [Google Scholar] [CrossRef]
- Ni, S.; Lv, X.; Li, T.; Yang, X. Fabrication of Cu2S cathode for Li-ion battery via a low temperature dry thermal sulfuration method. Mater. Chem. Phys. 2013, 143, 349–354. [Google Scholar] [CrossRef]
- Lai, C.-H.; Huang, K.-W.; Cheng, J.-H.; Lee, C.-Y.; Hwang, B.-J.; Chen, L.-J. Direct growth of high-rate capability and high capacity copper sulfide nanowire array cathodes for lithium-ion batteries. J. Mater. Chem. 2010, 20, 6638–6645. [Google Scholar] [CrossRef]
- Feng, C.; Zhang, L.; Wang, Z.; Song, X.; Sun, K.; Wu, F.; Liu, G. Synthesis of copper sulfide nanowire bundles in a mixed solvent as a cathode material for lithium-ion batteries. J. Power Sources 2014, 269, 550–555. [Google Scholar] [CrossRef] [Green Version]
- Daneshvar, N.; Salari, D.; Khataee, A.R. Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2. J. Photochem. Photobiol. A 2004, 162, 317–322. [Google Scholar] [CrossRef]
- Guettaï, N.; Ait Amar, H. Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part I: Parametric study. Desalination 2005, 185, 427–437. [Google Scholar] [CrossRef]
- Chen, J.; Deng, S.Z.; Xu, N.S.; Wang, S.; Wen, X.; Yang, S.; Yang, C.; Wang, J.; Ge, W. Field emission from crystalline copper sulphide nanowire arrays. Appl. Phys. Lett. 2002, 80, 3620–3622. [Google Scholar] [CrossRef]
- Rajeshwar, K.; Osugi, M.E.; Chanmanee, W.; Chenthamarakshan, C.R.; Zanoni, M.V.B.; Kajitvichyanukul, P.; Krishnan-Ayer, R. Heterogeneous photocatalytic treatment of organic dyes in air and aqueous media. J. Photochem. Photobiol. C 2008, 9, 171–192. [Google Scholar] [CrossRef]
- Malato, S.; Fernández-Ibáñez, P.; Maldonado, M.I.; Blanco, J.; Gernjak, W. Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catal. Today 2009, 147, 1–59. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Cheng, K.-Y.; Chu, Y.-C.; Chen, L.-J.; Fang, W.-L.; Chang, C.-S.; Chou, L.-J. Liquid–Solid Process for Growing Gold Nanowires on an Indium Tin Oxide Substrate as Excellent Field Emitters. J. Phys. Chem. C 2012, 116, 12824–12828. [Google Scholar] [CrossRef]
- Wu, Q.; Ren, S.; Deng, S.; Chen, J.; Xu, N. Growth of aligned Cu2S nanowire arrays with AAO template and their field-emission properties. J. Vac. Sci. Technol. B 2004, 22, 1282. [Google Scholar] [CrossRef]
- Barglik-Chory, C.; Remenyi, C.; Strohm, H.; Müller, G. Adjustment of the Band Gap Energies of Biostabilized CdS Nanoparticles by Application of Statistical Design of Experiments. J. Phys. Chem. B 2004, 108, 7637–7640. [Google Scholar] [CrossRef]
- Wu, K.-J.; Chu, K.-C.; Chao, C.-Y.; Chen, Y.-F.; Lai, C.-W.; Kang, C.-C.; Chen, C.-Y.; Chou, P.-T. CdS Nanorods Imbedded in Liquid Crystal Cells for Smart Optoelectronic Devices. Nano Lett. 2007, 7, 1908–1913. [Google Scholar] [CrossRef]
- Zhang, B.; Ye, X.; Hou, W.; Zhao, Y.; Xie, Y. Biomolecule-Assisted Synthesis and Electrochemical Hydrogen Storage of Bi2S3 Flowerlike Patterns with Well-Aligned Nanorods. J. Phys. Chem. B 2006, 110, 8978–8985. [Google Scholar] [CrossRef]
- Cao, B.L.; Jiang, Y.; Wang, C.; Wang, W.H.; Wang, L.Z.; Niu, M.; Zhang, W.J.; Li, Y.Q.; Lee, S. Synthesis and Lasing Properties of Highly Ordered CdS Nanowire Arrays. Adv. Funct. Mater. 2007, 17, 1501–1506. [Google Scholar] [CrossRef]
- Grijalva, H.; Inoue, M.; Boggavarapu, S.; Calvert, P. Amorphous and crystalline copper sulfides, CuS. J. Mater. Chem. 1996, 6, 1157–1160. [Google Scholar] [CrossRef]
- Chen, M.; Xie, Y.; Chen, H.; Qiao, Z.; Qian, Y. Preparation and Characterization of Metal Sulfides in Ethylenediamine under Ambient Conditions through a γ-Irradiation Route. J. Colloid Interface Sci. 2001, 237, 47–53. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Ding, Y. Room Temperature Synthesis of Metal Chalcogenides in Ethylenediamine. Inorg. Chem. 1999, 38, 4737–4740. [Google Scholar] [CrossRef]
- Qingqing, W.; Gang, X.; Gaorong, H. Solvothermal synthesis and characterization of uniform CdS nanowires in high yield. J. Solid State Chem. 2005, 178, 2680–2685. [Google Scholar] [CrossRef]
- Wang, S.; Yang, S. Growth of Crystalline Cu2S Nanowire Arrays on Copper Surface: Effect of Copper Surface Structure, Reagent Gas Composition, and Reaction Temperature. Chem. Mater. 2001, 13, 4794–4799. [Google Scholar] [CrossRef]
- de Heer, W.A.; Châtelain, A.; Ugarte, D. A Carbon Nanotube Field-Emission Electron Source. Science 1995, 270, 1179. [Google Scholar] [CrossRef]
- Chang, M.-T.; Chen, C.-Y.; Chou, L.-J.; Chen, L.-J. Core−Shell Chromium Silicide−Silicon Nanopillars: A Contact Material for Future Nanosystems. ACS Nano 2009, 3, 3776–3780. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, A.L.; Zhu, L.; Schmeiβer, D.; Himpsel, F.J.; Jin, S. Metallic Single-Crystal CoSi Nanowires via Chemical Vapor Deposition of Single-Source Precursor. J. Phys. Chem. B 2006, 110, 18142–18146. [Google Scholar] [CrossRef]
- She, J.; Xiao, Z.; Yang, Y.; Deng, S.; Chen, J.; Yang, G.; Xu, N. Correlation between Resistance and Field Emission Performance of Individual ZnO One-Dimensional Nanostructures. ACS Nano 2008, 2, 2015–2022. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Y.; Lin, Z.; Zhao, L.; Chen, D.; Wang, K.; Zhang, Z.; Zhang, G.; She, J.; Deng, S.; et al. Field Emission from Oxide Nanowires: Mechanism and Applications. In Proceedings of the 31st International Vacuum Nanoelectronics Conference (IVNC), Kyoto, Japan, 9–13 July 2018. [Google Scholar]
- Juan, Y.M.; Hsueh, H.T.; Cheng, T.C.; Wu, C.W. Electron-Field-Emission Enhancement of CuO Nanowires by UV Illumination. ECS Solid State Lett. 2014, 3, P30–P32. [Google Scholar] [CrossRef]
- Fowler, R.H.; Nordheim, L.W. Electron. Emission in Intense Electric Fields. Proc. Roy. Soc. Lond. A 1928, 119, 173–181. [Google Scholar]
- Collins, P.G.; Zettl, A. Unique characteristics of cold cathode carbon-nanotube-matrix field emitters. Phys. Rev. B 1997, 55, 9391–9399. [Google Scholar] [CrossRef] [Green Version]
- Chan, L.H.; Hong, K.H.; Xiao, D.Q.; Hsieh, W.J.; Lai, S.H.; Shih, H.C.; Lin, T.C.; Shieu, F.S.; Chen, K.J.; Cheng, H.C. Role of extrinsic atoms on the morphology and field emission properties of carbon nanotubes. Appl. Phys. Lett. 2003, 82, 4334–4336. [Google Scholar] [CrossRef]
- Dimitrijevic, S.; Withers, J.C.; Mammana, V.P.; Monteiro, O.R.; Ager, J.W.; Brown, I.G. Electron emission from films of carbon nanotubes and ta-C coated nanotubes. Appl. Phys. Lett. 1999, 75, 2680–2682. [Google Scholar] [CrossRef]
- Temple, D. Recent progress in field emitter array development for high performance applications. Mater. Sci. Eng. 1999, 24, 185–239. [Google Scholar] [CrossRef]
- Zhong, D.Y.; Zhang, G.Y.; Liu, S.; Sakurai, T.; Wang, E.G. Universal field-emission model for carbon nanotubes on a metal tip. Appl. Phys. Lett. 2002, 80, 506–508. [Google Scholar] [CrossRef]
- Xu, C.X.; Sun, X.W.; Chen, B.J. Field emission from gallium-doped zinc oxide nanofiber array. Appl. Phys. Lett. 2004, 84, 1540–1542. [Google Scholar] [CrossRef]
- Hu, Y.; Zheng, Z.; Jia, H.; Tang, Y.; Zhang, L. Selective Synthesis of FeS and FeS2 Nanosheet Films on Iron Substrates as Novel Photocathodes for Tandem Dye-Sensitized Solar Cells. J. Phys. Chem. C 2008, 112, 13037–13042. [Google Scholar] [CrossRef]
- Bo, X.; Bai, J.; Wang, L.; Guo, L. In situ growth of copper sulfide nanoparticles on ordered mesoporous carbon and their application as nonenzymatic amperometric sensor of hydrogen peroxide. Talanta 2010, 81, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Prieto, O.; Fermoso, J.; Nuñez, Y.; del Valle, J.L.; Irusta, R. Decolouration of textile dyes in wastewaters by photocatalysis with TiO2. Solar Energy 2005, 79, 376–383. [Google Scholar] [CrossRef]
- Li, Y.; Somorjai, G.A. Nanoscale Advances in Catalysis and Energy Applications. Nano Lett. 2010, 10, 2289–2295. [Google Scholar] [CrossRef] [Green Version]
- Bao, N.; Shen, L.; Takata, T.; Domen, K. Self-Templated Synthesis of Nanoporous CdS Nanostructures for Highly Efficient Photocatalytic Hydrogen Production under Visible Light. Chem. Mater. 2008, 20, 110–117. [Google Scholar] [CrossRef]
- Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Lian, J.; Li, J.; Wang, R.; Huang, H.; Su, B.; Lei, Z. Highly Efficient Photocatalytic Hydrogen Production of Flower-like Cadmium Sulfide Decorated by Histidine. Sci. Rep. 2015, 5, 13593. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-Y.; Jiang, J.-R.; Chuang, W.-S.; Liu, M.-S.; Lee, S.-W. Development of Crystalline Cu2S Nanowires via a Direct Synthesis Process and Its Potential Applications. Nanomaterials 2020, 10, 399. https://doi.org/10.3390/nano10020399
Chen C-Y, Jiang J-R, Chuang W-S, Liu M-S, Lee S-W. Development of Crystalline Cu2S Nanowires via a Direct Synthesis Process and Its Potential Applications. Nanomaterials. 2020; 10(2):399. https://doi.org/10.3390/nano10020399
Chicago/Turabian StyleChen, Chih-Yen, Jian-Ru Jiang, Wen-Shuo Chuang, Ming-Song Liu, and Sheng-Wei Lee. 2020. "Development of Crystalline Cu2S Nanowires via a Direct Synthesis Process and Its Potential Applications" Nanomaterials 10, no. 2: 399. https://doi.org/10.3390/nano10020399
APA StyleChen, C. -Y., Jiang, J. -R., Chuang, W. -S., Liu, M. -S., & Lee, S. -W. (2020). Development of Crystalline Cu2S Nanowires via a Direct Synthesis Process and Its Potential Applications. Nanomaterials, 10(2), 399. https://doi.org/10.3390/nano10020399