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Abstract: Large-scale and uniform copper(I) sulfide (Cu2S) nanowires have been successfully
synthesized via a cheap, fast, easily handled, and environmentally friendly approach. In addition
to the reductive properties of the biomolecule-assisted method, they also have a strong shape-
or size-directing functionality in the reaction process. The field-emission properties of the Cu2S
nanowires in a vacuum were studied by the Folwer–Nordheim (F–N) theory. The Cu2S nanowires
have a low turn-on field at 1.19 V/µm and a high enhancement factor (β) of 19,381. The photocatalytic
degradation of Cu2S nanowires was investigated by the change in the concentrations of rhodamine B
(RhB) under UV illumination. These outstanding results of Cu2S nanowires indicate that they will
be developed as good candidates as electron field emitters and chemical photocatalysts in future
nanoelectronic devices.

Keywords: Cu2S nanowires; nanomaterials; vacuum; field emission; photocatalytic degradation;
environmentally friendly approach

1. Introduction

Over the past decades, a variety of nanostructured semiconductors with well-controllable size,
shape, and composition have been widely developed and applied in many kinds of fields, such as
catalysis, size-effect, photocatalytic, and biomaterial applications [1–3]. Some important studies have
indicated that the properties of nanomaterials depend on their morphologies and sizes, so that their
chemical and physical properties are quite different from each other in bulk materials [4–7]. Among
various metal chalcogenide semiconductor nanostructures, the copper(I) sulfide (Cu2S) nanostructure
is regarded as a potential material for future applications in optoelectronic devices [8–10]. Cu2S is an
excellent p-type semiconductor material with an indirect bandgap of 1.2 eV, and it could be applied in
photovoltaics [9], nanoscale sensors [11,12], and cathodes for lithium-ion batteries [13–15].

A lot of efforts have been devoted in recent years to developing semiconductor photocatalysts
with high photocatalytic activities for environmental protection [8,11,13–15]. Most photocatalytic
degradation studies have focused on the use of nano-crystalline titanium oxides (TiO2) [16,17], but their
photocatalytic efficiency is quite poor, especially under visible light irradiation. In this respect, metal
chalcogenide semiconductors have suitable photocatalytic activities under solar irradiation, so they
might be good alternatives for replacing the TiO2. A variety of different Cu2S nanostructures such as
nanowires, nanoplates, and nanocrystals have been synthesized using diverse routes [11–15]. Previous
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studies have developed several synthesis routes for the growth of Cu2S nanowire arrays, such as
thermal evaporation processes and autoclave-assisted hydrothermal processes [18–20]. However, we
have reviewed these synthesis methods carefully, but many of these are achieved with toxic chemicals.
Many of these are strictly regulated because they are toxic, bio-accumulative, disruptive to hormones,
and carcinogenic.

In this study, large-scale and uniform free-standing semiconducting copper(I) sulfide (Cu2S)
nanowire arrays have been successfully synthesized on copper substrates via a fast, easily handled,
and environmentally friendly approach. The innovative reduction method, which combines
ethylenediamine (En) and hydrazine in an alkali solution, is demonstrated to be effective in synthesizing
copper nanowires. Furthermore, Cu2S nanowires were investigated experimentally in detail for their
filed emitted electronic and photocatalytic properties. A photocatalyst of Cu2S structures was
investigated by photocatalytic degradation of rhodamine B (RhB) under UV illumination. The previous
results indicate that surface area would play a significant factor in the efficiency of photocatalysis,
since photocatalytic reaction occurred on the surface [9,11,12]. On the other hand, the Cu2S nanowires
also show a low turn-on field (1.19 V/µm) and high field enhancement factor (β = 19,381). A smaller
cross-sectional area of an emitter will enhance its field-emission performance. Because the tip of the
free-standing nanowire has a smaller cross-sectional area, our Cu2S nanowires hence have better filed
emission properties than other nanoscale-emitting materials or the same bulk crystalline solids in the
previous reports [18,21,22]. These availabilities of Cu2S nanowires will not only enable new types of
applications, but also allow the performance of photoelectricities to be enhanced in future devices.

2. Materials and Methods

2.1. Synthesis of Cu2S Nanowire Structure

In a typical procedure, 10 g sodium hydroxide (NaOH, ≥98%, Sigma-Aldrich, St. Louis, MO,
USA) were dissolved in 40 mL distilled water and heated to 70 ◦C. At a constant 70 ◦C, 1 g L-Cystine,
7 mL ethylenediamine (≥99%, Sigma-Aldrich), and 40 µL hydrazine (98%, Sigma-Aldrich) were added
into the solution. The cleaned copper foil (Nan-ya Plastics Corporation) was then placed into the
mixture for 10 h, and the final product was a black film on the Cu substrate. The products on the
copper substrate were washed several times with ethanol and Deionized water (DI water), and then
dried in an air atmosphere.

2.2. Microstructure Characterization

Several precision facilities were thoroughly used for the morphological characterization of the Cu2S
nanowires. The microstructure and chemical composition were characterized by using a field-emission
scanning electron microscope (FE-SEM; Quanta 200, FEI Company, Hillsboro, OR, USA) equipped
with an energy-dispersive X-ray spectrometer. High-resolution lattice images were obtained with an
ultrahigh vacuum high-resolution transmission electron microscope (HRTEM, JEM-2000FX II, JEOL,
Ltd., Tokyo, Japan), operating at 200 keV with a point-to-point resolution of 0.14 nm. X-ray diffraction
(XRD, D2 Phaser, Bruker Corporation, Karlsruhe, Germany) was used to characterize the crystal
structure of the Cu2S nanowires over copper foil, recorded in a Bruker D8A diffractometer by using Cu
Kα radiation. It was operated at 40 kV and 40 mA with a scan rate of 0.04◦ per step.

2.3. Measurement of Photodegradation of RhB

The photocatalytic performance of Cu2S was evaluated by the degradation of Rhodamine B (RhB,
HPLC, Sigma-Aldrich) under UV irradiation using a 200 W Mercury–Xenon (HgXe) arc lamp bulb.
Degradation tests were performed by using films with geometrical surfaces of 0.9 × 0.9 cm2, immersed
in 3 mL RhB solution with the initial concentration of 5 µM. At various irradiation times, the UV-visible
absorption spectrum of the solution was measured by using a spectrophotometer (Evolution 60S,
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Thermo Scientific, Waltham, MA, USA), and the concentration was estimated by the integration of the
absorption peak.

2.4. The Electron Field Emission Measurements

The field-emission output of Cu2S nanowires was carried out in a vacuum chamber under the
pressure of 1 × 10–7 torr at room temperature. The measurement distances between the anode and
the emitting surface of the Cu2S nanowires were controlled in 100 µm. The GDM-8246 (GW-Instek
Ltd.) instrument was used to measure the current density (I) and electric field (E) characteristics. It
was necessary to run over emission cycles for 50 times in order to obtain stable and reproducible
I–E characteristics.

3. Results

3.1. Growth and Structural Characterizations of Cu2S Nanowires

By utilizing the combination of cystine, a compound which has the formula
(SCH2CH(NH2)CO2H)2, and metal chelating chemistry, successful synthesis of Cu2S nanowires
on the copper substrate was based on a biomolecule-assisted method. Cystine is an ordinary dimeric
amino acid formed by the oxidation of two cysteine molecules that covalently link to make a disulfide
bond. The disulfide link is readily reduced to give the corresponding thiol cysteine when it is heated.
As a sulfur-containing amino acid, L-cysteine has been also proposed as a structure-directing agent in
the synthesis of metal sulfide nanostructures, such as CdS and Bi2S3 [23–25]. In this study, L-cystine
was utilized not only as the structure-directing molecule, but also as a sulfur source to prepare the
metal sulfide nanostructures. This process is so convenient that Cu2S nanowires do not need to be
synthesized in a common high-pressure autoclave.

Figure 1 illustrates a possible chemical reaction pathway and growth mechanism of the Cu2S
nanowire arrays in experiments. The ethylenediamine molecules have a strong coordinating ability
and function in metal chelation or in mediating the electron transfer in the reaction system. When
the clean copper substrate was placed into the mixture, the ethylenediamine could play a role in
activating the surface of the metal substrate and in electron transfer in the reacting system [26,27].
On the other hand, the stability of the Cu-ethylenediamine (Cu–En) metal complex was decreased by
increasing the temperature, and a sulfide ion (S2−) was produced from the dissociation of cysteine so
that S2− could react quickly with the Cu–En complex. The ethylenediamine molecules of the unstable
inorganic–organic complex of Cu2S–En molecular precursors eventually disappeared [28–30], resulting
in the formation of Cu2S nanocrystals, which are located on the copper substrate in Figure 1.
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In order to understand the effects of the different reaction conditions on the growth of the
free-standing Cu2S nanowires, a series of experiments have been carried out by examining the aging
time, the amount of sodium hydroxide, and the volume of ethylenediamine. Figure 2 shows a series
of low-magnification SEM images of the as-synthesized product grown on the copper substrate. It
is well known that synthesizing a Cu–En metal complex results from a copper ion and a ligand of
ethylenediamine solution because of a Lewis acid–base interaction. The sulfidation rate has to be
studied experimentally in order to obtain high regularity for the Cu2S nanowires. The high pH value
in the alkali condition is also essential to let the sulfur anions diffuse to the copper substrate slowly
and to prevent the rapid sulfidation rate of the copper substrate. Furthermore, a chemical agent of
sodium hydroxide is added, which can maintain a strong alkaline environment with a high pH value
and also accelerates the dissolution of cystine in the solution. Figure 2a–d shows the morphologies
of Cu2S nanowires grown in various amounts of alkali solution by changing the amounts of sodium
hydroxide (NaOH) from 5, 7.5, and 10 g to 20 g with 1 g cysteine and 7 mL ethylenediamine at 70 ◦C
for 10 h. The other four SEM images of as-prepared Cu2S nanowires grown with 10 g NaOH, 1 g
cysteine, and 7 mL ethylenediamine at 70 ◦C for 1, 3, 5, and 10 h, respectively, as shown in Figure 2e–h.
In comparison with the SEM images of Figure 2e,h, the dimensions and lengths of the nanowires
were also enlarged with a long aging time. Prolonging the reaction time could lead to an increase
in the dimensions and lengths of the Cu2S nanowires rather than the growth of a higher density
of Cu2S nanowires. The results also indicate that the growth of the existing nucleus that has been
formed at a certain location is easier than the formation of new nuclei [14,31]. The influence of the
volume of ethylenediamine in our systems has also been investigated. Volumes of 4, 7, and 10 mL
ethylenediamine were added respectively into the reaction solutions with 10 g sodium hydroxide at
70 ◦C for 10 h. The SEM images show that a certain amount of ethylenediamine was indispensable for
controlling the morphology and density of nanowires, as shown in Figure S1 (see supplementary file).
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Figure 2. SEM images of as-prepared free-standing Cu2S nanowires grown under different reaction
conditions. For the first four conditions, (a) 5, (b) 7.5, (c) 10, and (d) 20 g NaOH are added with 1 g
cysteine and 7 mL ethylenediamine at 70 ◦C for 10 h. The other four conditions 10 g NaOH, 1 g cysteine,
and 7 mL ethylenediamine at 70 ◦C are controlled for (e) 1, (f) 3, (g) 5, and (h) 10 h.

After comparing these SEM images of Figure 2 and Figure S1 to explore the optimum value of
the experiment, high-quality Cu2S nanowires were successfully synthesized using the parameters of
10 g NaOH, 1g cysteine, and 7 mL ethylenediamine, which were added respectively into the reaction
solution, and finally, it was heated at 70 ◦C for 10 h. Figure 3a shows a low-magnification SEM image
of the as-synthesized high-quality Cu2S nanowires grown on the copper substrate. The detailed
parameters of this experiment are provided in the Materials and Methods section. The highly ordered
Cu2S nanowire arrays covered the entire area of the copper substrate compactly and uniformly.
Figure 3b is a tilting-angle view SEM image of well-aligned Cu2S nanowire arrays, and the average
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length of the Cu2S nanowires is about 30 µm. These nanowires have a quite high length-to-width ratio.
The structure and morphology of the nanowires were further studied using transmission electron
microscope (TEM), as shown in Figure 3c,d. The Figure 3c indicates a diameter of the Cu2S nanowires
of close to 50 nm. In Figure 3d, a lattice spacing obtained from a high-resolution TEM image is about
0.239 nm, corresponding to the interplanar distance of the (1 11 1) planes of monoclinic Cu2S crystals.
The structures of the Cu2S nanowire arrays on copper substrate were also determined by means of
high-resolution θ-2θ (theta) X-ray diffraction measurements. As shown in Figure 3e, all of the diffraction
peaks of the as-grown sample can be ascribed to the single phase of the orthorhombic-structured Cu2S
crystal phase (JCPDS No. 23-0961) with lattice constants of a = 1.350, b = 2.732, and c = 1.185 nm [14].
It should be noted that there are three additional peaks (2θ = 43.32◦, 50.45◦, and 74.13◦) corresponding
to the substrate copper foil.
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Figure 3. Structural characterizations of Cu2S nanowires. The top-view (a) and tilt-view (b) SEM images
of Cu2S nanowires. (c) High-magnification and (d) high-resolution TEM image of Cu2S nanowires.
(e) The XRD patterns of Cu2S nanowires.

3.2. ElectronField Emission Property

The materials of interest from field emission have been classified as metallic materials, including
carbon nanotubes (CNTs) [32], gold [21], metal silicides [33,34], or wide-bandgap and semiconducting
materials such as ZnO [35], WO3 [36], and CuO [37] nanowires.

The field-emission properties of Cu2S nanoemitters were measured, as shown in Figure 4a.
The Cu2S nanowires vertically grown on Cu substrates show great field-emission properties; the
field-emission current density–electrical field (J–E) curve is presented in Figure 4b. The turn-on field
is 1.19 V/µm; this value was defined as the applied voltage to produce emitting current density of
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10 µA/cm. The field-emission characteristics were theoretically evaluated by the Fowler–Nordheim
(F–N) equation (Equation (1)) [38].

J (E) = AE2∅−1 exp

−B∅ 3
2

βE

 (1)

where A and B are two constants, corresponding to 1.56 × 10−10 [AV−2(eV)] and 6.83 × 103 [V (eV−3/2)
(µm−1)], respectively [38]. E is the applied field, β is the field-enhancement factor of the nanowires, ∅
is the work function of the emitter, which is 5.6 eV for Cu2S, and J is the current density. The emission
behavior can be examined from the linearity of the curve by the corresponding Fowler–Nordheim plot
(ln (J/E2)-1/E curve) of the device after 50 tests (see upper-left inset image in Figure 4b). The maximum
emission current can reach up to 55 µA/cm2 as the applied voltage can reach over 1000 V.

Nanomaterials 2020, 10, x FOR PEER REVIEW 6 of 10 

 

is the work function of the emitter, which is 5.6 eV for Cu2S, and J is the current density. The emission 
behavior can be examined from the linearity of the curve by the corresponding Fowler–Nordheim 
plot (ln (J/E2)-1/E curve) of the device after 50 tests (see upper-left inset image in Figure 4b). The 
maximum emission current can reach up to 55 μA /cm2 as the applied voltage can reach over 1000 V.  

The linearity of these curves implies that the field emission from these Cu2S nanowires follows 
the F–N theory and exhibits two negative linear associations in the measured range. At low bias 
voltages, the field-emission mechanism obeys the properties of the traditional Fowler–Nordheim 
equation, while the field emission behavior under high bias voltages deviates from the Fowler–
Nordheim equation, but a linear relationship on the F–N coordinate still appears. Several reasons 
have been used to explain the deviation of field emission from Fowler–Nordheim behavior. The 
deviation from the F–N plot at high bias voltages has frequently been attributed to the space charge 
effect, localized states, and gas adsorbates [39,40].  

At the microscopic point, the β values should be experimentally studied. The β factor, reflecting 
the degree of field emission for the tip shape on a planar surface, can be estimated by the slope 
(−BΦ3/2/β) of the F–N plot. At the applied high field, the β value indicates that the barrier-tunneling 
mechanism is responsible for the field emission. We estimate the β value from the F–N plot. The field 
enhancement factors β1 and β2 are 19,381 and 5,787, respectively, which are much higher than in the 
previous report [18,22,32–37]. Furthermore, some previous articles have reported that the β value is 
related to the geometry of the crystal specified by the radius of the curvature of the tip [41–43] and 
other factors, such as the emission height, the crystal structure, conductivity, and the nanostructure 
density [44]. 

  
Figure 4. (a) Schematic of the field-emission measurement setup. (b) Field-emission current (J) versus 
applied electric field (E) plot measured at 100 μm between cathode and anode separation and pressure 
of 1 × 10−7 torr. Its inset image is the Fowler–Nordheim (F-N) plot of the Cu2S nanowires. 

3.3. Photocatalytic Activity 

To further measure the photocatalytic properties of the Cu2S nanostructured wires, a series of 
the reactions were investigated for their application of photocatalysis degradation from 1 to 8 h. The 
results of the photocatalytic activity of the Cu2S nanowire arrays are presented in Figure 5. The UV-
visible absorbance spectra of the 5 μM rhodamine B (RhB) solution with the Cu2S photocatalyst at 
different irradiation times were measured in Figure 5a. This indicates that Cu2S nanowire 
photocatalysts have an inclination to decrease the UV-visible absorbed wavelength of 554 nm for a 
longer period of irradiation time. Cu2S nanowires have great photocatalytic properties in comparison 
with the same bulk-type materials due to the larger specific surface area [45,46]. Figure 5b shows that 
our Cu2S nanowires have a degradation rate percentage of 47.4% after continuing testing for 8 h. 
Figure 5c reveals the photodegradation kinetics of rhodamine B. The photodegradation of dyes 

Figure 4. (a) Schematic of the field-emission measurement setup. (b) Field-emission current (J) versus
applied electric field (E) plot measured at 100 µm between cathode and anode separation and pressure
of 1 × 10−7 torr. Its inset image is the Fowler–Nordheim (F-N) plot of the Cu2S nanowires.

The linearity of these curves implies that the field emission from these Cu2S nanowires follows the
F–N theory and exhibits two negative linear associations in the measured range. At low bias voltages,
the field-emission mechanism obeys the properties of the traditional Fowler–Nordheim equation, while
the field emission behavior under high bias voltages deviates from the Fowler–Nordheim equation,
but a linear relationship on the F–N coordinate still appears. Several reasons have been used to explain
the deviation of field emission from Fowler–Nordheim behavior. The deviation from the F–N plot at
high bias voltages has frequently been attributed to the space charge effect, localized states, and gas
adsorbates [39,40].

At the microscopic point, the β values should be experimentally studied. The β factor, reflecting
the degree of field emission for the tip shape on a planar surface, can be estimated by the slope
(−BΦ3/2/β) of the F–N plot. At the applied high field, the β value indicates that the barrier-tunneling
mechanism is responsible for the field emission. We estimate the β value from the F–N plot. The field
enhancement factors β1 and β2 are 19,381 and 5787, respectively, which are much higher than in the
previous report [18,22,32–37]. Furthermore, some previous articles have reported that the β value is
related to the geometry of the crystal specified by the radius of the curvature of the tip [41–43] and
other factors, such as the emission height, the crystal structure, conductivity, and the nanostructure
density [44].
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3.3. Photocatalytic Activity

To further measure the photocatalytic properties of the Cu2S nanostructured wires, a series of the
reactions were investigated for their application of photocatalysis degradation from 1 to 8 h. The results
of the photocatalytic activity of the Cu2S nanowire arrays are presented in Figure 5. The UV-visible
absorbance spectra of the 5 µM rhodamine B (RhB) solution with the Cu2S photocatalyst at different
irradiation times were measured in Figure 5a. This indicates that Cu2S nanowire photocatalysts have an
inclination to decrease the UV-visible absorbed wavelength of 554 nm for a longer period of irradiation
time. Cu2S nanowires have great photocatalytic properties in comparison with the same bulk-type
materials due to the larger specific surface area [45,46]. Figure 5b shows that our Cu2S nanowires
have a degradation rate percentage of 47.4% after continuing testing for 8 h. Figure 5c reveals the
photodegradation kinetics of rhodamine B. The photodegradation of dyes follows the first-order
reaction described by the Langmuir–Hinshelwood (L-H) mechanism (Equation (2)) [20,47,48].

lnC = lnC0 − kt (2)

where C0 is the initial concentration of the aqueous solution of dyes, C is the corresponding concentration
of the aqueous solution of dyes which was measured at various irradiation times, K is a constant of
photodegradation rate. After the first-order kinetics calculation, the photodegradation rate constant
(K) was obtained by plotting −ln(C/C0) as a function of the various irradiation times. The experimental
results indicate that surface area would play a significant role in the efficiency owing to the photocatalytic
reaction which occurred exactly on the surface. A photocatalyst with a higher specific surface area
is important in the enhancement of photocatalytic performance due to more surface active sites and
photocatalytic reaction centers.
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Figure 5. The illustrations display the performance of the photocatalytic activity of the Cu2S nanowires
over various irradiation periods. (a) UV/Vis absorption intensity of the RhB with a series of various
times. The upper insert is an SEM image of the experimental sample. (b) Photocatalytic degradation
of RhB under UV illumination. (c) The kinetic formula of RhB photodegradation, K, is a constant of
photodegradation rate.

Generally, the photoelectrochemical performance of semiconductors mainly depends on the
generation of the photoinduced electron, separation of electron–hole pairs, and efficiency of
charge-carrier transfer. The previous works of literature have shown that enhanced photoactivity
of metal chalcogenide semiconductors such as Cu2S and CdS [49–51] is primarily attributed to the
improved lifetime and transfer of photogenerated charge carriers. The value of the specific surface
area does not mainly determine the efficiency of the photoactive reaction, and the study of the detailed
mechanism still needs further investigations.
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4. Conclusions

The free-standing, single-crystal Cu2S nanowires have been successfully produced on copper
metal substrates via a one-step template-free solution route. The morphology of the Cu2S nanowires is
needlelike with an average length of 30 µm and average diameter of 50 nm. Ethylenediamine plays
an important role in electron transfer in redox reactions and in the formation of binary chalcogenide
nanowires. The dissolution of chalcogen in ethylenediamine also affects the formation of chalcogenides.
In addition, the single-crystalline Cu2S nanowires exhibit outstanding properties with a low turn-on
field of 1.19 V/µm and high current density of 55 µA/cm2 according to the Folwer–Nordheim (F–N)
theory, as well as a reproducible value of the field-enhancement factor β1 of 19,381 and β2 of 5787,
respectively. On the other hand, because of their excellent optical performance, the Cu2S nanowires
are good photocatalysts which also showed effective photocatalytic activity, and RhB can be degraded
rapidly with UV illumination at room temperature. The reliability test indicated that the photocatalytic
reaction of our Cu2S nanowires was highly efficient during periods of continuing specialty testing.
Our Cu2S nanowires have a degradation rate of 47.4% after an 8 h irradiating reaction. The above
outstanding results warrant possible applications for Cu2S nanowires as electron field emitters and
chemical photocatalysts in future nanoelectronic devices.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/2/399/s1,
Figure S1: SEM images of as-prepared free standing Cu2S nanowire grown under different reaction conditions.
The three conditions are added (a) 4 mL, (b) 7 mL, (c) 10 mL ethylenediamine with 10 g sodium hydroxide at
70 ◦C for 10 h.
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