Nanomaterials for Periodontal Tissue Engineering: Chitosan-Based Scaffolds. A Systematic Review
Abstract
:1. Introduction
1.1. Objectives
1.2. Clinical Question (PICO)
- P: Chitosan-based scaffold
- I: utilization and efficacy of chitosan-based scaffold in periodontal tissue engineering, assessing, in particular, its contribution in alveolar bone regeneration
- C: comparison between chitosan used alone and chitosan used in combination with other biomaterials, molecules or stem cells
- O: general overview of the different chitosan scaffold forms and compositions and their application in periodontal tissue engineering. Evaluation of chitosan-based scaffold effectiveness in the alveolar bone regeneration process
2. Materials and Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
Inclusion and Exclusion Criteria
- ၀
- Available data about cell proliferation and viability, mineralization and alkaline phosphatase activity of the newly formed bone
- ၀
- Study design: Randomized Controlled Trial
- ၀
- Chitosan-based scaffold used in combination with other biomaterials, growth factors or stem cells
- ၀
- Articles written in the English language
2.3. Search
2.4. Study Selection and Data Collection Process
2.5. Quality Assessment
3. Results
3.1. Study Selection and Characteristics
3.2. Results of Individual Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kinane, D.F.; Stathopoulou, P.G.; Papapanou, P.N. Periodontal diseases. Nat. Rev. Dis. Prim. 2017, 3, 17038. [Google Scholar] [CrossRef]
- Larsson, L.; Decker, A.; Nibali, L.; Pilipchuk, S.; Berglundh, T.; Giannobile, W.V. Regenerative Medicine for Periodontal and Peri-implant Diseases. J. Dent. Res. 2015, 95, 255–266. [Google Scholar] [CrossRef] [PubMed]
- Roi, A.; Ardelean, L.C.; Roi, C.I.; Boia, E.-R.; Boia, S.; Rusu, L.C. Oral Bone Tissue Engineering: Advanced Biomaterials for Cell Adhesion, Proliferation and Differentiation. Materials 2019, 12, 2296. [Google Scholar] [CrossRef] [Green Version]
- Bhat, S.; Kumar, A. Biomaterials and bioengineering tomorrow’s healthcare. Biomatter 2013, 3, e24717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kozusko, S.D.; Riccio, C.; Goulart, M.; Bumgardner, J.; Jing, X.L.; Konofaos, P. Chitosan as a Bone Scaffold Biomaterial. J. Craniofacial Surg. 2018, 29, 1788–1793. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Vázquez, M.; Vega-Ruiz, B.; Ramos-Zúñiga, R.; Saldaña-Koppel, D.A.; Quiñones-Olvera, L.F. Chitosan and Its Potential Use as a Scaffold for Tissue Engineering in Regenerative Medicine. BioMed Res. Int. 2015, 2015, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Zaky, S.; Cancedda, R. Engineering Craniofacial Structures: Facing the Challenge. J. Dent. Res. 2009, 88, 1077–1091. [Google Scholar] [CrossRef]
- Loh, Q.L.; Choong, C. Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size. Tissue Eng. Part B Rev. 2013, 19, 485–502. [Google Scholar] [CrossRef] [Green Version]
- Qin, Y.; Guan, J.; Zhang, C. Mesenchymal stem cells: Mechanisms and role in bone regeneration. Postgrad. Med. J. 2014, 90, 643–647. [Google Scholar] [CrossRef]
- Jafari, M.; Paknejad, Z.; Rad, M.R.; Motamedian, S.R.; Eghbal, M.J.; Nadjmi, N.; Khojasteh, A. Polymeric scaffolds in tissue engineering: A literature review. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015, 105, 431–459. [Google Scholar] [CrossRef]
- Kumar, A.S.; Nagahama, H.; Furuike, T.; Tamura, H. Synthesis of phosphorylated chitosan by novel method and its characterization. Int. J. Boil. Macromol. 2008, 42, 335–339. [Google Scholar]
- Jangid, N.K.; Hada, D.; Rathore, K. Chitosan as an emerging object for biological and biomedical applications. J. Polym. Eng. 2019, 39, 689–703. [Google Scholar] [CrossRef]
- Oryan, A.; Sahvieh, S. Effectiveness of chitosan scaffold in skin, bone and cartilage healing. Int. J. Boil. Macromol. 2017, 104, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Alidadi, S.; Oryan, A.; Bigham-Sadegh, A.; Moshiri, A. Comparative study on the healing potential of chitosan, polymethylmethacrylate, and demineralized bone matrix in radial bone defects of rat. Carbohydr. Polym. 2017, 166, 236–248. [Google Scholar] [CrossRef] [PubMed]
- Marei, M.K.; El Backly, R. Dental Mesenchymal Stem Cell-Based Translational Regenerative Dentistry: From Artificial to Biological Replacement. Front. Bioeng. Biotechnol. 2018, 6, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009, 62, e1–e34. [Google Scholar] [CrossRef] [Green Version]
- Wells, G.A.; Shea, B.; O’Connell, D.; Petersen, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomized Studies in Meta-Analyses. Available online: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 7 January 2020).
- Akman, A.C.; Tiğli, R.S.; Gümüşderelioğlu, M.; Nohutcu, R.M. bFGF-loaded HA-chitosan: a promising scaffold for periodontal tissue engineering. J. Biomed. Mater. Res. A 2010, 92, 953–962. [Google Scholar] [CrossRef]
- Bakopoulou, A.; Georgopoulou, A.; Grivas, I.; Bekiari, C.; Prymak, O.; Loza, K.; Epple, M.; Papadopoulos, G.C.; Koidis, P.; Chatzinikolaidou, M. Dental pulp stem cells in chitosan/gelatin scaffolds for enhanced orofacial bone regeneration. Dent Mater. 2019, 35, 310–327. [Google Scholar] [CrossRef]
- Duruel, T.; Çakmak, A.S.; Akman, A.; Nohutcu, R.; Gümüşderelioğlu, M. Sequential IGF-1 and BMP-6 releasing chitosan/alginate/PLGA hybrid scaffolds for periodontal regeneration. Int. J. Boil. Macromol. 2017, 104, 232–241. [Google Scholar] [CrossRef]
- Ge, S.; Zhao, N.; Wang, L.; Yu, M.; Liu, H.; Song, A.; Huang, J.; Wang, G.; Yang, P. Bone repair by periodontal ligament stem cellseeded nanohydroxyapatite-chitosan scaffold. Int. J. Nanomed. 2012, 7, 5405–5414. [Google Scholar] [CrossRef] [Green Version]
- Gümüşderelioğlu, M.; Sunal, E.; Demirtaş, T.T.; Kiremitçi, A.S. Chitosan-based double-faced barrier membrane coated with functional nanostructures and loaded with BMP-6. J. Mater. Sci. Mater. Med. 2019, 31, 4. [Google Scholar] [CrossRef]
- Guo, S.; He, L.; Yang, R.; Chen, B.; Xie, X.; Jiang, B.; Weidong, T.; Ding, Y. Enhanced effects of electrospun collagen-chitosan nanofiber membranes on guided bone regeneration. J. Biomater. Sci. Polym. Ed. 2019, 31, 155–168. [Google Scholar] [CrossRef]
- Hunter, K.T.; Ma, T. In vitro evaluation of hydroxyapatite–chitosan–gelatin composite membrane in guided tissue regeneration†. J. Biomed. Mater. Res. Part A 2012, 101, 1016–1025. [Google Scholar]
- Jayash, S.N.; Hashim, N.M.; Misran, M.; Baharuddin, N. Formulation andin vitroandin vivoevaluation of a new osteoprotegerin-chitosan gel for bone tissue regeneration. J. Biomed. Mater. Res. Part A 2016, 105, 398–407. [Google Scholar] [CrossRef] [PubMed]
- Li, D.-D.; Pan, J.-F.; Ji, Q.-X.; Yu, X.-B.; Liu, L.-S.; Li, H.; Jiao, X.-J.; Wang, L. Characterization and cytocompatibility of thermosensitive hydrogel embedded with chitosan nanoparticles for delivery of bone morphogenetic protein-2 plasmid DNA. J. Mater. Sci. Mater. Med. 2016, 27, 134. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ji, Q.; Chen, X.; Sun, Y.; Xu, Q.; Deng, P.; Hu, F.; Yang, J. Accelerated bony defect healing based on chitosan thermosensitive hydrogel scaffolds embedded with chitosan nanoparticles for the delivery of BMP2 plasmid DNA. J. Biomed. Mater. Res. Part A 2017, 105, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Liao, F.; Chen, Y.; Li, Z.; Wang, Y.; Shi, B.; Gong, Z.; Cheng, X. A novel bioactive three-dimensional beta-tricalcium phosphate/chitosan scaffold for periodontal tissue engineering. J. Mater. Sci. Mater. Med. 2010, 21, 489–496. [Google Scholar] [CrossRef]
- Miranda, D.G.; Malmonge, S.M.; Campos, D.M.; Attik, G.N.; Grosgogeat, B.; Gritsch, K. A chitosan-hyaluronic acid hydrogel scaffold for periodontal tissue engineering. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015, 104, 1691–1702. [Google Scholar] [CrossRef]
- Mota, J.; Yu, N.; Caridade, S.; Luz, G.; Gomes, M.E.; Reis, R.L.; Jansen, J.A.; Walboomers, F.X.; Mano, J.F. Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration. Acta Biomater. 2012, 8, 4173–4180. [Google Scholar] [CrossRef] [Green Version]
- Rammal, H.; Entz, L.; Dubus, M.; Moniot, A.; Bercu, N.B.; Sergheraert, J.; Gangloff, S.C.; Mauprivez, C.; Kerdjoudj, H. Osteoinductive Material to Fine-Tune Paracrine Crosstalk of Mesenchymal Stem Cells With Endothelial Cells and Osteoblasts. Front. Bioeng. Biotechnol. 2019, 7, 256. [Google Scholar] [CrossRef]
- Shah, A.T.; Zahid, S.; Ikram, F.; Maqbool, M.; Chaudhry, A.A.; Rahim, M.I.; Schmidt, F.; Goerke, O.; Khan, A.S.; Rehman, I.U. Tri-layered functionally graded membrane for potential application in periodontal regeneration. Mater. Sci. Eng. C 2019, 103, 109812. [Google Scholar] [CrossRef] [PubMed]
- Sukpaita, T.; Chirachanchai, S.; Suwattanachai, P.; Everts, V.; Pimkhaokham, A.; Ampornaramveth, R.S. In Vivo Bone Regeneration Induced by a Scaffold of Chitosan/Dicarboxylic Acid Seeded with Human Periodontal Ligament Cells. Int. J. Mol. Sci. 2019, 20, 4883. [Google Scholar] [CrossRef] [Green Version]
- Sundaram, M.N.; Sowmya, S.; Deepthi, S.; Bumgardener, J.D.; Kumar, A.S. Bilayered construct for simultaneous regeneration of alveolar bone and periodontal ligament. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015, 104, 761–770. [Google Scholar] [CrossRef] [PubMed]
- Varoni, E.; Vijayakumar, S.; Canciani, E.; Cochis, A.; De Nardo, L.; Lodi, G.; Rimondini, L.; Cerruti, M. Chitosan-Based Trilayer Scaffold for Multitissue Periodontal Regeneration. J. Dent. Res. 2017, 97, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Hong, X.; Gao, J.; Shen, R.; Ye, Z. Preparation and biological characterization of the mixture of poly(lactic-co-glycolic acid)/chitosan/Ag nanoparticles for periodontal tissue engineering. Int. J. Nanomed. 2019, 14, 483–498. [Google Scholar] [CrossRef] [Green Version]
- Zang, S.; Dong, G.; Peng, B.; Xu, J.; Ma, Z.; Wang, X.; Liu, L.; Wang, Q. A comparison of physicochemical properties of sterilized chitosan hydrogel and its applicability in a canine model of periodontal regeneration. Carbohydr. Polym. 2014, 113, 240–248. [Google Scholar] [CrossRef]
- Zang, S.; Jin, L.; Kang, S.; Hu, X.; Wang, M.; Wang, J.; Chen, B.; Peng, B.; Wang, Q. Periodontal Wound Healing by Transplantation of Jaw Bone Marrow-Derived Mesenchymal Stem Cells in Chitosan/Anorganic Bovine Bone Carrier Into One-Wall Infrabony Defects in Beagles. J. Periodontol. 2016, 87, 971–981. [Google Scholar] [CrossRef]
- Zang, S.; Mu, R.; Chen, F.; Wei, X.; Zhu, L.; Han, B.; Yu, H.; Bi, B.; Chen, B.; Wang, Q.; et al. Injectable chitosan/β-glycerophosphate hydrogels with sustained release of BMP-7 and ornidazole in periodontal wound healing of class III furcation defects. Mater. Sci. Eng. C 2019, 99, 919–928. [Google Scholar] [CrossRef]
- Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of Cell Viability by the MTT Assay. Cold Spring Harb. Protoc. 2018, 2018, 095505. [Google Scholar] [CrossRef]
- Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of Cell Viability by the alamarBlue Assay. Cold Spring Harb. Protoc. 2018, 2018, 095489. [Google Scholar] [CrossRef]
- Deepthi, S.; Venkatesan, J.; Kim, S.-K.; Bumgardner, J.D.; Kumar, A.S.; Bumgardener, J.D. An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering. Int. J. Boil. Macromol. 2016, 93, 1338–1353. [Google Scholar] [CrossRef] [PubMed]
- Venkatesan, J.; Kim, S.-K. Chitosan Composites for Bone Tissue Engineering—An Overview. Mar. Drugs 2010, 8, 2252–2266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.S.; Chennazhi, K.P.; Srinivasan, S.; Nair, S.V.; Furuike, T.; Tamura, H. Chitin Scaffolds in Tissue Engineering. Int. J. Mol. Sci. 2011, 12, 1876–1887. [Google Scholar]
- Anitha, A.; Sowmya, S.; Kumar, A.S.; Deepthi, S.; Chennazhi, K.; Ehrlich, H.; Tsurkan, M.V.; Kumar, A.S. Chitin and chitosan in selected biomedical applications. Prog. Polym. Sci. 2014, 39, 1644–1667. [Google Scholar] [CrossRef]
- Tao, F.; Cheng, Y.; Shi, X.; Zheng, H.; Du, Y.; Xiang, W.; Deng, H. Applications of chitin and chitosan nanofibers in bone regenerative engineering. Carbohydr. Polym. 2019, 230, 115658. [Google Scholar] [CrossRef]
- Younes, I.; Rinaudo, M. Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Mar. Drugs 2015, 13, 1133–1174. [Google Scholar] [CrossRef] [Green Version]
- Levengood, S.K.L.; Zhang, M. Chitosan-based scaffolds for bone tissue engineering. J. Mater. Chem. B 2014, 2, 3161–3184. [Google Scholar] [CrossRef]
- Aguilar, A.; Zein; Harmouch, E.; Hafdi, B.; Bornert, F.; Offner, D.; Clauss, F.; Fioretti, F.; Huck; Jessel, B. Application of Chitosan in Bone and Dental Engineering. Molecules 2019, 24, 3009. [Google Scholar] [CrossRef] [Green Version]
- Davidenko, N.; Carrodeguas, R.G.; Peniche, C.; Solís, Y.; Cameron, R. Chitosan/apatite composite beads prepared by in situ generation of apatite or Si-apatite nanocrystals. Acta Biomater. 2010, 6, 466–476. [Google Scholar] [CrossRef]
- Zhang, Y.-F.; Cheng, X.-R.; Chen, Y.; Shi, B.; Chen, X.-H.; Xu, D.-X.; Ke, J. Three-dimensional Nanohydroxyapatite/Chitosan Scaffolds as Potential Tissue Engineered Periodontal Tissue. J. Biomater. Appl. 2006, 21, 333–349. [Google Scholar] [CrossRef]
- Bakopoulou, A.; About, I. Stem Cells of Dental Origin: Current Research Trends and Key Milestones towards Clinical Application. Stem Cells Int. 2016, 2016, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Venkatesan, J.; Anil, S.; Kim, S.-K.; Shim, M.S. Chitosan as a vehicle for growth factor delivery: Various preparations and their applications in bone tissue regeneration. Int. J. Boil. Macromol. 2017, 104, 1383–1397. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.; Yu, Y.; Zhang, S.; Wang, J.; Xiao, Y.; Liu, C. The immunomodulatory role of sulfated chitosan in BMP-2-mediated bone regeneration. Biomater. Sci. 2018, 6, 2496–2507. [Google Scholar] [CrossRef] [PubMed]
- Muxika, A.; Etxabide, A.; Uranga, J.; Guerrero, P.; De La Caba, K. Chitosan as a bioactive polymer: Processing, properties and applications. Int. J. Boil. Macromol. 2017, 105, 1358–1368. [Google Scholar] [CrossRef]
Studies | Definition of Cases | Representativeness of Cases | Selection of Controls | Definition of Controls | Comparability | Exposure | Total |
---|---|---|---|---|---|---|---|
[18] | + | + | - | - | +- | ++- | 6 |
[19] | + | + | + | + | +- | ++- | 7 |
[20] | + | + | - | - | +- | ++- | 6 |
[21] | + | + | + | - | +- | ++- | 6 |
[22] | + | + | + | + | +- | ++- | 7 |
[23] | + | + | + | + | +- | ++- | 7 |
[24] | + | + | - | - | +- | ++- | 5 |
[25] | + | + | - | - | +- | ++- | 5 |
[26] | + | + | - | - | +- | ++- | 6 |
[27] | + | + | - | - | +- | ++- | 5 |
[28] | + | + | + | - | +- | ++- | 6 |
[29] | + | + | - | - | +- | +++ | 6 |
[30] | + | + | + | + | +- | ++- | 7 |
[31] | + | + | + | + | +- | +-- | 6 |
[32] | + | + | - | - | +- | ++- | 5 |
[33] | + | + | + | - | +- | +++ | 7 |
[34] | + | + | - | - | +- | ++- | 5 |
[35] | + | + | + | - | +- | ++- | 6 |
[36] | + | + | + | + | +- | ++- | 7 |
[37] | + | + | + | - | +- | ++- | 6 |
[38] | + | + | + | - | +- | ++- | 6 |
[39] | + | + | + | - | +- | ++- | 6 |
Studies | Type of Study | Biomaterials | Bone Regeneration Measurement | Results |
---|---|---|---|---|
[18] | In vitro |
| MTT assay of CB and PDLCs (absorbance values, 570 nm) at day 8 and 7 respectively |
|
[20] | In vitro |
| MTT assay of CB (absorbance values, 570 nm) at day 12 |
|
[28] | In vivo (left dorsal subcutaneous area in athymic mice) |
| MTT assay of PDLCs (absorbance values, 570 nm) at day 6 |
|
[37] | In vitro/in vivo (alveolar bone defects of mixed breed dogs) |
| MTT assay of PDLCs (absorbance values, 490 nm) at day 6 |
|
Studies | Type of Study | Biomaterials | Bone Regeneration Measurement | Results |
---|---|---|---|---|
[19] | In vitro |
| MTT assay of DPSCs at day 7 |
|
[23] | In vitro/in vivo (calvarial bone defects of rats) |
| CCK-8 assay (Dojindo Ltd., Tokyo, Japan) of PDLCs |
|
[26] | In vitro |
| CCK-8 assay (Dojindo Ltd., Tokyo, Japan) of PDLCs |
|
Studies | Type of Study | Biomaterials | Bone Regeneration Measurement | Results |
---|---|---|---|---|
[22] | In vitro |
| PrestoBlue assay of MC3T3-E1 cells (absorbance values, 570 nm) at day 21 |
|
[25] | In vitro/in vivo (calvarial bone defects of rabbits) |
| AlamarBlue assay (Sigma) of osteoblasts (metabolic viability %) seeded on the gels after 24 h |
|
[29] | In vitro |
| AlamarBlue assay (mitochondrial cell activity) | The test showed a higher increase (20%) in cellular viability of both cellular groups compared with the control one. However, none of them were statistically different |
[30] | In vitro |
| AlamarBlue assay of PDLCs and hBMSCs |
Generally cell metabolic activity was higher in the CS/BG-NP group compared with the CS group for both PDLCs and hBMSCs. |
[32] | In vitro/in vivo (8 weeks old rats) |
| AlamarBlue assay of MC3T3-E1 cells (relative % AB reduction) |
|
Studies | Type of Study | Biomaterials | Bone Regeneration Measurement | Results |
---|---|---|---|---|
[21] | In vivo (calvarial bone defects of rats) |
| ALP activity of PDLSCs (U/gprot = unit/gram protein) at day 7 |
|
[24] | In vitro |
| ALP activity of hMSCs (µmol/(106 cells x min) at day 14 |
|
[34] | In vitro |
| ALP to evaluate the differentiation of hDFCs to OB at day 7 |
|
[35] | In vitro/in vivo |
| ALP assay of OB on the different compartments after day 7 |
|
Studies | Type of Study | Biomaterials | Bone Regeneration Measurement | Results |
---|---|---|---|---|
[27] | In vitro/in vivo (male rats) |
| Masson’s trichrome staining (width of new bone) |
|
[33] | In vivo (calvarial bone of mice) |
| Masson’s trichrome staining | Increase in the amount of collagen and bone matrix in CS/DA scaffold with and without PDLCs after 12 weeks |
[38] | In vivo (alveolar bone of male beagles) |
| Masson’s trichrome staining | CS + hJBMMSCs showed more dense and well-organized PDL than the other groups |
[31] | In vitro |
| ARS staining of MSCs |
|
[36] | In vivo (molar area of the mandibular body of rabbits) |
| ARS staining of PDLCs | More mineralized nodules were observed on nPLGA/nCS/nAG membrane than in negative control group |
[39] | In vivo (alveolar bone of male beagles) |
| OCN staining for osteoblasts (number of OCN-positive cells) |
|
BIOCERAMICS | CHACARCTERISTICS and PROPERTIES |
---|---|
HYDROXYAPATITE |
|
CALCIUM PHOSPHATE |
|
BIOACTIVE GLASS |
|
BIOPOLYMER | CHARACTERISTICS and PROPERTIES |
---|---|
ALGINATE |
|
COLLAGEN |
|
HYALURONIC ACID |
|
POLYCAPROLACTONE (PCL) |
|
POLYLACTIC-CO-GLYCOLIDE (PLGA) |
|
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lauritano, D.; Limongelli, L.; Moreo, G.; Favia, G.; Carinci, F. Nanomaterials for Periodontal Tissue Engineering: Chitosan-Based Scaffolds. A Systematic Review. Nanomaterials 2020, 10, 605. https://doi.org/10.3390/nano10040605
Lauritano D, Limongelli L, Moreo G, Favia G, Carinci F. Nanomaterials for Periodontal Tissue Engineering: Chitosan-Based Scaffolds. A Systematic Review. Nanomaterials. 2020; 10(4):605. https://doi.org/10.3390/nano10040605
Chicago/Turabian StyleLauritano, Dorina, Luisa Limongelli, Giulia Moreo, Gianfranco Favia, and Francesco Carinci. 2020. "Nanomaterials for Periodontal Tissue Engineering: Chitosan-Based Scaffolds. A Systematic Review" Nanomaterials 10, no. 4: 605. https://doi.org/10.3390/nano10040605
APA StyleLauritano, D., Limongelli, L., Moreo, G., Favia, G., & Carinci, F. (2020). Nanomaterials for Periodontal Tissue Engineering: Chitosan-Based Scaffolds. A Systematic Review. Nanomaterials, 10(4), 605. https://doi.org/10.3390/nano10040605