Miniaturized GaAs Nanowire Laser with a Metal Grating Reflector
Abstract
:1. Introduction
2. Structure of GaAs Nanowire with Ag Grating
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ning, C.Z. Semiconductor nanolasers. Phys. Status Solidi B 2010, 247, 774–788. [Google Scholar] [CrossRef]
- Lu, Y.; Kim, J.; Chen, H.; Wu, C.; Dbidian, N.; Sander, C.; Wang, C.; Lu, M.; Li, B.; Qiu, X.; et al. Plasmonic nanolaser using epitaxially grown silver film. Science 2012, 337, 450–453. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, Y.; Wang, S.; Li, B.; Zhang, X.; Dai, L.; Ma, R. Lasing enhanced surface plasmon resonance sensing. Nanophotonics 2016, 5, 52–58. [Google Scholar] [CrossRef]
- Gwo, S.; Shih, C. Semiconductor plasmonic nanolasers: Current status and perspectives. Rep. Prog. Phys. 2016, 79, 086501. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Oulton, R.F. Applications of nanolasers. Nat. Nanotech. 2019, 14, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Panzauskie, P.J.; Yang, P. Nanowire photonics. Phys. Mater. Today 2006, 9, 36–45. [Google Scholar] [CrossRef]
- Yan, R.; Gargass, D.; Yang, P. Nanowire photonics. Nat. Photon. 2009, 3, 569–576. [Google Scholar] [CrossRef]
- Couteau, C.; Larrue, A.; Wilhelm, C.; Soci, C. Nanowire lasers. Nanophotonics 2015, 4, 90–107. [Google Scholar] [CrossRef]
- Zimmler, M.A.; Caspasso, F.; Müller, S.; Ronning, C. Optically pumped nanowire lasers: Invited review. Semicond. Sci. Technol. 2000, 25, 024001. [Google Scholar] [CrossRef] [Green Version]
- Versteegh, M.A.M.; Vanmaekelbergh, D.; Dijkhuis, J.I. Room-temperature lasers emission of ZnO nanowires explained by many-body theory. Phys. Rev. Lett. 2012, 108, 157402. [Google Scholar] [CrossRef] [Green Version]
- Gradečak, S.; Qian, F.; Li, Y.; Park, H.G.; Lieber, C.M. GaN nanowire lasers with low lasing thresholds. Appl. Phys. Lett. 2005, 87, 173111. [Google Scholar] [CrossRef] [Green Version]
- Geburt, S.; Thielmann, A.; Röder, R.; Borschel, C.; McDonnell, A.; Kozlik, M.; Kühnel, J.; Sunter, K.A.; Capasso, F.; Ronning, C. Low threshold room-temperature lasing of CdS nanowires. Nanotechnology 2012, 23, 365204. [Google Scholar] [CrossRef] [PubMed]
- Saxena, D.; Mokkapati, S.; Parkinson, P.; Jiang, N.; Gao, Q.; Tan, H.H.; Jagadish, C. Optically pumped room-temperature GaAs nanowire lasers. Nat. Photon. 2013, 7, 963–968. [Google Scholar] [CrossRef]
- Wei, W.; Liu, Y.; Zhang, X.; Wang, Z.; Ren, X. Evanescent-wave pumped room-temperature single-mode GaAs/AlGaAs core-shell nanowire lasers. Appl. Phys. Lett. 2014, 104, 223103. [Google Scholar] [CrossRef]
- Jiang, N.; Parkinson, P.; Gao, Q.; Breuer, S.; Tan, H.H.; Wong-Leung, J.; Jagadish, C. Long minority carrier lifetime in Au-catalyzed GaAs/AlxGa1−xAs core-shell nanowires. Appl. Phys. Lett. 2012, 101, 023111. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Motohisa, J.; Hua, B.; Hara, S.; Fukui, T. Observation of microcavity modes and waveguides in InP nanowires fabricated by selective-are metalorganic vapor-phase epitaxy. Nano Lett. 2007, 7, 3598–3602. [Google Scholar] [CrossRef]
- Oulton, R.F.; Sorger, V.J.; Zentgraf, T.; Ma, R.; Gladden, C.; Dai, L.; Bartal, G.; Zhang, X. Plasmon lasers at deep subwavelength scale. Nature 2009, 461, 629–632. [Google Scholar] [CrossRef] [Green Version]
- Sidiropoulos, T.P.H.; Röder, R.; Geburt, S.; Hess, O.; Maier, S.A.; Ronning, C.; Oulton, R.F. Ultrafast plasmonic nanowire lasers near the surface plasmon frequency. Nat. Phys. 2014, 10, 870–876. [Google Scholar] [CrossRef]
- Ho, J.; Tatebayashi, H.; Sergent, S.; Fong, C.F.; Iwamoto, S.; Arakawa, Y. Low-threshold near-infrared GaAs-AlGaAs core-shell nanowire plasmon laser. ACS Photon. 2015, 2, 165–171. [Google Scholar] [CrossRef]
- Palik, E.D. Handbook of Optical Constants of Solids; Academic Press: San Diego, CA, USA, 1998. [Google Scholar]
- Johnson, P.B.; Christy, R.W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Luebbers, R.; Hunsberger, F. FDTD for Nth-Order Dispersive Media. IEEE Tran. Antenn. Prop. 1972, 40, 1297–1301. [Google Scholar] [CrossRef]
- Vial, A.; Grimault, A.; Macías, D.; Barchiesi, D.; Chapelle, M. Improved analytical fit of gold dispersion: Applications to the modeling of extinction spectra with a finite-difference time-domain method. Phys. Rev. B 2005, 71, 085416. [Google Scholar] [CrossRef]
- Guo, J.; Huang, H.; Ren, X.; Yan, X.; Cai, S.; Guo, X.; Huang, Y.; Wang, Q.; Zhang, X.; Wang, W. Grwoth of zinc blende GaAs/AlGaAs radial heterostructure nanowires by a two-temperature process. Chin. Phys. Lett. 2011, 28, 036101. [Google Scholar] [CrossRef]
- Yan, X.; Wei, W.; Tang, F.; Wang, X.; Li, L.; Zhang, X. Low-threshold room-temperature AlGaAs/GaAs nanowire/single-quantum-well heterostructure laser. Appl. Phys. Lett. 2017, 110, 061104. [Google Scholar] [CrossRef] [Green Version]
- Ashcroft, N.W.; Mermin, N.D. Solid State Physics; Saunders College Publishing: New York, NY, USA, 1976. [Google Scholar]
- Yaris, A. Quantum Electronics; Wiley: New York, NY, USA, 1975. [Google Scholar]
- Visser, T.D.; Blok, H.; Demeulenaere, B.; Lenstra, D. Confinement factors and gain in optical amplifiers. IEEE J. Quantum Electron. 1997, 33, 1763–1766. [Google Scholar] [CrossRef] [Green Version]
- Maslov, A.V.; Ning, C.Z. Modal gain in a semiconductor nanowire laser with anisotropic bandstructure. IEEE J. Quantum Electron. 2004, 40, 1389–1397. [Google Scholar] [CrossRef]
- Chang, S.W.; Chuang, S.L. Fundamental formulation for plasmonic nanolasers. IEEE J. Quantum Electron. 2009, 45, 1014–1023. [Google Scholar] [CrossRef]
- Wei, W.; Yan, X.; Zhang, X. Ultrahigh Purcell factor in low-threshold nanolaser based on asymmetric hybrid plasmonic cavity. Sci. Rep. 2016, 6, 33063. [Google Scholar] [CrossRef] [Green Version]
- Bermúdez-Ureña, E.; Tutuncuoglu, G.; Cuerda, J.; Smith, C.L.C.; Bravo-Abad, J.; Bozhevolnyi, S.I.; Morral, A.F.I.; García-Vidal, F.J.; Quidant, R. Plasmonic waveguide-integrated nanowire laser. Nano Lett. 2017, 17, 747–754. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, W.; Yan, X.; Zhang, X. Miniaturized GaAs Nanowire Laser with a Metal Grating Reflector. Nanomaterials 2020, 10, 680. https://doi.org/10.3390/nano10040680
Wei W, Yan X, Zhang X. Miniaturized GaAs Nanowire Laser with a Metal Grating Reflector. Nanomaterials. 2020; 10(4):680. https://doi.org/10.3390/nano10040680
Chicago/Turabian StyleWei, Wei, Xin Yan, and Xia Zhang. 2020. "Miniaturized GaAs Nanowire Laser with a Metal Grating Reflector" Nanomaterials 10, no. 4: 680. https://doi.org/10.3390/nano10040680
APA StyleWei, W., Yan, X., & Zhang, X. (2020). Miniaturized GaAs Nanowire Laser with a Metal Grating Reflector. Nanomaterials, 10(4), 680. https://doi.org/10.3390/nano10040680