Incorporation of Lippia citriodora Microwave Extract into Total-Green Biogelatin-Phospholipid Vesicles to Improve Its Antioxidant Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Extraction and Phenolic Quantification by HPLC-ESI-TOF/MS
2.3. Vesicle Preparation
2.4. Vesicle Characterization
2.5. In Vitro Biocompatibility Assessment of the Formulations
2.6. Protective Efficacy of the Formulations against Cells Stressed with Hydrogen Peroxide
2.7. Statistical Analysis of Data
3. Results
3.1. Characterization of L. citriodora Extract
3.2. Preparation and Characterization of Vesicles
3.3. In Vitro Assays in Fibroblasts
3.3.1. Biocompatibility Assay
3.3.2. Antioxidant Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Manconi, M.; Manca, M.L.; Marongiu, F.; Caddeo, C.; Castangia, I.; Petretto, G.L.; Pintore, G.; Sarais, G.; D’hallewin, G.; Zaru, M.; et al. Chemical characterization of Citrus limon var. pompia and incorporation in phospholipid vesicles for skin delivery. Int. J. Pharm. 2016, 506, 449–457. [Google Scholar] [CrossRef] [PubMed]
- Leyva-Jiménez, F.J.; Lozano-Sánchez, J.; de la Cádiz-Gurrea, M.L.; Arráez-Román, D.; Segura-Carretero, A. Functional Ingredients based on Nutritional Phenolics. A Case Study against Inflammation: Lippia Genus. Nutrients 2019, 11, 1646. [Google Scholar]
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [Green Version]
- Sukadeetad, K.; Nakbanpote, W.; Heinrich, M.; Nuengchamnong, N. Effect of drying methods and solvent extraction on the phenolic compounds of Gynura pseudochina (L.) DC. leaf extracts and their anti-psoriatic property. Ind. Crops Prod. 2018, 120, 34–46. [Google Scholar] [CrossRef]
- Fu, R.; Zhang, Y.; Peng, T.; Guo, Y.; Chen, F. Phenolic composition and effects on allergic contact dermatitis of phenolic extracts Sapium sebiferum (L.) Roxb. leaves. J. Ethnopharmacol. 2015, 162, 176–180. [Google Scholar] [CrossRef]
- de Melo, M.N.O.; Oliveira, A.P.; Wiecikowski, A.F.; Carvalho, R.S.; de Castro, J.L.; de Oliveira, F.A.G.; Pereira, H.M.G.; da Veiga, V.F.; Capella, M.M.A.; Rocha, L.; et al. Phenolic compounds from Viscum album tinctures enhanced antitumor activity in melanoma murine cancer cells. Saudi Pharm. J. 2018, 26, 311–322. [Google Scholar] [CrossRef]
- Argyropoulou, C.; Daferera, D.; Tarantilis, P.A.; Fasseas, C.; Polissiou, M. Chemical composition of the essential oil from leaves of Lippia citriodora H.B.K. (Verbenaceae) at two developmental stages. Biochem. Syst. Ecol. 2007, 35, 831–837. [Google Scholar] [CrossRef]
- Leyva-Jiménez, F.J.; Lozano-Sánchez, J.; Borrás-Linares, I.; Arráez-Román, D.; Segura-Carretero, A. Comparative study of conventional and pressurized liquid extraction for recovering bioactive compounds from Lippia citriodora leaves. Food Res. Int. 2018, 109, 213–222. [Google Scholar]
- de la Cádiz-Gurrea, M.L.; Micol, V.; Joven, J.; Segura-Carretero, A.; Fernández-Arroyo, S. Different behavior of polyphenols in energy metabolism of lipopolysaccharide-stimulated cells. Food Res. Int. 2018, 118, 96–100. [Google Scholar] [CrossRef]
- Quirantes-Piné, R.; Arráez-Román, D.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Characterization of phenolic and other polar compounds in a lemon verbena extract by capillary electrophoresis-electrospray ionization-mass spectrometry. J. Sep. Sci. 2010, 33, 2818–2827. [Google Scholar]
- Kitagawa, S.; Tanaka, Y.; Tanaka, M.; Endo, K.; Yoshii, A. Enhanced skin delivery of quercetin by microemulsion. J. Pharm. Pharmacol. 2009, 61, 855–860. [Google Scholar] [CrossRef] [PubMed]
- Castangia, I.; Caddeo, C.; Manca, M.L.; Casu, L.; Latorre, A.C.; Díez-Sales, O.; Ruiz-Saurí, A.; Bacchetta, G.; Fadda, A.M.; Manconi, M. Delivery of liquorice extract by liposomes and hyalurosomes to protect the skin against oxidative stress injuries. Carbohydr. Polym. 2015, 134, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Bucci, P.; Prieto, M.J.; Milla, L.; Calienni, M.N.; Martinez, L.; Rivarola, V.; Alonso, S.; Montanari, J. Skin penetration and UV-damage prevention by nanoberries. J. Cosmet. Dermatol. 2018, 17, 889–899. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, P.; Choi, D.K. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy. Int. J. Nanomed. 2016, 11, 1987. [Google Scholar] [CrossRef] [Green Version]
- Manca, M.L.; Jos, J.; Peris, J.E.; Melis, V.; Valenti, D.; Cardia, M.C.; Lattuada, D.; Escribano-Ferrer, E.; Fadda, A.M.; Manconi, M. Nanoincorporation of curcumin in polymer-glycerosomes and evaluation of their in vitro-in vivo suitability as pulmonary delivery systems. RSC Adv. 2015, 5, 105149–105159. [Google Scholar] [CrossRef]
- Bonechi, C.; Donati, A.; Tamasi, G.; Leone, G.; Consumi, M.; Rossi, C.; Lamponi, S.; Magnani, A. Protective effect of quercetin and rutin encapsulated liposomes on induced oxidative stress. Biophys. Chem. 2018, 233, 55–63. [Google Scholar] [CrossRef]
- Păvăloiu, R.-D.; Sha’at, F.; Bubueanu, C.; Deaconu, M.; Neagu, G.; Sha’at, M.; Anastasescu, M.; Mihailescu, M.; Matei, C.; Nechifor, G.; et al. Polyphenolic Extract from Sambucus ebulus L. Leaves Free and Loaded into Lipid Vesicles. Nanomaterials 2019, 10, 56. [Google Scholar]
- Sousa, S.; Vázquez, J.; Pérez-Martín, R.; Carvalho, A.; Gomes, A. Valorization of By-Products from Commercial Fish Species: Extraction and Chemical Properties of Skin Gelatins. Molecules 2017, 22, 1545. [Google Scholar] [CrossRef] [Green Version]
- Leyva-Jiménez, F.J.; Lozano-Sánchez, J.; Borrás-Linares, I.; Arráez-Román, D.; Segura-Carretero, A. Manufacturing design to improve the attainment of functional ingredients from Aloysia citriodora leaves by advanced microwave technology. J. Ind. Eng. Chem. 2019, 79, 52–61. [Google Scholar]
- Manca, M.L.; Castangia, I.; Matricardi, P.; Lampis, S.; Fernàndez-Busquets, X.; Fadda, A.M.; Manconi, M. Molecular arrangements and interconnected bilayer formation induced by alcohol or polyalcohol in phospholipid vesicles. Colloids Surf. B Biointerfaces 2014, 117, 360–367. [Google Scholar] [CrossRef]
- ISO. ISO 10993-5: Biological Evaluation of Medical Devices-Part 5: Test for In Vitro Cytotoxicity; ISO: Geneva, Switzerland, 2009. [Google Scholar]
- de la Cádiz-Gurrea, M.L.; Olivares-Vicente, M.; Herranz-López, M.; Román-Arráez, D.; Fernández-Arroyo, S.; Micol, V.; Segura-Carretero, A. Bioassay-guided purification of Lippia citriodora polyphenols with AMPK modulatory activity. J. Funct. Foods 2018, 46, 514–520. [Google Scholar]
- Deepak, M.; Handa, S.S. Antiinflammatory activity and chemical composition of extracts of Verbena officinalis. Phytother. Res. 2000, 14, 463–465. [Google Scholar] [CrossRef]
- Carrera-Quintanar, L.; Funes, L.; Viudes, E.; Tur, J.; Micol, V.; Roche, E.; Pons, A. Antioxidant effect of lemon verbena extracts in lymphocytes of university students performing aerobic training program. Scand. J. Med. Sci. Sports 2012, 22, 454–461. [Google Scholar] [CrossRef]
- Manconi, M.; Petretto, G.; D’hallewin, G.; Escribano, E.; Milia, E.; Pinna, R.; Palmieri, A.; Firoznezhad, M.; Peris, J.E.; Usach, I.; et al. Thymus essential oil extraction, characterization and incorporation in phospholipid vesicles for the antioxidant/antibacterial treatment of oral cavity diseases. Colloids Surf. B Biointerfaces 2018, 171, 115–122. [Google Scholar] [CrossRef]
- Saber, F.R.; Abdelbary, G.A.; Salama, M.M.; Saleh, D.O.; Fathy, M.M.; Soliman, F.M. UPLC/QTOF/MS profiling of two Psidium species and the in-vivo hepatoprotective activity of their nano-formulated liposomes. Food Res. Int. 2018, 105, 1029–1038. [Google Scholar] [CrossRef]
- Liu, C.; Guo, H.; DaSilva, N.A.; Li, D.; Zhang, K.; Wan, Y.; Gao, X.-H.; Chen, H.-D.; Seeram, N.P.; Ma, H. Pomegranate (Punica granatum) phenolics ameliorate hydrogen peroxide-induced oxidative stress and cytotoxicity in human keratinocytes. J. Funct. Foods 2019, 54, 559–567. [Google Scholar] [CrossRef]
Formulation | L. citriodora Extract (mg) | P90G (mg) | Gelatine (mg) | H2O (mL) | Glycerol (mL) | Propylene Glycol (mL) |
---|---|---|---|---|---|---|
Empty liposomes | - | 180 | - | 1 | - | - |
Empty glycerosomes | - | 180 | - | 0.75 | 0.25 | - |
Empty PG-PEVs | - | 180 | - | 0.75 | - | 0.25 |
Empty biogelatin-glycerosomes | - | 180 | 5 | 0.75 | 0.25 | - |
Empty biogelatin-PG-PEVs | - | 180 | 5 | 0.75 | - | 0.25 |
L. citriodora liposomes | 50 | 180 | - | 1 | - | - |
L. citriodora glycerosomes | 50 | 180 | - | 0.75 | 0.25 | - |
L. citriodora PG-PEVs | 50 | 180 | - | 0.75 | - | 0.25 |
L. citriodora biogelatin-glycerosomes | 50 | 180 | 5 | 0.75 | 0.25 | - |
L. citriodora biogelatin-PG-PEVs | 50 | 180 | 5 | 0.75 | - | 0.25 |
Peak | RT (min) | m/z Cal | m/z Exp | Formula (M-H) | Proposed Compound | Chemical Group | Quantification mg Analyte/g Extract |
---|---|---|---|---|---|---|---|
1 | 2.8 | 195.0510 | 195.0508 | C6H11O7 | Gluconic acid | Organic acid | - |
2 | 3.8 | 373.1140 | 373.1131 | C16H21O10 | Gardoside | Iridoid glycoside | 4.4 ± 0.3 |
3 | 3.9 | 391.1246 | 391.1241 | C16H23O11 | Shanzhiside | Iridoid glycoside | 0.24 ± 0.02 |
4 | 4.0 | 387.0933 | 387.0933 | C16H19O11 | Ixoside | Iridoid glycoside | 1.78 ± 0.03 |
5 | 4.2 | 461.1664 | 461.1670 | C20H29O12 | Verbasoside | Phenylpropanoid | 3.56 ± 0.02 |
6 | 4.8 | 487.1457 | 487.1443 | C21H27O13 | Cistanoside F | Phenylpropanoid | 1.72 ± 0.06 |
7 | 5.2 | 203.0925 | 203.0907 | C9H15O5 | UK 1 | - | - |
8 | 5.3 | 475.1398 | 475.1435 | C20H27O13 | Primeverin | Other | - |
9 | 5.8 | 285.0616 | 285.0591 | C12H13O8 | Pyrocatechol Glucuronide | Other | - |
10 | 5.9 | 389.1089 | 389.1077 | C16H21O11 | Theveside | Iridoid glycoside | 4.8 ± 0.1 |
11 | 7.4 | 449.1301 | 449.1301 | C18H25O13 | Myxopyroside | Iridoid glycoside | 0.271 ± 0.005 |
12 | 8.5 | 489.1614 | 489.1618 | C21H29O13 | Teucardoside | Iridoid glycoside | 0.108 ± 0.002 |
13 | 8.7 | 387.1661 | 387.1640 | C18H27O9 | Tuberonic acid glucoside | Other | - |
14 | 9.0 | 433.2079 | 433.2077 | C20H33O10 | UK 2 | - | - |
15 | 9.5 | 641.2087 | 641.2028 | C29H37O16 | β-Hydroxyverbascoside derivative | Phenylpropanoid | 0.28 ± 0.03 |
16 | 10.0 | 641.2087 | 641.2065 | C29H37O16 | β-Hydroxyisoverbascoside derivative | Phenylpropanoid | 0.65 ± 0.05 |
17 | 10.6 | 639.1931 | 639.1912 | C29H35O16 | β-Hydroxyverbascoside | Phenylpropanoid | 1.85 ± 0.09 |
18 | 10.6 | 637.1046 | 637.1048 | C27H25O18 | Luteolin-7-diglucoronide | Flavonoid | 3.81 ± 0.01 |
19 | 11.0 | 639.1931 | 639.1923 | C29H35O16 | β-Hydroxyisoverbascoside | Phenylpropanoid | 1.93 ± 0.04 |
20 | 11.6 | 553.1563 | 553.1572 | C25H29O14 | Lippioside II | Iridoid glycoside | 0.21 ± 0.03 |
21 | 13.1 | 639.1872 | 639.1879 | C36H31O11 | UK 3 | - | - |
22 | 13.8 | 637.1774 | 637.1811 | C29H33O16 | Oxoverbascoside | Phenylpropanoid | 0.043 ± 0.003 |
23 | 14.3 | 621.1097 | 621.1115 | C27H25O17 | Apigenin-7-diglucoronide | Flavonoid | 0.39 ± 0.01 |
24 | 14.6 | 535.1457 | 535.1442 | C25H27O13 | Lippioside I derivative | Iridoid glycoside | 0.11 ± 0.01 |
25 | 15.1 | 537.1614 | 537.1595 | C25H29O13 | Lippioside I | Iridoid glycoside | 0.35 ± 0.01 |
26 | 15.6 | 653.2087 | 653.2058 | C30H37O16 | Campneoside I | Phenylpropanoid | NQ |
27 | 16.1 | 651.1355 | 651.1212 | C28H27O18 | Chrysoeriol-7-diglucuronide | Flavonoid | 8.1 ± 0.7 |
28 | 16.4 | 623.1981 | 623.1998 | C29H35O15 | Verbascoside | Phenylpropanoid | 187 ± 2 |
29 | 17.9 | 521.2028 | 521.2031 | C26H33O11 | Lariciresinol glucopyranoside | Phenylpropanoid | 1.08 ± 0.04 |
30 | 18.7 | 667.2244 | 667.2230 | C31H39O16 | Verbascoside A | Phenylpropanoid | 0.62 ± 0.01 |
31 | 18.9 | 623.1981 | 623.1991 | C29H35O15 | Isoverbascoside | Phenylpropanoid | 57.3 ± 0.8 |
32 | 19.4 | 623.1981 | 623.1973 | C29H35O15 | Forsythoside A | Phenylpropanoid | 0.39 ± 0.03 |
33 | 19.4 | 549.1614 | 549.1645 | C26H29O13 | Lippianoside B | Iridoid glycoside | 0.18 ± 0.06 |
34 | 19.8 | 521.1664 | 521.1673 | C25H29O12 | Hydroxycampsiside | Iridoid glycoside | 0.16 ± 0.02 |
35 | 20.2 | 607.2032 | 607.2057 | C29H35O14 | Lipedoside A I | Phenylpropanoid | 0.13 ± 0.03 |
36 | 20.7 | 551.1770 | 551.1774 | C26H31O13 | Durantoside I | Iridoid glycoside | 0.32 ± 0.01 |
37 | 21.3 | 637.2138 | 637.2150 | C30H37O15 | Leucoseptoside A | Phenylpropanoid | 4.07 ± 0.01 |
38 | 24.2 | 635.1254 | 635.1277 | C28H27O17 | Acacetin-7-diglucoronide | Flavonoid | 2.6 ± 0.1 |
39 | 25.2 | 551.2498 | 551.2539 | C28H39O11 | UK 4 | - | - |
40 | 26.0 | 467.2134 | 467.2146 | C20H35O12 | UK 5 | - | - |
41 | 26.3 | 549.1614 | 549.1640 | C26H29O13 | UK 6 | - | - |
42 | 27.2 | 651.2294 | 651.2303 | C31H39O15 | Martynoside or isomer | Phenylpropanoid | 3.0 ± 0.1 |
43 | 29.6 | 651.2294 | 651.2293 | C31H39O15 | Martynoside or isomer | Phenylpropanoid | 0.69 ± 0.02 |
44 | 30.9 | 591.2083 | 591.2163 | C29H35O13 | Osmanthuside B | Phenylpropanoid | 1.33 ± 0.03 |
45 | 31.4 | 569.2240 | 569.2243 | C27H37O13 | Manuleoside H | Iridoid glycoside | NQ |
46 | 32.1 | 315.0510 | 315.0507 | C16H11O7 | Methyl quercetin | Flavonoid | NQ |
47 | 33.8 | 327.2177 | 327.2182 | C18H31O5 | UK 7 | - | - |
48 | 34.7 | 299.0561 | 299.0575 | C16H11O6 | Dimethyl kaemferol | Flavonoid | 0.55 ± 0.03 |
49 | 35.2 | 329.0667 | 329.0669 | C17H13O7 | Dimethyl quercetin | Flavonoid | 2.8 ± 0.1 |
Formulation | MD (nm) | PDI | ZP (mV) | EE (%) |
---|---|---|---|---|
Empty liposomes | 99 ± 8 | 0.199 | −12 ± 1 | |
Empty glycerosomes | 135 ± 3 | 0.265 | −18 ± 2 | |
Empty PG-PEVs | 310 ± 4 | 0.652 | −21 ± 1 | |
Empty biogelatin-glycerosomes | 202 ± 12 | 0.456 | −3 ± 1 | |
Empty biogelatin-PG-PEVs | 235 ± 7 | 0.577 | −2 ± 1 | |
L. citriodora liposomes | 151 ± 13 | 0.284 | −7 ± 1 | 89 ± 7 |
L. citriodora glycerosomes | 133 ± 9 | 0.157 | −8 ± 2 | 66 ± 3 |
L. citriodora PG-PEVs | 109 ± 4 | 0.191 | −7 ± 2 | 65 ± 4 |
L. citriodora biogelatin-glycerosomes | 149 ± 1 | 0.117 | −8 ± 1 | 63 ± 8 |
L. citriodora biogelatin-PG-PEVs | 134 ± 5 | 0.237 | −8 ± 1 | 63 ± 15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leyva-Jiménez, F.J.; Manca, M.L.; Manconi, M.; Caddeo, C.; Vázquez, J.A.; Lozano-Sánchez, J.; Escribano-Ferrer, E.; Arráez-Román, D.; Segura-Carretero, A. Incorporation of Lippia citriodora Microwave Extract into Total-Green Biogelatin-Phospholipid Vesicles to Improve Its Antioxidant Activity. Nanomaterials 2020, 10, 765. https://doi.org/10.3390/nano10040765
Leyva-Jiménez FJ, Manca ML, Manconi M, Caddeo C, Vázquez JA, Lozano-Sánchez J, Escribano-Ferrer E, Arráez-Román D, Segura-Carretero A. Incorporation of Lippia citriodora Microwave Extract into Total-Green Biogelatin-Phospholipid Vesicles to Improve Its Antioxidant Activity. Nanomaterials. 2020; 10(4):765. https://doi.org/10.3390/nano10040765
Chicago/Turabian StyleLeyva-Jiménez, Francisco Javier, Maria Letizia Manca, Maria Manconi, Carla Caddeo, José Antonio Vázquez, Jesús Lozano-Sánchez, Elvira Escribano-Ferrer, David Arráez-Román, and Antonio Segura-Carretero. 2020. "Incorporation of Lippia citriodora Microwave Extract into Total-Green Biogelatin-Phospholipid Vesicles to Improve Its Antioxidant Activity" Nanomaterials 10, no. 4: 765. https://doi.org/10.3390/nano10040765
APA StyleLeyva-Jiménez, F. J., Manca, M. L., Manconi, M., Caddeo, C., Vázquez, J. A., Lozano-Sánchez, J., Escribano-Ferrer, E., Arráez-Román, D., & Segura-Carretero, A. (2020). Incorporation of Lippia citriodora Microwave Extract into Total-Green Biogelatin-Phospholipid Vesicles to Improve Its Antioxidant Activity. Nanomaterials, 10(4), 765. https://doi.org/10.3390/nano10040765