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Abstract: This study investigates the permeance and rejection efficiencies of different dyes (Rhodamine
B and methyl orange), folic acid and a protein (bovine serum albumin) using graphene oxide
composite membrane. The ultrathin separation layer of graphene oxide (thickness of 380 nm) was
successfully deposited onto porous polyvinylidene fluoride-polyacrylic acid intermediate layer on
nonwoven support layer using vacuum filtration. The graphene oxide addition in the composite
membrane caused an increased hydrophilicity and negative surface charge than those of the membrane
without graphene oxide. In the filtration process using a graphene oxide composite membrane, the
permeance values of pure water, dyes, folic acid and bovine serum albumin molecules were more
severely decreased (by two orders of magnitude) than those of the nonwoven/polyvinylidene
fluoride-polyacrylic acid composite membrane. However, the rejection efficiency of the graphene
oxide composite was significantly improved in cationic Rhodamine B (from 9% to 80.3%) and anionic
methyl orange (from 28.3% to 86.6%) feed solutions. The folic acid and bovine serum albumin were
nearly completely rejected from solutions using either nonwoven/polyvinylidene fluoride-polyacrylic
acid or nonwoven/polyvinylidene fluoride-polyacrylic acid/graphene oxide composite membrane, but
the latter possessed anti-fouling property against the protein molecules. The separation mechanism
in nonwoven/polyvinylidene fluoride-polyacrylic acid membrane includes the Donnan exclusion
effect (for smaller-than-pore-size solutes) and sieving mechanism (for larger solutes). The sieving
mechanism governs the filtration behavior in the nonwoven/polyvinylidene fluoride-polyacrylic
acid/graphene oxide composite membrane.
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1. Introduction

Throughout the world, rapid industrial development from photo-electrochemical cells, papers,
plastics, textiles, pharmaceuticals, etc. has brought about serious water contamination. Thereby,
wastewater treatment has emerged to solve the water crisis for fast population growth [1,2]. Based on
the evaluation of the World Health Organization (WHO), 1.1 billion people could face a shortage
of clean drinking water. According to World Water Council reports, the ‘water scarce’ population
will increase to 3.9 billion people by 2030 [3]. In this context, several researchers are focusing on
salt/dye/protein/oil-effluents water treatment, targeting the emission standard of wastewater [2].
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Various scientific techniques including adsorption, ion exchange, chemical oxidation, flocculation and
photocatalytic degradation are established to separate contaminated effluents from wastewater [4,
5]. Based on these methods, many technical reports were established for the possible treatment and
processing of drinking water. However, these conventional processes generate secondary waste, use
additional chemicals, or require large footprint handling sites. Therefore, the development of novel
technology to remove the contamination of salts, dyes or proteins from wastewater is essential in both
theoretical and practical studies [6].

Currently, polymeric membrane technology growth (which subsidizes up to 53% of total
world processes for clean water production [3]) is employed to process wastewater treatments.
Among the many polymers, the most widely used membrane separation synthetic polymers are
polyvinylidene fluoride (PVDF). PVDF is a semi-crystalline polymer with facile film-forming properties
that has good mechanical strength, high chemical and oxidation resistance, thermal stability and
membrane flexibility [7]. Nevertheless, the pristine PVDF membrane has lower water permeation
and separation efficiencies owing to its high hydrophobicity and poor anti-fouling resistances, which
limits the practical application of various contaminations [8]. To overcome the above drawbacks,
various approaches to surface modification have been employed to enhance the hydrophilicity,
selectivity and antifouling properties of the PVDF membrane. Numerous surface modifications,
including polytetrafluoroethylene [9], polydimethylsiloxane [10], polyethylene glycol [11,12], polyvinyl
alcohol [13], polyacrylic acid (PAA) [14], polyvinyl pyrrolidone [15], etc., were implemented to improve
the surface hydrophilicity, porosity and permeate flux [16]. Among these polymers, polyacrylic
acid (PAA) coatings using layer-by-layer assembly have been considered as a marginal surface
modification owing to its simplicity, versatility and non-toxicity. The addition of PAA with a
PVDF membrane significantly changes the structural, surface and micro-porous properties [14].
Gonzales et al. [17] reported that the PAA monomer chain containing a carboxylic acid group improves
the PVDF-PAA negative surface charge and hydrophilicity of the composite membrane. Chen et al. [18]
and Natalie et al. [19] reported that the presence of PAA in PVDF composite membrane enhances the
hydrophilic nature which dramatically improves the membrane performance in both water permeation
flux and rejection rates. Therefore, a PVDF membrane with PAA could pointedly improve the water
contact angle and surface charges that contribute to higher water permeation, separation efficiency
and anti-fouling resistance compared with the pristine PVDF membrane [20–22]. However, the weak
physical/chemical barrier effects on the PVDF-PAA membrane in various pH conditions limit the
long-term stability and its usage for commercial purposes [23].

In recent years, the blending or coating of various nanomaterials such as Ag, TiO2, SiO2,
Al2O3, Fe3O4, ZrO2, carbon nanotubes and graphene/graphene oxide (GO) into the polymeric
matrix [5,24–29] has gained much attention for making effective filtration membranes. Among many
nanomaterials, there has been extensive fascination with two-dimensional ultrathin GO has for its
use as micro/ultrafiltration membrane due to its superior chemical resistance, mechanical strength,
thermal and surface properties [30,31]. Experimental and theoretical examinations confirmed that
graphene based composite membranes have excellent nanochannels for permeation and high rejection
of molecules/ions with long-term stability [32]. The distribution or alignment of GO in the PVDF
polymeric matric could depend on various experimental techniques including electrospinning [33],
direct blending method [25], immersion phase inversion [34], coagulation and immersed precipitation
method [35], etc. The GO distribution in the polymeric matrix could improve the composite membrane
properties including porosity, viscosity, surface charge, mechanical strength, contact angle and
antifouling efficiency, respectively [36]. When GO was blended into a PVDF matrix, the resulting
composite membranes have a three times higher water flux than that of pure PVDF membranes
due to their controlled pore sizes and surface properties [37]. Similarly, Ghaffar et al. reported that
an electrospun PVDF/GO nanofibrous membrane improved the selectivity (99%) toward positively
charged dyes based on electrostatic attraction while maintaining rejection (100%) for negatively charged
dye than that of the pure PVDF membrane [33]. Recently, Chen et al. used a PVDF/polyethylene
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glycol composite for GO functionalization to improve hydrophilicity, surface charge and pore size that
enhanced the permeability and antifouling properties [38].

In addition, the GO-rich separation top layer is fabricated onto a porous or dense support using
a vacuum filtration method [20], spin-coating or dip coating method [39] without the use of binder.
The electrostatic interaction between cations and GO resulted in various interlayer spacing values
(2.8–6.1 nm) and net charges, which affect the permeance flux and ion rejections. This GO layer
improved salt rejections by 2–5 times compared with the GO-free control membrane [20].

In this work, the composite consisting GO top layer on nonwoven/PVDF-PAA (i.e.,
three-component) [20] and the control membrane without GO layer, nonwoven/PVDF-PAA
(two-component) membrane, are investigated for the permeance and rejection values of several model
molecules. These include cationic Rhodamine B (Rh-B) dye, anionic methyl orange (MO), folic acid (FA)
and bovine serum albumin (BSA) protein. The laminar GO separation layer is more hydrophilic, with a
tighter pore structure and much lower surface charge than the control nonwoven/PVDF-PAA membrane.
The filtration behaviors of these model molecules through the GO composite and the control membrane
are elucidated.

2. Materials and Methods

2.1. Synthesis of Graphene Oxide (GO)

Modified Hummer’s routine was used to synthesis the GO nanosheets [20,40]. Initially, 2 g
graphite flakes (Sigma-Aldrich, St. Louis, MO, USA) were dissolved in 300 mL of sulfuric acid (H2SO4,
98%, Scharlab S.L., Barcelona, Spain) at ambient temperature and stirred well for 15 min. Then, 2 g
potassium permanganate (KMnO4, Nihon Shiyaku Industries Ltd., Osaka, Japan) was mixed with
above solution with continuous stirring. A subsequent amount of KMnO4 was added slowly when the
green MnO3− color diminished and total of 10 g KMnO4 was added. An appropriate amount of ice
cubes was mixed into the solution once completing the reaction. Afterwards, the chemical reactions of
graphene exfoliation process were performed in an ice bath, resulting in the solution exposing a purple
color. After being leftover overnight, the precipitate was isolated from the solution and dissolved in
100 mL deionized (DI) water. The precipitate was washed with DI water many times until the pH
became neutral. The precipitate GO particles were separated using centrifugation and dried at 60 ◦C
under vacuum oven. The dried sample was again dispersed in DI water to form GO solution.

2.2. Synthesis of Nonwoven/PVDF-PAA Composite

The thermoplastic polyethylene terephthalate (PET, Ahlstrom filtration Co., Helsinki, Finland) was
used to prepare a nonwoven support to increase the composite mechanical strength. An intermediate
layer of polyvinylidene fluoride-polyacrylic acid (PVDF-PAA, Sigma-Aldrich, St. Louis, MO, USA)
was cast on the nonwoven from 20 wt% PVDF and 2 wt% PAA in N-methyl-2-pyrrolidinone (NMP,
Mallinckrodt Baker Inc., Philipsburg, PA, USA) solution. The PAA additive provides hydrophilicity and
compatibility with GO top layer. The casted polymeric film was place in a coagulation bath (DI water)
for the phase inversion taking place and the membrane dried at 60 ◦C. The dried nonwoven/PVDF-PAA
sample was also denoted as two-component composite membrane.

2.3. Synthesis of Nonwoven/PVDF-PAA/GO Composite Membrane

The nonwoven sample was used as a support layer to improve the mechanical strength, PVDF-PAA
acted as a porous intermediate layer and GO acted a separation layer in the composite membrane, as
shown in Figure 1. The vacuum filtration method was used to prepare the nonwoven/PVDF-PAA/GO
composite [20]. In detail, the GO solution was prepared by dissolving dried GO in DI water via an
ultra-sonication. Before the GO solution was deposited onto the surface of nonwoven/PVDF-PAA
membrane, it was centrifuged (1000 rpm) at ambient temperature for 1 h to remove excessive large
aggregates. Then, the GO suspension was filtrated through the two-component composite membrane
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using vacuum filtration by applying the suction force of a water aspirator with a wetting agent (2 mL
isopropyl alcohol obtained from Mallinckrodt Baker Inc., Philipsburg, PA, USA). The GO deposition
rate on the composite membrane was 0.097 ± 0.013 mg cm−2 by filtering 10 mL of 200 ppm GO solution.
The resulting membranes were dried in vacuum oven at 60 ◦C for overnight before filtration testing
performance. The dried nonwoven/PVDF-PAA/GO sample was also denoted as three-component
composite membrane.
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Figure 1. Schematic diagram for the formation of three-component composite membrane.

2.4. Characterization

The surface morphologies of the pristine GO, nonwoven/PVDF-PAA and nonwoven/PVDF-PAA/GO
composite membranes were observed using a field emission scanning electron microscope (FESEM,
model JSM-7500F, Hitachi High-Technologies Corp., Tokyo, Japan). The cross-sectional microstructure
of the composite membranes was observed after being freeze-fractured in liquid nitrogen. The pristine
GO morphology was observed by transmission electron microscope (TEM, JEM 2000EXII, JEOL, Tokyo,
Japan). The chemical structure and functional groups of graphite and pristine GO was analyzed using
Fourier transform infrared spectroscopy (FT-IR, model Horiba FT-730, Minami-ku, Kyoto, Japan).
Furthermore, the structural properties of graphite and pristine GO were analyzed using a micro-Raman
spectroscope (Labram Hr800, Horiba, Ltd., Kyoto, Japan) at a wavelength of 785 nm. X-ray photoelectron
spectroscopy (XPS K-Alpha, VG Microtech MT-500, Thermo Fisher Scientific Inc., Waltham, MA, USA)
was used to examine the chemical composition and percentage of functional groups on pristine GO
samples. Dynamic light scattering (Zetasizer, 2000 HAS, Malvern, Worcestershire, UK) was used to
estimate the surface charges and the particle size distribution of various dyes and macromolecules.
The contact angle measuring system (G10, Kruss GmbH, Hamburg, Germany) was employed to analyze
the hydrophilicity of the composite membranes.

2.5. Filtration Analysis of Dyes And Proteins

To investigate the filtration process, the composite membrane was mounted into cross-flow
filtration module with an effective filtration area of 10.75 × 10−4 m2. Constant pressure (0.49 MPa) was
applied for all sample analyses at ambient temperature. The molecular weight and molecular structure
of different dyes (Rh-B and MO), folic acid (FA) and protein (BSA) are listed in Table 1. The feed volume
was 1 L DI water containing feed solutions of 10 ppm dye solutions (typical dye concentration in
synthetic dye wastewater or treated real textile effluent [41,42]) or 500 ppm of FA or BSA solutions
(typical concentration in fermented vegetable solution containing FA [43] and BSA composition in
whey [44]). The permeance values at steady state were calculated and continuously analyzed at 20-min
intervals. The rejection efficiencies of ionic solutions (dyes and FA) and BSA protein were measured
using UV-Visible spectrophotometer (V-650, Jasco, Hachioji, Tokyo, Japan). The Rh-B and MO dyes
were analyzed at a wavelength of 554 nm and 466 nm, respectively. For FA and BSA molecules, the
solution adsorbance at 281 nm and 280 nm were measured, respectively. The water flux, permeance
and the rejections were calculated using the Equations (1)–(3), respectively [20].

J =
m

A.h
(1)
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P =
m

A.h.∆P
(2)

R (%) =

(
1−

C2

C1

)
× 100 (3)

where A is the filtration area (m2), h is the period of time (h), J is the water flux (kg m−2 h−1), ∆P is the
operating pressure condition (MPa), P is the permeance through the filtration membrane (kgm−2 h−1

Mpa−1), m is the weight of the permeate solution (kg), C1 is concentration of the feed solution and C2

is concentration of the permeate and R is the rejection efficiency (%). In order to acquire reliable data,
all the sample performances were repeated three times (n = 3) and the average values were reported.

3. Results

3.1. Morphological and Structural Properties of GO

The surface micrograph of the GO was analyzed using FESEM, as shown in Figure 2a. The FESEM
image revealed GO as wrinkled-sheet like structure with the size ranged 0.1–1.5 µm. Moreover,
this wavy wrinkled shape and single-layered GO nanosheet was clearly observed in TEM image, as
shown in Figure 2b. FTIR spectroscopy was used to investigate the chemical structure of the graphite
and GO, as shown in supplementary information (Figure S1). No significant oxygen-containing
functional groups were observed in the graphite whereas many characteristic peaks were observed in
the GO nanosheets. The small FTIR peaks at 1059 cm−1 and 1225 cm−1 denoted the C-O stretching
vibration of epoxy alkyl group. The sharp peak at 1723 cm−1 signified the C=O stretching vibration of
GO. The adsorbed hydroxyl molecules and vibration of aromatic C=C bond was observed at 1621 cm−1.
Two characteristic FTIR peaks at 3368 cm−1 and 1370 cm−1 were corresponding to the stretching
vibration and deformation vibration of hydroxyl groups present in GO. All the corresponding FTIR
peaks confirmed the GO formation via graphite exfoliation [20,45]. Furthermore, Raman spectroscopy
was employed to investigate the chemical structure and ID/IG ratio of graphite and GO nanosheets
(Figure S2). The intense peak at 1590 cm−1 (G-band) corresponds to distinct sp2 carbon structure due
to first order E2g scattering modes [46]. The significant Raman peak of GO at 1354 cm−1 (D-band)
confirmed the oxidation in graphite owing to structural changes. The intensity ratio of D band over G
band of graphite was 0.15 whereas the ratio increased to 1.03 for GO sample. Compared with original
graphite (~2720 cm−1), the 2D peak of GO was slightly shifted to ~2672 cm−1 and its peak intensity
was significantly suppressed. This indicating the formation of a single layer of GO nanosheet [20].
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Figure 2. (a) Field emission scanning electron microscope (FESEM) and (b) transmission electron
microscopic (TEM) images of synthesized graphene oxide (GO).

The GO chemical composition was further investigated using XPS. The full scan XPS spectrum
showed presence of 65% carbon and 35% oxygen content after the exfoliation of graphite, as shown
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in Figure 3a. The results confirm the higher oxidation level than the graphite (98% carbon and 2%
oxygen) structure. In addition, the C1s core spectrum and its deconvolution peaks were represented in
Figure 3b. The binding energies at 290.2, 289.3, 287.8 and 285.7 eV correspond to the carbon bonding of
O-C=O, C=O, C-O and C-C, respectively. The higher oxidation of GO confirms the presence of more
hydrophilic groups.
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3.2. Surface and Cross-Sectional Morphologies of GO Composite Membrane

The top-surface and cross-sectional morphologies of the nonwoven, nonwoven/PVDF-PAA
(two-component) and nonwoven/PVDF-PAA/GO (three-component) composite membranes were
observed using FESEM, as shown in Figure 4a–f. The surface morphology of the nonwoven membrane
has an irregular nesting structure (Figure 4a) with an average pore size of 3–9 µm. The nonwoven
thickness was about 100 µm, as observed from cross-sectional image (Figure 4b). Casting an intermediate
PVDF-PAA layer onto the nonwoven surface resulted in a micro-porous structure (Figure 4c). Furthermore,
the cross-sectional micrograph showed this PVDF-PAA layer had a finger-like structure with a thickness
of 50 µm (Figure 4d). The pore size of the PVDF-PAA layer was reduced to 75–100 nm [20], more suitable
for GO nanosheet deposition. The surface morphology of the nonwoven/PVDF-PAA/GO was changed
dramatically after GO deposition. The GO layer evenly shielded the porous structure underneath with a
thickness of ~380 nm (Figure 4f).

3.3. Surface Charge and Contact Angle Measurements

The surface charge was determined on the membranes. The porous PVDF (prepared using similar
method) had a negative zeta potential of −17.3 mV in DI water [47]. The PVDF-PAA intermediate
layer (with 10:1 mass ratio) showed a zeta potential of −19.4 mV, lower than that of PVDF, due to the
protonation of PAA ionomer. The GO top layer demonstrated an even lower zeta potential of −30.9 mV,
close to the zeta potential of the GO suspension [20,48]. The presence of carboxylate groups in GO
significantly contributed to the ionization of this top layer.

The membrane hydrophilicity was investigated by measuring water contact angles on the PVDF,
nonwoven/PVDF-PAA and nonwoven/PVDF-PAA/GO composite membranes. The PVDF membrane
had a contact angle of 80◦. When PAA was blended with PVDF, the top surface had a reduced contact
angle of 59◦ (Figure 5a,b). This confirms the PVDF-PAA layer was more hydrophilic and improves the
compatibility with GO layer. When the GO additive was coated on the two-component surface, the
contact angle further decreased (49◦) due to increasing surface hydrophilicity. This increasing behavior
was due to the presence of more C-O, C=O groups in GO (Figure 3b). Zhao et al. used direct blending
technique to prepare PVDF/GO composite and the contact angle value was 60.5◦ [49]. Compared with
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direct blending, the vacuum filtration coating of GO in composite membrane have lower contact angle
due to complete GO coverage on the interlayer surface (Figure 4e).
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3.4. Permeance and Rejection Performance of Dyes and FA Solutions

Dyes (MO and Rh-B) and FA solutions were used as feeds to evaluate the permeance and rejection
of composite membranes at steady state (Figure 6a,b). The two-component composite membrane
had microporous structure (Figure 4c,d) and demonstrated high pure water permeance of 203.1 kg



Nanomaterials 2020, 10, 792 8 of 15

m−2 h−1 MPa−1 (Figure 6a). The permeance of Rh-B (203.3 kg m−2 h−1 MPa−1, Figure 6a) was not
significantly different from the pure water. The Rh-B was nearly un-rejected (at a 9% rejection rate,
Figure 6b) probably due to the more neutral charge (with a zeta potential of −8.6 mV in aqueous
solution). There was not a significant accumulation of rejected Rh-B molecules at the upstream side of
the membrane, therefore the water flux did not deviate from that of the pure water feed.
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data for Rhodamine B, methyl orange (both 10 ppm) and 500 ppm folic acid solutions. Data with
different letters are significantly different at 5% significance level. The permeance of pure water is
included for comparison.

The permeance was reduced to 130.8 kg m−2 h−1 MPa−1 for MO (Figure 6a), with a rejection rate of
28.3% (Figure 6b). This permeance value was 65% of pure water permeance (which was 203 kg m−2 h−1

MPa−1). The MO molecules has a lower molecular weight than Rh-B (327.33 vs. 479.02 Da, Table 1)
but exhibits negative surface charge of −31.6 mV. If we based on sieving mechanism, Rh-B would
have been expected to show higher rejection than MO. In contrary, the MO dye was more rejected as
compared with Rh-B molecules. This anionic MO dye was rejected on the PVDF-PAA surface probably
due to the Donnan exclusion mechanism [47]. The electrostatic and intermolecular interactions between
different charged dyes (cationic or anionic) and negatively charged membrane plays an important role
for rejection behavior, as pointed out in Ghaffar et al. [33] work.

Similar rejection behavior to MO dye also occurred in FA solution, which molecule owns two
carboxylic acid groups. However, a much higher rejection rate (97%, Figure 6b) was obtained for
FA. The higher negative surface charge (Table 1) and larger aggregate particle size (1.1 ± 0.2 µm) of
FA enhanced the strong repulsion effect and exhibited higher FA rejection rate. The micron-sized
FA aggregates were observed in previous work [50] due to strong dimer/oligomer formation and
low solubility in water [43,51]. Surprisingly, the FA permeate flux was not sacrificed under the high
rejection circumstance. The permeance was 188.1 kg m−2 h−1 MPa−1 for the FA solution, about 93% as
the pure water permeance. It is recognized that a reduced permeation flux is typically accompanied
with a high rejection for the filtration processes. The rejected species tend to form a concentrated
boundary layer or cake layer adjacent to the membrane surface and reduce driving force for filtrate
transportation [52]. Comparing the results of MO and FA, the FA had a higher rejection and flux than
MO, indicating other factors also affect the flow behavior. As we anticipate that charge repulsion
between solute and membrane surface contribute to the degree of solute rejection, the same interaction
may loosen the formation of solute cake layer or boundary layer, especially at a very low zeta potential
(−45 mV) of the FA solution. Consequently, the FA flux was higher than that of MO.

After GO deposition onto the intermediate substrate (three-component composite), the pure water
permeance was significantly declined to 9.1 kg m−2 h−1 MPa−1 (Figure 7a) from the control membrane
without GO (with a permeability of 203 kg m−2 h−1 MPa−1 (Figure 6a). Similarly, the permeance of Rh-B
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solution reduced from 203.3 to 3.3 kg m−2 h−1 MPa−1, while the permeance of MO solution dropped
from 130.8 to 8.4 kg m−2 h−1 MPa−1. Moreover, the FA solution permeance value dropped to 6.1 kg m−2

h−1 MPa−1. All the samples showed reduced permeances by 10–15 times after the GO deposition on the
composite membrane. The reduction of permeation value was due to that GO formed a dense layer and
pore blocking effects on the top surface of the composite membrane. These GO nanosheets are known to
form intermolecular hydrogen-bonding and become barrier layer toward water permeation. Similarly,
Zhan et al. reported that the GO composite ascribed to the increasing mass transfer resistance, thereby
decreased permeance in GO composite membrane than those of pristine sample [4]. In addition, the
inner pores, inter-edge spaces and interlayer sieving channels of GO membrane were also responsible
for molecular diffusivity and transport pathways [53]. We have estimated that the interlayer spacing
for permeation in this GO composite was only a few nanometers [20]. The flow was largely suppressed
through this laminated GO layer.

Nanomaterials 2020, 10, x FOR PEER REVIEW 9 of 15 

 

After GO deposition onto the intermediate substrate (three-component composite), the pure 

water permeance was significantly declined to 9.1 kg m−2 h−1 MPa−1 (Figure 7a) from the control 

membrane without GO (with a permeability of 203 kg m−2 h−1 MPa−1 (Figure 6a). Similarly, the 

permeance of Rh-B solution reduced from 203.3 to 3.3 kg m−2 h−1 MPa−1, while the permeance of MO 

solution dropped from 130.8 to 8.4 kg m−2 h−1 MPa−1. Moreover, the FA solution permeance value 

dropped to 6.1 kg m−2 h−1 MPa−1. All the samples showed reduced permeances by 10–15 times after 

the GO deposition on the composite membrane. The reduction of permeation value was due to that 

GO formed a dense layer and pore blocking effects on the top surface of the composite membrane. 

These GO nanosheets are known to form intermolecular hydrogen-bonding and become barrier layer 

toward water permeation. Similarly, Zhan et al. reported that the GO composite ascribed to the 

increasing mass transfer resistance, thereby decreased permeance in GO composite membrane than 

those of pristine sample [4]. In addition, the inner pores, inter-edge spaces and interlayer sieving 

channels of GO membrane were also responsible for molecular diffusivity and transport pathways 

[53]. We have estimated that the interlayer spacing for permeation in this GO composite was only a 

few nanometers [20]. The flow was largely suppressed through this laminated GO layer. 

 

Figure 7. Nonwoven/PVDF-PAA/GO membrane filtration performance: (a) permeance and (b) 

rejection values for Rhodamine B, methyl orange (both 10 ppm) and 500 ppm folic acid solutions. 

Data with different letters are significantly different at 5% significance level. The permeance of pure 

water is included for comparison. 

At the same time, such restricted passage in the nonwoven/PVDF-PAA/GO composite 

membrane benefits solute removal. The rejection efficiency values of Rh-B and MO were dramatically 

enhanced from 9% to 80.3% and from 28.3% to 86.6%, respectively, as shown in Figure 7b. The 

rejections of Rh-B and MO dyes were increased 8-folds and 3-folds, as compared to nonwoven/PVDF-

PAA composite membrane. This was owing to the uniform nanosized interlayer spacing of the GO 

film [20], which restricts solute passage. The photographic images of MO solution (Figure 8a) confirm 

that the nonwoven/PVDF-PAA/GO membrane resulted in much clearer MO filtrate than that without 

GO deposition (Figure S3), which resulted in yellowish filtrate. In the case of FA, almost complete 

rejection efficiency (99%) was obtained using the nonwoven/PVDF-PAA/GO composite. This 

rejection rate was slightly increased (from 97% to 99%) due to the nanosize GO dense layer as 

compared with nonwoven/PVDF-PAA composite membrane. The photos of the FA filtrates indicated 

colorless collected fluid (Figure 8b and Figure S4) using either membranes, indicating that both 

membranes are promising for FA concentration. 

3.5. Permeance and Rejection Performance of BSA Solution 

BSA was selected as the last model molecule to investigate the filtration behavior on the membranes. 

The nonwoven/PVDF-PAA composite membrane showed stable rejection efficiency (Figure 9a) 

during 120 h filtration process. The molecular size of the BSA foulant is larger (~200 nm [54,55]) than 

Figure 7. Nonwoven/PVDF-PAA/GO membrane filtration performance: (a) permeance and (b) rejection
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included for comparison.

At the same time, such restricted passage in the nonwoven/PVDF-PAA/GO composite membrane
benefits solute removal. The rejection efficiency values of Rh-B and MO were dramatically enhanced
from 9% to 80.3% and from 28.3% to 86.6%, respectively, as shown in Figure 7b. The rejections
of Rh-B and MO dyes were increased 8-folds and 3-folds, as compared to nonwoven/PVDF-PAA
composite membrane. This was owing to the uniform nanosized interlayer spacing of the GO film [20],
which restricts solute passage. The photographic images of MO solution (Figure 8a) confirm that
the nonwoven/PVDF-PAA/GO membrane resulted in much clearer MO filtrate than that without
GO deposition (Figure S3), which resulted in yellowish filtrate. In the case of FA, almost complete
rejection efficiency (99%) was obtained using the nonwoven/PVDF-PAA/GO composite. This rejection
rate was slightly increased (from 97% to 99%) due to the nanosize GO dense layer as compared with
nonwoven/PVDF-PAA composite membrane. The photos of the FA filtrates indicated colorless collected
fluid (Figure 8b and Figure S4) using either membranes, indicating that both membranes are promising
for FA concentration.

3.5. Permeance and Rejection Performance of BSA Solution

BSA was selected as the last model molecule to investigate the filtration behavior on the
membranes. The nonwoven/PVDF-PAA composite membrane showed stable rejection efficiency (Figure 9a)
during 120 h filtration process. The molecular size of the BSA foulant is larger (~200 nm [54,55]) than the
pore size of nonwoven/PVDF-PAA composite membrane (75–100 nm). So the BSA seldom penetrated
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into the pores and only cause surface fouling or adsorption [56]. The BSA was rejected at 96% through the
nonwoven/PVDF-PAA composite membrane (Figure 9a). The permeance declined from 160.4 kg m−2 h−1

MPa−1 at initial to 25.3 kg m−2 h−1 MPa−1 at 120 h elapsed time. The permeance decline (from 80% to 13%
of pure water permeance) phenomena was due to the concentration polarization or cake formation of the
rejected BSA molecules on the upstream surface of the PVDF-PAA layer.

Table 1. Molecular structure, pH, particle size and surface charge analysis of Rh-B, MO, FA and
BSA molecules.

Samples Molecular
Weight (Da)

Molecular
Structure

Concen-Tration
(ppm) pH Surface

Charge (mV)

Rhodamine-B 479.02
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In the case of nonwoven/PVDF-PAA/GO composite membrane, the protein was further rejected at
98% (Figure 9b). The GO dense layer covered the surface porous structure of nonwoven/PVDF-PAA and
further blocked the passage of BSA molecules. The interlayer spacing of the laminated GO top layer is
several nanometers [20] and can highly reject the larger size BSA molecules. Moreover, the hydrophilicity
and negative surface charge of GO (−33 mV) [20] may repel the BSA molecules (which is negatively
charged [57]) according to Donnan exclusion theory [58]. The initial permeance value of the protein
solution through the GO composite was reduced to 6.4 kg m−2 h−1 MPa−1, similar reduction in order of
magnitude of the dyes and FA solutions as compared with those of two-component membrane. The GO
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resulted in nanochannel and restricted water flow, therefore lowering the filtration flux. However,
these nonwoven/PVDF-PAA/GO composite membranes demonstrated a stable permeance value (from
6.4 kg m−2 h−1 MPa−1 to 6.1 kg m−2 h−1 MPa−1) throughout the 120 h filtration process (Figure 9b).
This was owing to the loose cake layer and less boundary layer from rejected and accumulated BSA
near the negatively charged surface and GO hydrophilic characters at the top layer of membrane.
The hydroxyl groups on the GO composite membrane would initially adsorb more aquatic molecules
to form a hydrated layer and steric hindrance on the membrane surfaces [59,60]. Obviously the GO
composite membranes can improve anti-fouling property [1,61]. The result confirms that the GO
composites membrane maintained a more stable permeance and was more resistant to fouling than the
nonwoven/PVDF-PAA composite membrane in the BSA filtration process.
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Figure 8. Photographs of (a) methyl orange and (b) folic acid permeate solutions during various filtration
times through nonwoven/PVDF-PAA and nonwoven/PVDF-PAA/GO composite membranes, respectively.

The BSA solution may have lower particle size of primary or dimer molecules with <10 nm
size [62]. Therefore, the rejections on both membranes did not reach 100%. However, the rejected BSA
on upstream side of feed solution tended to be concentrated at the boundary layer. This increased
BSA concentration adjacent to the feed side membrane would aggregate further to form larger
protein size [55], thus was highly rejected on these two membranes. This section may be divided by
subheadings. It should provide a concise and precise description of the experimental results, their
interpretation as well as the experimental conclusions that can be drawn.
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4. Conclusions

The GO nanosheets were synthesized and deposited on porous nonwoven/PVDF-PAA substrate
to form three-component composite membrane. The contact angle and zeta potential measurements
confirm higher hydrophilicity and lower negative surface charge in the GO membrane than the
control nonwoven/PVDF-PAA membrane. Feed solutions of four model molecules were tested on the
two composite membranes to study the filtration performance and separation mechanism. For the
nonwoven/PVDF-PAA membrane with microporous pores (75–100 nm), cationic Rh-B and anionic MO
dye solutions exhibited low rejection rates (9–28%) and relatively high permeance values (100% and
65% of pure water permeance, which was 203 kg m−2 h−1 MPa−1). The FA-formed aggregates and
showed high rejection of 97% with high permeance (80% of pure water permeance). The BSA solution
was highly rejected (96%) but had a severe flux decline, from 80% to 13% of pure water permeance.
The Donnan exclusion and sieving mechanisms govern the solute passage and water permeation
behaviors for the smaller (ionic dyes) and larger solutes (FA and BSA), respectively.

For the GO-deposited membrane, the nanochannels between GO interlayer spacing were the main
passage route and all model molecules were rejected. Therefore, the solutes were separated based on
sieving mechanism. The rejection rates reached 80.3%, 86.6%, 99% and 98% for Rh-B, MO, FA and
BSA solutions, respectively. The permeance values were reduced significantly to a few kg m−2 h−1

MPa−1. However, the GO composite membrane had good antifouling property and showed negligible
flux decline.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/4/792/s1,
Figure S1: Fourier transform infrared spectroscopy (FTIR) spectrum of graphite and GO, Figure S2: Raman
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and nonwoven/PVDF-PAA/GO composite membrane, Figure S4: photograph of folic acid decolorization using
nonwoven/PVDF-PAA and nonwoven/PVDF-PAA/GO composite membrane.
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