The NOx Degradation Performance of Nano-TiO2 Coating for Asphalt Pavement
Abstract
:1. Introduction
1.1. Background
1.2. Objective
2. Materials and methods
2.1. Properties of Nano-TiO2
2.2. Material Preparation
2.2.1. Raw Material
2.2.2. Road Coating Material Preparation
2.3. Experimental Equipment
2.3.1. Photocatalytic Reaction Chamber
- Structure of the test system
2.3.2. Light Intensity
2.3.3. Gas Concentration
- Point M-1
- Point M-2
- Point M-3
2.4. Experimental Steps
3. Results and Discussions
3.1. Experimental Analysis of the Degradation of Road Surface Coating
3.1.1. Effect of Different Silane Coupling Agents on NO Degradation
3.1.2. Photocatalytic Recovery of Nano-TiO2 Road Surface Coating Materials
3.1.3. Effect of Different Irradiation Intensity on Photocatalytic Degradation Efficiency
3.1.4. Influence of Surface Coating Materials on Skid Resistance of Pavement
3.2. Degradation Evaluation of Roadside Coating
Effects of Different Surfactant Dosages on NO2 Degradation
4. Conclusions
- Both the pavement surface and the roadside coating material can effectively degrade the NOx in the road environment.
- It suggested that the optimum mass ratio of nano-TiO2 to silane coupling agent was between 1:2 and 1:3, and the optimum mass ratio of nano-TiO2 to sodium dodecylbenzene sulfonate was about 1:2 in the field application. Additionally, the maximum coating amount of 350 g/m2 is suggested in order to ensure the skid resistance of the pavement surface.
- The results have shown the degradation effect of coating materials on NO was gradually weakened, and that with the increasing number of experiments, and catalytic activity of the coating material can be restored after washed by deionized water.
- With the increase of UV irradiation intensity, the degradation performance of nano-TiO2 coating material was enhanced. Therefore, when the coating material was used in different areas, it is necessary to determine the optimum dosage according to the actual situation of the local UV intensity.
- The skid resistance of asphalt pavement is reduced with the increase of coating amount, in order to ensure enough skid resistance performance of asphalt mixture, it is suggested that the maximum coating amount is 350 g/m2.
Author Contributions
Funding
Conflicts of Interest
References
- Umezawa, M.; Takeda, K. Automobile Exhaust: Detrimental Effects on Pulmonary and Extrapulmonary Tissues and Offspring. In Encyclopedia of Environmental Health, 2nd ed.; Nriagu, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 217–222. [Google Scholar]
- Wang, F.; Zheng, P.; Dai, J.; Wang, H.; Wang, R. Fault tree analysis of the causes of urban smog events associated with vehicle exhaust emissions: A case study in Jinan, China. Sci. Total Environ. 2019, 668, 245–253. [Google Scholar] [CrossRef]
- Li, Q.; Kim, M.; Liu, Y.; Yoo, C. Quantitative assessment of human health risks induced by vehicle exhaust polycyclic aromatic hydrocarbons at Zhengzhou via multimedia fugacity models with cancer risk assessment. Sci. Total Environ. 2018, 618, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Petronella, F.; Truppi, A.; Ingrosso, C.; Placido, T.; Striccoli, M.; Curri, M.L.; Agostiano, A.; Comparelli, R. Nanocomposite materials for photocatalytic degradation of pollutants. Catal. Today 2017, 281, 85–100. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37–38. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.T.; Darwent, J.R. Methyl orange as a probe for photooxidation reactions of colloidal titanium dioxide. J. Phys. Chem. 1984, 88, 4955–4959. [Google Scholar] [CrossRef]
- Cui, H.; Dwight, K.; Soled, S.; Wold, A. Surface Acidity and Photocatalytic Activity of Nb2O5/TiO2 Photocatalysts. J. Solid State Chem. 1995, 115, 187–191. [Google Scholar] [CrossRef]
- Vorontsov, A.V.; Savinov, E.N.; Lion, C.; Smirniotis, P.G. TiO2 reactivation in photocatalytic destruction of gaseous diethyl sulfide in a coil reactor. Appl. Catal. B Environ. 2003, 44, 25–40. [Google Scholar] [CrossRef]
- Hashimoto, K.; Irie, H.; Fujishima, A. TiO2 Photocatalysis: A Historical Overview and Future Prospects. Jpn. J. Appl. Phys. 2005, 44, 8269–8285. [Google Scholar] [CrossRef]
- Loftness, V.; Hakkinen, B.; Adan, O.; Nevalainen, A. Elements that contribute to healthy building design. Environ. Health Perspect. 2007, 115, 965–970. [Google Scholar] [CrossRef] [Green Version]
- Boonen, E.; Beeldens, A. Recent photocatalytic applications for air purification in Belgium. Coatings 2014, 4, 553–573. [Google Scholar] [CrossRef] [Green Version]
- Ruffolo, S.A.; de Leo, F.; Ricca, M.; Arcudi, A.; Silvestri, C.; Bruno, L.; Urzì, C.; la Russa, M.F. Medium-term in situ experiment by using organic biocides and titanium dioxide for the mitigation of microbial colonization on stone surfaces. Int. Biodeterior. Biodegrad. 2017, 123, 17–26. [Google Scholar] [CrossRef]
- Crupi, V.; Fazio, B.; Gessini, A.; Kis, Z.; la Russa, M.F.; Majolino, D.; Masciovecchio, C.; Ricca, M.; Rossi, B.; Ruffolo, S.A.; et al. TiO2–SiO2–PDMS nanocomposite coating with self-cleaning effect for stone material: Finding the optimal amount of TiO2. Constr. Build. Mater. 2018, 166, 464–471. [Google Scholar] [CrossRef]
- Liang, X.; Cui, S.; Li, H.; Abdelhady, A.; Wang, H.; Zhou, H. Removal effect on stormwater runoff pollution of porous concrete treated with nanometer titanium dioxide. Transp. Res. Part D Transp. Environ. 2019, 73, 34–45. [Google Scholar] [CrossRef]
- Sikkema, J.K.; Ong, S.K.; Alleman, J.E. Photocatalytic concrete pavements: Laboratory investigation of NO oxidation rate under varied environmental conditions. Constr. Build. Mater. 2015, 100, 305–314. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, C.; Valle, A.; Castellote, M.; Bahamonde, A.; Faraldos, M. TiO2 and TiO2-SiO2 coated cement: Comparison of mechanic and photocatalytic properties. Appl. Catal. B Environ. 2015, 178, 155–164. [Google Scholar] [CrossRef]
- He, R.; Huang, X.; Zhang, J.; Geng, Y.; Guo, H. Preparation and Evaluation of Exhaust-Purifying Cement Concrete Employing Titanium Dioxide. Materials 2019, 12, 2182. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Shen, S.; Qian, G.; Gong, X. Packing theory and volumetrics-based aggregate gradation design method. J. Mater. Civ. Eng. 2020, 32, 04020110. [Google Scholar] [CrossRef]
- Yu, H.; He, Z.; Qian, G.; Gong, X.; Qu, X. Research on the anti-icing properties of silicone modified polyurea coatings (SMPC) for asphalt pavement. Constr. Build. Mater. 2020, 242, 117793. [Google Scholar] [CrossRef]
- Tan, Y.; Li, L.; Wei, P.; Sun, Z. Application Performance Evaluation on Material of Automobile Exhaust Degradation in Asphalt Pavement. China J. Highw. Transp. 2010, 23, 21–27. [Google Scholar] [CrossRef]
- Segundo, I.G.R.; Dias, E.A.L.; Fernandes, F.D.P.; de Freitas, E.F.; Costa, M.F.; Carneiro, J.O. Photocatalytic asphalt pavement: The physicochemical and rheological impact of TiO2 nano/microparticles and ZnO microparticles onto the bitumen. Road Mater. Pavement Des. 2019, 20, 1452–1467. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Xiao, F.; Amirkhanian, S.; You, Z.; Huang, J. Developments of nano materials and technologies on asphalt materials—A review. Constr. Build. Mater. 2017, 143, 633–648. [Google Scholar] [CrossRef]
- Wang, H.; Jin, K.; Dong, X.; Zhan, S.; Liu, C. Preparation Technique and Properties of Nano-TiO2 Photocatalytic Coatings for Asphalt Pavement. Appl. Sci. Basel 2018, 8, 15. [Google Scholar] [CrossRef] [Green Version]
- Qian, G.; Yu, H.; Gong, X.; Zhao, L. Impact of Nano-TiO2 on the NO2 degradation and rheological performance of asphalt pavement. Constr. Build. Mater. 2019, 218, 53–63. [Google Scholar] [CrossRef]
- Wang, D.; Leng, Z.; Hueben, M.; Oeser, M.; Steinauer, B. Photocatalytic pavements with epoxy-bonded TiO2-containing spreading material. Constr. Build. Mater. 2016, 107, 44–51. [Google Scholar] [CrossRef]
- Wang, D.; Leng, Z.; Yu, H.; Hueben, M.; Kollmann, J.; Oeser, M. Durability of epoxy-bonded TiO2-modified aggregate as a photocatalytic coating layer for asphalt pavement under vehicle tire polishing. Wear 2017, 382, 1–7. [Google Scholar] [CrossRef]
- Segundo, I.G.d.; Landi, S., Jr.; Oliveira, S.M.B.; de Freitas, E.F.; Carneiro, J.A.O. Photocatalytic asphalt mixtures: Mechanical performance and impacts of traffic and weathering abrasion on photocatalytic efficiency. Catal. Today 2019, 326, 94–100. [Google Scholar] [CrossRef]
- Chen, M.; Baglee, D.; Chu, J.; Du, D.; Guo, X. Photocatalytic Oxidation of NOx under Visible Light on Asphalt-Pavement Surface. J. Mater. Civ. Eng. 2017, 29, 9. [Google Scholar] [CrossRef]
- Maggos, T.; Plassais, A.; Bartzis, J.G.; Vasilakos, C.; Moussiopoulos, N.; Bonafous, L. Photocatalytic degradation of NOx in a pilot street canyon configuration using TiO2-mortar panels. Environ. Monit. Assess. 2008, 136, 35–44. [Google Scholar] [CrossRef]
- Babaizadeh, H.; Hassan, M. Life cycle assessment of nano-sized titanium dioxide coating on residential windows. Constr. Build. Mater. 2013, 40, 314–321. [Google Scholar] [CrossRef]
- Mendoza, J.A.; Lee, D.H.; Kim, L.H.; Kim, I.H.; Kang, J.H. Photocatalytic performance of TiO2 and WO3/TiO2 nanoparticles coated on urban green infrastructure materials in removing nitrogen oxide. Int. J. Environ. Sci. Technol. 2015, 15, 581–592. [Google Scholar] [CrossRef]
- Sun, L.; Xu, H.; Li, J.; Liu, L. Research on Treatment Effects of Nanometer Titanium Dioxide on Automobile Exhaust and Application Methods. J. Highw. Transp. Res. Dev. 2011, 28, 153–158. [Google Scholar] [CrossRef]
- Shen, W.; Zhang, C.; Li, Q.; Zhang, W.; Cao, L.; Ye, J. Preparation of titanium dioxide nano particle modified photocatalytic self-cleaning concrete. J. Clean. Prod. 2015, 87, 762–765. [Google Scholar] [CrossRef]
- Ministry of Transport of the People’s Republic of China. Methods of Aggregate for Highway Engineering, JTG E42-2005, Test; Ministry of Transport of the People’s Republic of China: Beijing, China, 2005.
- Abdulrasheed, A.A.; Jalil, A.A.; Triwahyono, S.; Zaini, M.A.A.; Gambo, Y.; Ibrahim, M. Surface modification of activated carbon for adsorption of SO2 and NOX: A review of existing and emerging technologies. Renew. Sustain. Energy Rev. 2018, 94, 1067–1085. [Google Scholar] [CrossRef]
- Yu, H.; Shi, C.; Qian, G.; Gong, X. Experimental study on thermophysical properties of HMA during compaction. Int. J. Pavement Eng. 2019, 1–12. [Google Scholar] [CrossRef]
- Yu, H.; Bai, X.; Qian, G.; Wei, H.; Gong, X.; Jin, J.; Li, Z. Impact of ultraviolet radiation on the aging properties of SBS-modified asphalt binders. Polymers 2019, 11, 1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ministry of Transport of the People’s Republic of China. Specifications for Design of Highway Asphalt Pavement: JTGD50-2006; Ministry of Transport of the People’s Republic of China: Beijing, China, 2006.
Properties | Results |
---|---|
Appearance | White power |
Hydrophilic coefficient | 0.56 |
Specific surface area (m2/g) | 60–120 |
Drying weightlessness 105℃,2 h | ≤1.0% |
Ignition loss | ≤1.0% |
Purity | ≥99.8% |
pH value | 8.1 |
Crystal | Anatase |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, H.; Dai, W.; Qian, G.; Gong, X.; Zhou, D.; Li, X.; Zhou, X. The NOx Degradation Performance of Nano-TiO2 Coating for Asphalt Pavement. Nanomaterials 2020, 10, 897. https://doi.org/10.3390/nano10050897
Yu H, Dai W, Qian G, Gong X, Zhou D, Li X, Zhou X. The NOx Degradation Performance of Nano-TiO2 Coating for Asphalt Pavement. Nanomaterials. 2020; 10(5):897. https://doi.org/10.3390/nano10050897
Chicago/Turabian StyleYu, Huanan, Wan Dai, Guoping Qian, Xiangbing Gong, Dayao Zhou, Xi Li, and Xinglin Zhou. 2020. "The NOx Degradation Performance of Nano-TiO2 Coating for Asphalt Pavement" Nanomaterials 10, no. 5: 897. https://doi.org/10.3390/nano10050897
APA StyleYu, H., Dai, W., Qian, G., Gong, X., Zhou, D., Li, X., & Zhou, X. (2020). The NOx Degradation Performance of Nano-TiO2 Coating for Asphalt Pavement. Nanomaterials, 10(5), 897. https://doi.org/10.3390/nano10050897