Development of Nanofluids for the Inhibition of Formation Damage Caused by Fines Migration: Effect of the Interaction of Quaternary Amine (CTAB) and MgO Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Synthesis of MgO Nanoparticles
2.2.2. Nanoparticles Characterization
2.2.3. Adsorption and Desorption Tests of CTAB onto MgO Nanoparticles
2.2.4. Fines Migration Tests in Sand Packs
2.2.5. Design of Experiments
2.2.6. Core Flooding Test
3. Modeling
3.1. Adsorption Model
3.2. Breakthrough Curves
4. Results
4.1. Nanoparticle Characterization
4.2. Analysis of CTAB-MgO Nanoparticles Interaction
4.3. Effect of Individual Components in the Inhibition of Fines Migration
4.3.1. Effect of CTAB
4.3.2. Effect of Nanoparticles
4.4. Synergistic Effect between Nanoparticles and CTAB in the Inhibition of Fines Migration
4.4.1. System I: Nanofluid with Free CTAB in Solution
4.4.2. Statistical Analysis for the DOE
4.4.3. System II: MgO Nanoparticles/CTAB Nanocomposite
4.5. Estimation of the Critical Rate for Fines Migration
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Civan, F. Reservoir Formation Damage-Fundamentals, Modeling, Assessment, and Migration; Gulf Publish Co.: Houston, TX, USA, 2000; p. 742. [Google Scholar]
- Krueger, R.F. An overview of formation damage and well productivity in oilfield operations: An update. In Proceedings of the SPE California Regional Meeting, Long Beach, CA, USA, 23–25 March 1988. [Google Scholar]
- Nguyen, P.D.; Weaver, J.D.; Rickman, R.D.; Dusterhoft, R.G.; Parker, M.A. Controlling formation fines at their sources to maintain well productivity. SPE Prod. Oper. 2007, 22, 202–215. [Google Scholar] [CrossRef]
- Rousseau, D.; Latifa, H.; Nabzar, L. Injectivity decline from produced-water reinjection: New insights on in-depth particle-deposition mechanisms. SPE Prod. Oper. 2008, 23, 525–531. [Google Scholar] [CrossRef]
- Naranjo Agudelo, A.D.J. Evaluación de Yacimientos de Hidrocarburos; Editorial Universidad Nacional de Colombia: sede Medellín, Colombia, 2009. [Google Scholar]
- Bennion, D.B. An overview of formation damage mechanisms causing a reduction in the productivity and injectivity of oil and gas producing formations. J. Can. Pet. Technol. 2002, 41. [Google Scholar] [CrossRef]
- Francis, P. Dominating effects controlling the extent of drilling-induced formation damage. In Proceedings of the SPE European Formation Damage Conference, The Hague, The Netherlands, 2–3 June 1997. [Google Scholar]
- Khilar, K.C.; Fogler, H.S. Migrations of Fines in Porous Media; Springer Science & Business Media: Berlin, Germany, 1998; Volume 12. [Google Scholar]
- Sharma, M. Transport of Particulate Suspensions in Porous Media: Applications to Filtration and Formation Damage in Sandstones. Ph.D. Thesis’s, University Southern California, Los Angeles, CA, USA, 1985. [Google Scholar]
- Vaidya, R.N.; Fogler, H.S. Formation damage due to colloidally induced fines migration. Colloids Surf. 1990, 50, 215–229. [Google Scholar] [CrossRef] [Green Version]
- Hibbeler, J.; Garcia, T.; Chavez, N. An integrated long-term solution for migratory fines damage. In Proceedings of the SPE Latin American and Caribbean Petroleum Engineering Conference, Port-of-Spain, Trinidad and Tobago, 27–30 April 2003. [Google Scholar]
- Al-Dahlan, M.; Nasr-El-Din, H.; Al-Qahtani, A. Evaluation of retarded HF acid systems. In Proceedings of the SPE International Symposium on Oilfield Chemistry, Houston, TX, USA, 13–16 February 2001. [Google Scholar]
- Zhou, Z.; Gunter, W.; Jonasson, R. Controlling formation damage using clay stabilizers: A review. In Proceedings of the Annual Technical Meeting, Calgary, AB, Canada, 7–9 June 1995. [Google Scholar]
- El-Monier, E.A.; Nasr-El-Din, H.A. Mitigation of fines migration using a new clay stabilizer: A mechanistic study. In Proceedings of the SPE European Formation Damage Conference, Noordwijk, The Netherlands, 7–10 June 2011. [Google Scholar]
- Kalfayan, L.; Watkins, D. A New Method for Stabilizing Fines and Controlling Dissolution During Sandstone Acidizing. In Proceedings of the SPE California Regional Meeting, Ventura, CA, USA, 4–6 April 1990. [Google Scholar]
- El-Monier, E.A.; Nasr-El-Din, H.A. A study of several environmentally friendly clay stabilizers. In Proceedings of the SPE Project and Facilities Challenges Conference at METS, Doha, Qatar, 13–16 February 2011. [Google Scholar]
- Kakadjian, S.; Zamora, F.; Venditto, J.J. Zeta potential altering system for increased fluid recovery, production, and fines control. In Proceedings of the International Symposium on Oilfield Chemistry, Houston, TX, USA, 28 February–2 March 2007. [Google Scholar]
- Valdya, R.; Fogler, H. Fines migration and formation damage: Influence of pH and ion exchange. SPE Prod. Eng. 1992, 7, 325–330. [Google Scholar] [CrossRef]
- Ghumare, A.K.; Mallick, M.; Rama, M.S. Amido-Amine Based Cationic Gemini Surfactants for Clay Inhibition. U.S. Patent 10,093,846, 9 October 2017. [Google Scholar]
- Shenoy, S.; Parlar, M. Well Treatment to Inhibit Fines Migration. U.S. Patent 8,020,617, 20 September 2011. [Google Scholar]
- Sameni, A.; Pourafshary, P.; Ghanbarzadeh, M.; Ayatollahi, S. Effect of nanoparticles on clay swelling and migration. Egypt. J. Pet. 2015, 24, 429–437. [Google Scholar] [CrossRef] [Green Version]
- Nettesheim, F.; Liberatore, M.W.; Hodgdon, T.K.; Wagner, N.J.; Kaler, E.W.; Vethamuthu, M. Influence of nanoparticle addition on the properties of wormlike micellar solutions. Langmuir 2008, 24, 7718–7726. [Google Scholar] [CrossRef]
- Mera, C.M.; Ariza, C.A.F.; Cortés, F.B. Uso de nanopartículas de sílice para la estabilización de finos en lechos empacados de arena Ottawa. Inf. Técnico 2013, 77, 27. [Google Scholar] [CrossRef] [Green Version]
- Franco, C.A.; Zabala, R.; Cortés, F.B. Nanotechnology applied to the enhancement of oil and gas productivity and recovery of Colombian fields. J. Pet. Sci. Eng. 2017, 157, 39–55. [Google Scholar] [CrossRef]
- Habibi, A.; Ahmadi, M.; Pourafshary, P.; Al-Wahaibi, Y. Reduction of fines migration by nanofluids injection: An experimental study. SPE J. 2012, 18, 309–318. [Google Scholar] [CrossRef]
- Arab, D.; Pourafshary, P. Nanoparticles-assisted surface charge modification of the porous medium to treat colloidal particles migration induced by low salinity water flooding. Colloids Surf. A Physicochem. Eng. ASP 2013, 436, 803–814. [Google Scholar] [CrossRef]
- Ahmadi, M.; Habibi, A.; Pourafshari, P.; Ayatollahi, S. Zeta potential investigation and mathematical modeling of nanoparticles deposited on the rock surface to reduce fine migration. In Proceedings of the SPE Middle East Oil and Gas Show and Conference, Manama, Bahrain, 25–28 September 2011. [Google Scholar]
- Huang, T.T.; Clark, D.E. Enhancing oil recovery with specialized nanoparticles by controlling formation-fines migration at their sources in waterflooding reservoirs. SPE J. 2015, 20, 743–746. [Google Scholar] [CrossRef]
- Huang, T.; Crews, J.B.; Willingham, J.R.; Belcher, C.K. Nano-Sized Particles for Formation Fines Fixation. US Patents 11/931,706, 17 Dcember 2009. [Google Scholar]
- Abhishek, R.; Hamouda, A. Effect of various silica nanofluids: Reduction of fines migrations and surface modification of berea sandstone. Appl. Sci. 2017, 7, 1216. [Google Scholar] [CrossRef] [Green Version]
- Yuan, B.; Ghanbarnezhad Moghanloo, R.; Pattamasingh, P. Applying method of characteristics to study utilization of nanoparticles to reduce fines migration in deepwater reservoirs. In Proceedings of the SPE European Formation Damage Conference and Exhibition, Budapest, Hungary, 3–5 June 2015. [Google Scholar]
- Belcher, C.K.; Seth, K.; Hollier, R.; Paternostro, B.P. Maximizing production life with the use of nanotechnology to prevent fines migration. In Proceedings of the International Oil and Gas Conference and Exhibition in China, Beijing, China, 8–10 June 2010. [Google Scholar]
- Franco, C.C. Farid. Inhibition of the formation damage due to fines migration on low permeability reservoir of sandstone using silica based nanofluids: From laboratory to a succesful field trial. In Formation Damage in Oil and Gas Reservoirs Nanotechnology Applications for its Inhibition/Remediation; Cortes, C.F.F., Ed.; Nova Science Publisher: Hauppauge, NY, USA, 2018. [Google Scholar]
- Huang, T.; Evans, B.A.; Crews, J.B.; Belcher, C.K. Field case study on formation fines control with nanoparticles in offshore applications. In Proceedings of the SPE Annual Technical Conference and Exhibition, Florence, Italy, 19–22 September 2010. [Google Scholar]
- Cespedes Chavarro, C. Desarrollo de un Nanofluido Para la Estabilización de Finos en la Formación Barco del Campo Cupiagua; Universidad Nacional de Colombia, sede Medellin: Medellín, Colombia, 2015. [Google Scholar]
- Ahmadi, M.; Habibi, A.; Pourafshary, P.; Ayatollahi, S. Zeta-potential investigation and experimental study of nanoparticles deposited on rock surface to reduce fines migration. SPE J. 2013, 18, 534–544. [Google Scholar] [CrossRef]
- Wahab, R.; Ansari, S.; Dar, M.; Kim, Y.S.; Shin, H.S. Synthesis of magnesium oxide nanoparticles by sol-gel process. In Proceedings of Materials Science Forum; Trans Tech Publications Ltd.: Stafa-Zurich, Switzerland, 2007; pp. 983–986. [Google Scholar]
- Hench, L.L.; West, J.K. The sol-gel process. Chem. Rev. 1990, 90, 33–72. [Google Scholar] [CrossRef]
- Berne, B.J.; Pecora, R. Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics; Courier Corporation: Chelmsford, MA, USA, 2000. [Google Scholar]
- Betancur, S.A.; Carrasco-Marín, F.; Franco, C.A.; Cortés, F.B. Development of Composite Materials Based on the Interaction between Nanoparticles and Surfactants for Application in Chemical Enhanced Oil Recovery. Ind. Eng. Chem. Res. 2018, 57, 12367–12377. [Google Scholar] [CrossRef]
- Hurtado, Y.; Beltran, C.; Zabala, R.D.; Lopera, S.H.; Franco, C.A.; Nassar, N.N.; Cortés, F.B. Effects of Surface Acidity and Polarity of SiO2 Nanoparticles on the Foam Stabilization Applied to Natural Gas Flooding in Tight Gas-Condensate Reservoirs. Energy Fuels 2018, 32, 5824–5833. [Google Scholar] [CrossRef]
- Medina Erao, O.E.; Gallego, J.; Olmos, C.M.; Chen, X.; Cortés, F.B.; Franco, C.A. Effect of Multifunctional Nanocatalysts on n-C7 Asphaltene Adsorption and Subsequent Oxidation under High Pressure Conditions. Energy Fuels 2020. [Google Scholar] [CrossRef]
- Cortés, F.B.; Montoya, T.; Acevedo, S.; Nassar, N.N.; Franco, C.A. Adsorption-desorption of n-c7 asphaltenes over micro-and nanoparticles of silica and its impact on wettability alteration. CtF-Cienc. Tecnol. Y Futuro 2016, 6, 89–106. [Google Scholar]
- Cornell, J.A. Experiments with Mixtures: Designs, Models, and the Analysis of Mixture Data; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 895. [Google Scholar]
- Humberto, G.P.; de la Vara, S.R. Análisis y Diseño de Experimentos; Mc Graw Hill. Ubicación: New York, NY, USA, 2003; Volume 1, p. G9846a. [Google Scholar]
- Montoya, T.; Coral, D.; Franco, C.A.; Nassar, N.N.; Cortés, F.B. A Novel Solid–Liquid Equilibrium Model for Describing the Adsorption of Associating Asphaltene Molecules onto Solid Surfaces Based on the “Chemical Theory”. Energy Fuels 2014, 28, 4963–4975. [Google Scholar] [CrossRef]
- Llanos, S.N.; Giraldo, L.J.; Santamaria, O.; Franco, C.A.; Cortés, F.B. Effect of Sodium Oleate Surfactant Concentration Grafted onto SiO2 Nanoparticles in Polymer Flooding Processes. ACS Omega 2018, 3, 18673–18684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, R.M. Evaluating the cost and performance of field-scale granular activated carbon systems. Environ. Sci. Technol. 1987, 21, 573–580. [Google Scholar] [CrossRef] [PubMed]
- Wolborska, A. Adsorption on activated carbon of p-nitrophenol from aqueous solution. Water Res. 1989, 23, 85–91. [Google Scholar] [CrossRef]
- Wright, J.D.; Sommerdijk, N.A. Sol-Gel Materials: Chemistry and Applications; CRC Press: Boca Raton, FL, USA, 2000; Volume 4. [Google Scholar]
- Tai, C.Y.; Tai, C.-T.; Chang, M.-H.; Liu, H.-S. Synthesis of magnesium hydroxide and oxide nanoparticles using a spinning disk reactor. Ind. Eng. Chem. Res. 2007, 46, 5536–5541. [Google Scholar] [CrossRef]
- Assef, Y.; Arab, D.; Pourafshary, P. Application of nanofluid to control fines migration to improve the performance of low salinity water flooding and alkaline flooding. J. Pet. Sci. Eng. 2014, 124, 331–340. [Google Scholar] [CrossRef]
- Bdewi, S.F.; Abdullah, O.G.; Aziz, B.K.; Mutar, A.A. Synthesis, structural and optical characterization of MgO nanocrystalline embedded in PVA matrix. J. Inorg. Organomet. Polym. Mater. 2016, 26, 326–334. [Google Scholar] [CrossRef]
- Yacob, A.R.; Mustajab, M.; Samadi, N.S. Calcination temperature of nano MgO effect on base transesterification of palm oil. World Acad. Sci. Eng. Technol. 2009, 56, 408–412. [Google Scholar]
- Meenakshi, S.D.; Rajarajan, M.; Rajendran, S.; Kennedy, Z.R.; Brindha, G. Synthesis and characterization of magnesium oxide nanoparticles. Elixir. Int. J. 2012, 50, 1–3. [Google Scholar]
- Park, J.-Y.; Lee, Y.-J.; Jun, K.-W.; Baeg, J.-O.; Yim, D.J. Chemical synthesis and characterization of highly oil dispersed MgO nanoparticles. J. Ind. Eng. Chem. 2006, 12, 882–887. [Google Scholar]
- Pérez-Robles, S.; Matute, C.A.; Lara, J.R.; Lopera, S.H.; Cortés, F.B.; Franco, C.A. Effect of Nanoparticles with Different Chemical Nature on the Stability and Rheology of Acrylamide Sodium Acrylate Copolymer/Chromium (III) Acetate Gel for Conformance Control Operations. Nanomaterials 2020, 10, 74. [Google Scholar] [CrossRef] [Green Version]
- Thommes, M.; Kaneko, K.; Neimark Alexander, V.; Olivier James, P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing Kenneth, S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Balbuena, P.B.; Lastoskie, C.; Gubbins, K.E.; Quirke, N. Theoretical Interpretation and Classification of Adsorption Isotherms for Simple Fluids. Stud. Surf. Sci. Catal. 1993, 80, 27–34. [Google Scholar] [CrossRef]
- Bera, A.; Kumar, T.; Ojha, K.; Mandal, A. Adsorption of surfactants on sand surface in enhanced oil recovery: Isotherms, kinetics and thermodynamic studies. Appl. Surf. Sci. 2013, 284, 87–99. [Google Scholar] [CrossRef]
- Helgeson, M.E.; Hodgdon, T.K.; Kaler, E.W.; Wagner, N.J.; Vethamuthu, M.; Ananthapadmanabhan, K. Formation and rheology of viscoelastic “double networks” in wormlike micelle− nanoparticle mixtures. Langmuir 2010, 26, 8049–8060. [Google Scholar] [CrossRef] [PubMed]
- Medina, O.E.; Gallego, J.; Restrepo, L.G.; Cortés, F.B.; Franco, C.A. Influence of the Ce4+/Ce3+ Redox-couple on the cyclic regeneration for adsorptive and catalytic performance of NiO-PdO/CeO2±δ nanoparticles for n-C7 asphaltene steam gasification. Nanomaterials 2019, 9, 734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villegas, J.; Moncayo-Riascos, I.; Galeano-Caro, D.; Riazi, M.; Franco, C.A.; Cortés, F.B. Functionalization of γ-Alumina and Magnesia Nanoparticles with a Fluorocarbon Surfactant to Promote Ultra Gas-Wet Surfaces: Experimental and Theoretical Approach. ACS Appl. Mater. Interfaces 2020, 12, 13510–13520. [Google Scholar] [CrossRef]
- Huang, T.; Crews, J.; Willingham, J. Using nanoparticle technology to control formation fines migration. Pap. SPE 2008, 115384. [Google Scholar] [CrossRef]
- Xiao, G.; Singh, R.; Chaffee, A.; Webley, P. Advanced adsorbents based on MgO and K 2 CO 3 for capture of CO 2 at elevated temperatures. Int. J. Greenh. Gas Control 2011, 5, 634–639. [Google Scholar] [CrossRef]
- Ogolo, N.A. The trapping capacity of nanofluids on migrating fines in sand. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 30 September–2 October 2013. [Google Scholar]
- Guzmán, J.D.; Betancur, S.; Carrasco-Marín, F.; Franco, C.A.; Nassar, N.N.; Cortés, F.B. Importance of the adsorption method used for obtaining the nanoparticle dosage for asphaltene-related treatments. Energy Fuels 2016, 30, 2052–2059. [Google Scholar] [CrossRef]
- Ahmadi, M.; Habibi, A.; Pourafshary, P.; Ayatollahi, S. An experimental study of interaction between nanoparticles’deposition on a sintered porous medium and migratory fines. J. Porous Media 2013, 16, 459–467. [Google Scholar] [CrossRef]
Nanoparticle | Concentration Ratio[MgNO3·6H2O]/[NaOH] | dp50 (nm) | SBET (m2·g−1) | pHpzc | ζpH = 7 (mV) |
---|---|---|---|---|---|
M11 | 1.2 | 11.4 | 147.1 | 11.7 | 15.4 |
M42 | 0.8 | 42.8 | 39.2 | 11.4 | 11.2 |
M86 | 0.4 | 86.2 | 19.4 | 11.0 | 11.3 |
T (°C) | H (mg∙g−1) | K (g∙g-1) × 10−2 | Nm (g∙g−1) | % RMSE | R2 |
---|---|---|---|---|---|
25 | 0.91 | 100.01 | 14.01 | 2.51 | 0.98 |
35 | 1.09 | 100.23 | 13.14 | 2.46 | 0.99 |
45 | 1.29 | 100.26 | 12.74 | 2.89 | 0.99 |
Evaluated Treatment | Wolborska Model | Clark Model | ||
---|---|---|---|---|
β (min−1) | % RSM | N0 (mg·L−1) | % RSM | |
Blank | 0.422 | 9.4 | 0.02 | 9.9 |
1000 mg·L−1 M11 | 0.611 | 9.4 | 0.17 | 8.8 |
2000 mg·L−1 M11 | 0.610 | 9.8 | 0.19 | 9.9 |
1000 mg·L−1 CTAB | 0.602 | 7.7 | 0.16 | 9.4 |
2000 mg·L−1 CTAB | 0.628 | 8.3 | 0.20 | 6.7 |
660 mg·L−1 M11 /CTAB | 0.631 | 9.5 | 0.39 | 9.9 |
1000 mg·L−1 M11/CTAB | 0.639 | 7.9 | 0.26 | 8.0 |
β1 | β2 | β3 | β12 | β13 | β23 | β123 | R2 |
---|---|---|---|---|---|---|---|
0.018258 | 0.18986 | 0.15398 | 0.097124 | 0.27718 | 0.36440 | 5.14033 | 1 |
Evaluated Treatment | Wolborska Model | Clark Model | ||
---|---|---|---|---|
β (min−1) | % RSM | N0 (mg·L−1) | % RSM | |
247 mg·L−1 CTAB | 0.83 | 6.9 | 0.22 | 7.3 |
515 mg·L−1 CTAB | 1.40 | 7.8 | 0.35 | 2.1 |
800 mg·L−1 CTAB | 1.60 | 2.8 | 0.48 | 8.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díez, R.; Medina, O.E.; Giraldo, L.J.; Cortés, F.B.; Franco, C.A. Development of Nanofluids for the Inhibition of Formation Damage Caused by Fines Migration: Effect of the Interaction of Quaternary Amine (CTAB) and MgO Nanoparticles. Nanomaterials 2020, 10, 928. https://doi.org/10.3390/nano10050928
Díez R, Medina OE, Giraldo LJ, Cortés FB, Franco CA. Development of Nanofluids for the Inhibition of Formation Damage Caused by Fines Migration: Effect of the Interaction of Quaternary Amine (CTAB) and MgO Nanoparticles. Nanomaterials. 2020; 10(5):928. https://doi.org/10.3390/nano10050928
Chicago/Turabian StyleDíez, Rebeka, Oscar E. Medina, Lady J. Giraldo, Farid B. Cortés, and Camilo A. Franco. 2020. "Development of Nanofluids for the Inhibition of Formation Damage Caused by Fines Migration: Effect of the Interaction of Quaternary Amine (CTAB) and MgO Nanoparticles" Nanomaterials 10, no. 5: 928. https://doi.org/10.3390/nano10050928
APA StyleDíez, R., Medina, O. E., Giraldo, L. J., Cortés, F. B., & Franco, C. A. (2020). Development of Nanofluids for the Inhibition of Formation Damage Caused by Fines Migration: Effect of the Interaction of Quaternary Amine (CTAB) and MgO Nanoparticles. Nanomaterials, 10(5), 928. https://doi.org/10.3390/nano10050928