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Abstract: The arrangement of two-dimensional graphene oxide sheets has been shown to influence
physico-chemical properties of the final bulk structures. In particular, various graphene oxide
microfibers remain of high interest in electronic applications due to their wire-like thin shapes and
the ease of hydrothermal fabrication. In this research, we induced the internal ordering of graphene
oxide flakes during typical hydrothermal fabrication via doping with Calcium ions (~6 wt.%) from
the capillaries. The Ca2+ ions allowed for better graphene oxide flake connections formation during
the hydrogelation and further modified the magnetic and electric properties of structures compared
to previously studied aerogels. Moreover, we observed the unique pseudo-porous fiber structure
and flakes connections perpendicular to the long fiber axis. Pulsed electron paramagnetic resonance
(EPR) and conductivity measurements confirmed the denser flake ordering compared to previously
studied aerogels. These studies ultimately suggest that doping graphene oxide with Ca2+ (or other)
ions during hydrothermal methods could be used to better control the internal architecture and thus
tune the properties of the formed structures.

Keywords: graphene oxide fibers; hydrothermal synthesis; reduced graphene oxide; electron
paramagnetic resonance; electron spin relaxation

1. Introduction

Graphene oxide (GO) is a form of graphene having a unique collection of oxygen rich groups on
its surface (-COOH, -OH, =O, -O-) [1,2]. Because of oxygen rich moieties it is a promising material
for sensing in biology and medicine: high-contrast bio-imaging and bio-sensing applications [3,4],
e.g., biosensors (glucose, mechanical stress, magnetic field) [3,4], anticancer therapies [5,6], as well as
for flexible electronic applications, e.g., supercapacitors [7], FET transistors [8,9], electrical wires [10],
or as active elements in mechanical energy harvesters [11]. Well reduced fibers with flake ordered
composition are reaching superior physical properties with electrical conductivity of σ = 106 S·m−1,
thermal conductivity of 1557 W·m−1

·K−1, tensile strength of 1.9 GPa, and a Young’s modulus of
309 GPa [12]. A stronger connection between flakes changes the flake arrangement and alters the
above-mentioned properties in comparison to previously studied graphene oxide structures formed
by hydrothermal methods [2,13]. Their electrical conductivity strongly depends on the quality of the
reduction process and flake ordering and can be described by variable range hopping models [14,15].
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In this article, we were interested in the change of magnetic, mechanical, and electric properties of
graphene oxide fibers prepared via the hydrothermal method with additional doping by divalent Ca2+

ions. The addition of Ca2+ in a coagulation bath while fibers are formed during a wet spinning method
results in increased flakes tendency for the formation of a denser network with Calcium ions acting
as bridges between the individual flakes [16]. This method is one of the three known among the dry
spinning method [17,18] and hydrothermal method (used here) [2] for the preparation of micro-fibers.
In particular, we recently showed [13] that electron paramagnetic resonance (EPR) is an effective
method that allows distinguishing multiple paramagnetic contributions of magnetic susceptibility, e.g.,
Pauli (conduction electrons) and Curie (localized paramagnetic centers, e.g., sp3 defects), and could be
used to study the internal ordering of flakes. The source of the EPR signal, among different carbon
materials, is related to the conduction electrons, e.g., anthracite [19], or localized paramagnetic states
on the surface or edges, e.g., GO [20] or graphene [21]. However, most of the aforementioned centers
are present in different samples, due to preparation processes, making the synthesis method and ion
doping a crucial aspect to evaluate.

Graphene-based samples can show complicated magnetic behavior due to zigzag edges [22,23],
which can give rise to the edge states magnetism and basal-plane sp3 defects formed by -OH groups
(~1–1.2 µB) and adatom-induced magnetism [24,25]. We will discuss the Ca2+-doped fibers and
compare the results to different carbon samples previously reported in the literature: graphene [21,26],
GO in the form of aerogels [13,20], as well as with other carbon materials [27,28] which magnetic
properties depend on particle size [29]. We will finally show the competitive mechanical and electrical
response of the fibers, as well as the suitability of Ca2+-doping for tuning physico-chemical properties
in reduced graphene oxide (rGO) fibers.

2. Materials and Methods

2.1. Graphene Oxide Preparation

Graphene oxide was purchased from the NANOPOZ company (Poznań, Poland). Flake diameters
in the range of 0.9–46 µm, with a maximum number of flakes with a diameter of ~2 µm were obtained,
the same as in previous reports [2]. Briefly, flake size distributions were obtained by manually
measuring sizes using ImageJ® from the sizes of around 200 flakes from multiple scanning electron
microscopy images.

2.2. Reduced Graphene Oxide Fiber Preparation

GO suspension of 4 mg/mL was injected to the opened at both sides’ capillaries (with inner
diameter of 0.6 mm), then sealed by melting, placed in autoclave and heated for 2 h at 180 ◦C, where the
suspension coagulated and formed a hydrogel (Figure 1a). The hydrogel was left to dry in air at 21 ◦C
(Figure 1a, inset). The preparation method was previously described when preparing partially reduced
graphene oxide aerogels [2], except here the container was changed to Calcium containing capillaries.
After the formation of xerogel, final drying was performed at 70 ◦C for 48 h (without further annealing
at higher temperatures).

2.3. Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDX)

EDX measurements were performed at 5 kV. The preparation of cross-sections for SEM analysis
was carried out using a focused ion beam system JIB-4000 (JEOL) with Ga+ ions. The current and
voltage of the ion beam during preparation were 23 pA to 60 nA and 30 kV, respectively.

2.4. Vibrating Sample Magnetometry (VSM)

DC magnetic susceptibility measurements were performed using the VSM Quantum Design
PPMS system in a temperature range of 4 to 300 K, using a maximum applied magnetic field of ±1 T.
Zero-Field-Cooled (ZFC) and Field-Cooled (FC) lines were taken for magnetic field 0.3 T (3 kOe) in
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a temperature range from 4 to 300 K. The value of the magnetic field was selected in order to easily
compare it with the EPR measurements.
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experiments to obtain the maximum magnetization inversion. 
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Figure 1. (a) Hydrogel in tubes after hydrothermal synthesis; (inset) fiber taken out for drying in
ambient conditions (scale 1:1 with main image, glass tube length 8 cm), dried fiber is too small to be
visible in this scale; (b) SEM micrograph of partially reduced graphene oxide fibers ~60 µm diameter;
(c) energy dispersive X-ray spectroscopy (EDX) plot of the fiber; (d) optical microscope image of
partially dried (~300 µm) and fully dried (~40–100 µm) diameter fibers.

2.5. Electron Paramagnetic Resonance (EPR)

The spectroscopic continuous wave (CW) EPR measurements were performed with a RADIOPAN
SE/X-2547 (9 GHz) spectrometer equipped with a RCX661A TM110 resonator and an Oxford CF935
cryostat allowing measurements in a temperature range of 4.2–300 K. The modulation amplitude
was 0.05 mT, the microwave power was 11.38 mW (without saturation effects), and the microwave
frequency was recalculated for each measured point to match exactly 9 GHz. The number of points
per spectra: 1024, accumulations: 2, time per one point: 120. The number of spins was estimated
by a direct comparison method with DPPH standard which was earlier calibrated with a primary
standard—copper sulphate pentahydrate monocrystals. The EPR relaxation measurements were
conducted with a Bruker ELEXSYS E580 EPR Spectrometer equipped with an EN4118X-MD4 resonator
in a temperature range of 5–100 K. Field-sweep echo-detected (FSED) spectra were obtained from
X-band pulse experiments. The shot repetition time was set at 186 µs, π/2 pulse was set to 20 ns for
Tm, T2, and FSED measurements, and 34 ns for inversion magnetization experiments to obtain the
maximum magnetization inversion.

2.6. Electric Conductivity Measurements

Room temperature electric conductivity measurements were performed with a 4-point method
using Keithley 2636 B SMU. The distance between the voltage electrodes was 5 mm, and the diameter
of rGO fiber used was d = 50 µm.
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2.7. Nanoindentation

The uniaxial tensile tests of rGO fibers were performed using the Agilent T150 UTM tensile
machine. Fibers with a typical diameter of 91 ± 13 µm and a length of 4.5 mm were glued to the
supporting frame and analyzed by the scanning electron microscope (Quanta FEG 250, FEI) to determine
their dimensions—each of the fifteen fibers’ diameters were measured at five sites. The analysis allowed
identifying defects in fibers’ morphology, like kinks or bend/displacement. Such defects correlate
with lower tensile strength measured afterwards by the means of a uniaxial tensile test. Extension for
each fiber was realized with a strain rate of 10−4 s−1 to enable a slow relaxation of fibers during the
measurement. Nanoindentation tests were performed using a Triboindenter (TI950 Hysitron) with a
Berkovich tip. Mechanical values were extracted using the Oliver–Pharr method [30]. Fibers were
immobilized on metallic plates by commercially available silver paste. Samples were investigated at
the maximum load of 1000 µN using a single signal, partial load-displacement function, and nano
dynamical mechanical analysis (nanoDMA).

3. Results and Discussion

3.1. Fabrication of Reduced Graphene Oxide (rGO) Fibers

Initially, we injected a solution of 4 mg/mL graphene oxide flakes inside capillaries containing
calcium ions (Figure 1a). We then subjected such capillaries to a hydrothermal treatment and then
dried them out on the Teflon tape (Figure 1a, inset). The fibers were left in an ambient atmosphere
for drying, which resulted in the collapse of the hydrogel pore structure and led to the formation of
xerogel with a shape resulting from the capillary container, initially just after drying of about 600 µm
diameter, decreased after a full drying cycle to ~50 µm (Figure 1b and Figure S1, Supporting Videos 1
and 2), and typical length decreasing from ~8 cm to ~5 cm. Further drying at 70 ◦C (48 h) removed
remaining moisture/H2O from the structure but did not influence the shape or physical dimensions of
the obtained fibers. The post-hydrothermal drying treatment leads to 9–10 times shorter diameters and
20–30% shortened lengths with final surface roughness Rq equal to 62.8 ± 3.3 nm in a reproducible
manner, as reported previously [31].

The surface of the fabricated fibers under scanning electron microscope (SEM) shows partially
reduced graphene oxide flakes lying on each other in a co-axial arrangement (Figures 1b and 2f).
The reduction protocol is the same as used in our previous studies, thus we expected the produced fibers
to contain the same defects [13,31]. The EDX (Figure 1c) analysis of the fibers was done at a relatively
low acceleration voltage (5 kV) reducing the depth of penetration into the sample. The analysis was
made for the three main elements in multiple spots (3 × 8 grid) and showed the average elemental
fiber composition of C: 62, O: 32, and Ca: 6 wt.% (C/O = 1.94). As expected, quantitative maps of C, O,
and Au show roughly homogeneous carbon and oxygen distribution over the entire fiber (Figure S2).

Due to obvious limitations of the SEM technique in assessing internal structure of partially reduced
graphene oxide fibers, focused ion beam milling (FIB) was used. It allowed the visualization of the
pseudo-porous structure inside the fiber (Figure 2a–c and Figure S4). The structure located inside
the rectangular milled square in Figure 2b and presented as magnified in Figure 2a was used for
the estimation of the pore surface to the surface of the selected square. Surface porosity is defined
as the ratio of the overall pore area in the square to the entire square surface. The surface porosity
across multiple images on average comes to ~20%. It should be mentioned that the ion beam could
damage the pore structure and this data should be treated with caution, as coming from pseudo-pore
structure. The porous structure is visible only when the ion beam irradiates the surface perpendicular
to it, while in the other case, the flat surface is visible (Figure 2f). Figure 2d shows a pore size statistic
made inside of the rectangular milled element visible in this image. The distribution’s profile can be
approximated by the lognormal function. The mean pore size is 360 ± 445 nm (from 240 elements).
The minimum pore diameter is 50 nm and the largest is 3150 nm.
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Figure 2. Focused ion beam images: (a) inside of the milled square from (b); (b) milled with gallium
ions square on side of the fiber-view in the axis of Ga stream direction; (c) side view of a milled fiber;
(d) pore sizes distribution taken from (a); (e) milled fiber-view perpendicular to Ga stream direction;
(f) SEM micrograph of the fibers surface.

3.2. Electrical Properties

Improved, due to Ca2+-doping, layer stacking is visible in electrical measurements (DC). Current
vs. voltage plot shows a linear relationship and a specific conductivity in the order of 20–40 S·m−1,
while undoped it is in the range of 2–7 S·m−1 (Figure 3, Figures S5 and S6). It is known that electrical
conductivity measured on a single GO flake is in the order of 0.05–2 S·m−1 [32], while for a fully
reduced graphene oxide aerogel it is reaching 528 S·m−1 [33]. Our previous results obtained for
partially reduced aerogels showed a conductivity of 1.7 S m−1 [13]. For comparison, conductivity of
dried GO straps (known as GO paper) is in the order of 1.2 × 10−4 S·m−1 (Figure S5). The electrical
conductivity in such systems is caused by a variable range hopping with the highest energy necessary

for hopping between the flakes (σ ∼ e−(T0)
1
2 ). Electrostatically assembled inter-flake links by Ca2+
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decrease the energy necessary for this process by modification of the structural arrangement, causing a
stronger overlap of the flakes. This mechanism can be found in systems were conductive particles
are randomly connected to each other [34] with an energy barrier located in between the flakes [35].
DC measurements performed by Rani et al. [36] on compressed powders of graphite, expanded
graphite, reduced graphene oxide, and carbon nanotubes showed the increase of conductivity with the
increase of pressure which was explained by forming of effective contacts between grains [37,38].
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(rGO) fibers with Ca2+ (a–d), four control rGO fibers without Ca2+ (e–g), and for graphene oxide (GO)
layer made from initial suspension (h).

3.3. Mechanical Properties

Pristine reduced graphene oxide fibers due to having a collapsed pore structure in comparison
to aerogels are much more resistant to damage. Individual performance depends on the size of the
graphene flakes used, as well as their arrangement during drying and reduction [10]. To characterize
the basic mechanical properties, the ultimate tensile strength was measured (Figure 4a). For the tensile
strength measurements, all fiber diameters were estimated by previous SEM investigation to find the
average pore diameter, which later was used as a normalization parameter (Figure 4a). The average
fiber diameter taken for this measurement was 91 ± 13 µm and the length of the obtained fibers reached
5 cm. Only the fibers exhibiting proper morphology were evaluated (some omitted fibers are shown
in Figure S7).

The stress–strain curve of rGO fibers indicates the brittle nature of the material without a
significant plastic deformation region. The elasticity modulus calculated from the linear segment of the
stress–strain curve was 360 ± 200 MPa. The fracture occurs at strain 2.1% ± 1.1%, corresponding to the
stress of 4.7 ± 1.4 MPa. The value of fracture stress is about one order of magnitude lower than in the
case of carbon nanofibers reinforced by GO [39] or poly(lactic acid)/GO/stearic acid composites [40],
which is due to reinforcing fillers (nanotubes). Nanoindentation tests performed on the samples
showed similar mechanical values to the ones reported in the literature for porous fibers, E = ~3.3 GPa
and H = ~66.7 MPa. The lack of recovery on the single indentation tests (Figure 4c) suggests the
highly plastic surface of the fibers, which is congruent with the SEM images and studies after FIB
milling. Depth studies (Figure 4d) show the compressive regime of the nanofibers, above ~800 nm,
which accounts for the plastic deformation of the sample. After that point, elastic response is observed
with a 40% recovery, which is attributed to the porosity of the samples. Results for pristine fibers on
the mechanical analysis reported elsewhere, are in proximity to the results obtained here: ultimate
tensile strength of 29.4 MPa at 8.6% of elongation [41]. Fibers obtained by the dry spinning method
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show some spread of parameters: tensile strength is in the rage of 39.2–1450 MPa, elongation is in the
rage of 1.1–20%, and a Young modulus of 1.9–282 GPa [42,43].Nanomaterials 2020, 10, x FOR PEER REVIEW 7 of 16 
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(b) mechanical values extracted from partial load/unload test; (c) load vs. displacement plot
of a representative indent showing maximum load (PMax) and maximum displacement (HMax);
the compressive regime is marked in dashed lines; (d) elastic recovery of the fibers after maximum
deformation (inset shows the representative indentation places).

3.4. Magnetic Properties

Due to the different sources of a magnetic signal in plain defects ad-atoms or edge dangling
bonds (edge states) the magnetism can show a complicated character. Ferro- and antiferromagnetism
were theoretically predicted in graphene [44,45]. Moreover, the presence of vacancies (sp3 defects)
caused by irradiation [46–49] or surface doping with hydrogen H+ ions and fluorine in the form
of XeF2 molecules [50–54], or adatoms like -OH groups [24,55–59], moisture [35] or contamination
by Mn2+ [60] or Fe2+ ion, can be source of additionally appearing exchange interactions [61–65].
Above that, an interplay between localized (point defects) and delocalized (conduction electrons)
paramagnetic centers take place which depends on the particle size, and according to Ćirić et al. [66,67],
the EPR signal comes from conduction electrons for large flakes and from localized centers for smaller
than 1 µm2 flakes. Smaller particles (<30 nm) which have more defects, and for this reason they are
more reactive, anchor 6.6 times more iron ions than larger, micrometre sized particles on the edges [60].

Magnetization vs. magnetic field dependence of partially reduced graphene oxide fibers measured
by vibrational magnetometer are in the range of±1 T (10 kOe) (Figure 5a). As expected for paramagnetic
sample, saturation magnetization grows with decreased temperature. The Zero Field Cooling (ZFC) and
Field Cooling (FC) curves show differences in temperatures below 100 K indicating weak ferromagnetic
interactions. The field of 3 kOe (Figure 5b) was chosen to easily compare the results with those from
EPR in which the resonance signal was recorded at 9 GHz.
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Figure 5. (a) Magnetic moment vs. magnetic field dependence recorded in the range of ±1 T for 10,
50, and 300 K; (b) Zero Field Cooling (ZFC) and Field Cooling (FC) curves obtained in 3 kOe in a
temperature range of 5–300 K of reduced graphene oxide fibers.

EPR spectroscopy shows a single signal at a g-factor of 2.0025 (300 K) which could be decomposed
to two Lorentzian lines (Figure 6a). Normalized to 300 K, the EPR intensity obeys the Curie low,
approximated with the equation 167.6 ± 7.8

T reaching in 4.2 K value of 30. On the other hand, better fits
could be achieved by the addition of a constant positive magnetic susceptibility, approximated by the
equation 167.6 ± 7.8

T + 1.76± 0.4, which can be further interpreted as additional contribution of Pauli
paramagnetism stemming from conduction electrons (Figure 6c). The presence of both localized and
delocalized centers in different proportions was already shown in GO [66], reduced GO similar carbon
material: Panich et al. [64], Shames et al. [68], Augustyniak-Jabłokow et al. [27].

The total number of spins was estimated as 3× 1018 spins/g. Figure 6b,d shows the temperature
dependences of g-factors and linewidths. The above g-factor is of a free radical in the entire temperature
range indicating small positive spin–orbit coupling, as expected for radicals or non-interacting sp3

defects located on the flakes surface. The difference in g-factors of both components, which become
significant below 100 K, cannot be directly explained by ZFC/FC curves in Figure 5b. It is usual that
EPR signals in carbon samples can be decomposed into two lines, further changes in g-factors are
small, and differences appear naturally when having different signal sources. There is no premise in
EPR results presented in Figure 6, which could explain the bifurcation in ZFC/FC.
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Pulse EPR measurements confirm the presence of two lines-species in the sample (Figure 6).
Two lines are visible in a field-swept echo experiment, suggesting inhomogeneous line broadening in
both cases (Figure 7). Notice that the broader CW-EPR signal is shown for comparison. The lines have
widths of 1.06 mT and 0.32 mT. The integral intensity of the first line is larger by a factor of 3.2.Nanomaterials 2020, 10, x FOR PEER REVIEW 10 of 16 

 

 

Figure 7. Comparison between continuous wave (CW)-EPR and field-swept echo-detected spectrum 
(FSED) and its decomposition into two components at 5 K. 

Further, the spin–lattice T1, phase memory time Tm, and spin–spin relaxation time T2echo* were 
recorded in the temperature range of 5–100 K (Figure 8). The spin–lattice time can be decomposed 
into two components, which rates at 5 K have 0.5 MHz (2 µs) and 0.06 MHz (16.6 µs), increasing with 
temperature to 1.25 and 0.6 MHz at 100 K, respectively (Figure 8a). The relaxation process is 
dominated by a direct process until around 70 K (linear function) after which a higher order Raman 
relaxation process becomes more dominant. Both radicals can be described by equations	Tଵି ଵ = 	A +Aଵ × T	 + Aଶ × Tହ, where the first component is temperature independent and not related to the 
relaxation processes, A1 is the direct Raman relaxation, and A2 is multi phonon Raman relaxation 
(Table 1). In comparison, dried GO paper [20] showed spin relaxation T1 time of 52 ms at 5 K, while 
here it is 17 µs (T1−1 was 535 Hz at 100 K). The difference lies in the oxygen reduction process, which 
produces a larger number of surface defects and causes 3000 times faster electron spin relaxation. 
Moreover, a direct relaxation process in GO paper dominates up to 100 K, which as it seems can be 
treated as an indicator of a small number of defects. It seems that the reduction process increases the 
number of surface defects and by that the relaxation rate, which further starts to be dominated by a 
higher order Raman processes already at lower temperature. 

Table 1. Components of different relaxation processes for two paramagnetic centers. 

T1A−1 T1B−1 T1GO−1 [20] 
A0 = 0.51 s−1 A0 = 0.06 s−1  

A1 = 4.4 × 10−3 K−1·s−1 A1 = 9.0 × 10−4 K−1·s−1 A1 = 4.7 × 10−4 K−1·s−1 
A2 = 2.8 × 10−11 K−5·s−1 A2 = 4.2 × 10−11 K−5·s−1 A2 = 6.6 × 10−9 K−5·s−1 

R2 = 0.9995 R2 = 0.9957  

In the wider picture, electron relaxation studies performed on other carbon materials show 
following results: Panich et al. reported graphene oxide heavily doped with Mn2+ ions showing T1 
(from saturation measurements): <10 ns, T1−1 = 100 MHz [64], for nanographites doped with Fe2+,3+ T1 
< 10−9 s [60], Rao et al. showed graphene nanoribbons two spin lattice relaxation processes: T1−1 ~0.014 
MHz and 0.1 MHz [69]. For graphene, T1−1~T2−1*~3 MHz was reported at 100 K [21] (and 0.7 kHz at 
room temperature to 1.45 kHz at helium temperature). In partially reduced graphene oxide (prGO) 
with an average flake size of ~2 µm the relaxation times were 17.5 MHz (T1−1 = T2−1) for which the 
reduction caused the increase of the spin–lattice relaxation rate T1−1 by a factor of ~5.8 [13]. For 

Figure 7. Comparison between continuous wave (CW)-EPR and field-swept echo-detected spectrum
(FSED) and its decomposition into two components at 5 K.



Nanomaterials 2020, 10, 957 10 of 15

Further, the spin–lattice T1, phase memory time Tm, and spin–spin relaxation time T2echo
* were

recorded in the temperature range of 5–100 K (Figure 8). The spin–lattice time can be decomposed
into two components, which rates at 5 K have 0.5 MHz (2 µs) and 0.06 MHz (16.6 µs), increasing
with temperature to 1.25 and 0.6 MHz at 100 K, respectively (Figure 8a). The relaxation process
is dominated by a direct process until around 70 K (linear function) after which a higher order
Raman relaxation process becomes more dominant. Both radicals can be described by equations
T−1

1 = A0 + A1 × T + A2 × T5, where the first component is temperature independent and not related
to the relaxation processes, A1 is the direct Raman relaxation, and A2 is multi phonon Raman relaxation
(Table 1). In comparison, dried GO paper [20] showed spin relaxation T1 time of 52 ms at 5 K,
while here it is 17 µs (T1

−1 was 535 Hz at 100 K). The difference lies in the oxygen reduction process,
which produces a larger number of surface defects and causes 3000 times faster electron spin relaxation.
Moreover, a direct relaxation process in GO paper dominates up to 100 K, which as it seems can be
treated as an indicator of a small number of defects. It seems that the reduction process increases the
number of surface defects and by that the relaxation rate, which further starts to be dominated by a
higher order Raman processes already at lower temperature.
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Table 1. Components of different relaxation processes for two paramagnetic centers.

T1A−1 T1B−1 T1GO−1 [20]

A0 = 0.51 s−1 A0 = 0.06 s−1

A1 = 4.4 × 10−3 K−1
·s−1 A1 = 9.0 × 10−4 K−1

·s−1 A1 = 4.7 × 10−4 K−1
·s−1

A2 = 2.8 × 10−11 K−5
·s−1 A2 = 4.2 × 10−11 K−5

·s−1 A2 = 6.6 × 10−9 K−5
·s−1

R2 = 0.9995 R2 = 0.9957
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In the wider picture, electron relaxation studies performed on other carbon materials show
following results: Panich et al. reported graphene oxide heavily doped with Mn2+ ions showing
T1 (from saturation measurements): <10 ns, T1

−1 = 100 MHz [64], for nanographites doped with
Fe2+,3+ T1 < 10−9 s [60], Rao et al. showed graphene nanoribbons two spin lattice relaxation processes:
T1
−1 ~0.014 MHz and 0.1 MHz [69]. For graphene, T1

−1~T2
−1*~3 MHz was reported at 100 K [21]

(and 0.7 kHz at room temperature to 1.45 kHz at helium temperature). In partially reduced graphene
oxide (prGO) with an average flake size of ~2 µm the relaxation times were 17.5 MHz (T1

−1 = T2
−1)

for which the reduction caused the increase of the spin–lattice relaxation rate T1
−1 by a factor of

~5.8 [13]. For Ca-doped fibers, the T1
−1 is lower at 100 K around 1.25 MHz, compared to undoped

fibers mentioned above at 17.5 MHz.
The spin–spin times T∗2 were fitted by a single exponential function V(t) = A× exp (− t

T∗2
) from

the free induction decay. The phase memory time was evaluated at each temperature from the echo
intensity decay with the increase of the dwell time between two pulses as well as the mono-exponential
function used of the form V(2τ) = A× exp (− 2τ

Tm
). T1 is much longer than Tm, 27 times longer in 5 K,

which suggests that Tm is dominated by molecular motions.
The phase memory and spin–spin relaxation rates grow with the increase of temperature,

as suggested by the broadening of the EPR line (Figure 8b). The spin packets are ~12.2 times narrower
than the line width (T2

* = 35.8 ns, Tm = 219.1 ns). The motional narrowing of the spin packets (decrease
of the relaxation rate) corresponds to the decrease of the EPR line (T2

−1*), which may be caused only
by motional narrowing of spin packets. As far as it goes for the tendency, the decrease of the phase
memory relaxation rate is similar to the one observed in graphene oxide [20] and it seems natural
for this sample. The difference in the case of GO lies in the presence of oxygen rich groups and their
re-orientations under the influence of a magnetic field. This process can be caused by motion of the
centers due to the increase of temperature or by an exchange interaction between individual resonance
frequencies of the paramagnetic centers.

4. Conclusions

In summary, we used calcium containing capillaries during hydrothermal fabrication of graphene
oxide dispersion to form Ca2+ ions doped reduced graphene oxide fibers. Formed fibers appeared
to have lateral alignment of GO flakes around the fiber axis with stronger inter-flake connections
developed by cross-linking points of divalent Calcium ions. Doped fibers exhibit tensile strength in
the order of 4.7 MPa and an elastic modulus of 360 MPa. Nanoindentation tests performed on site of
the fiber showed the following values: E = ~3.3 GPa and H = ~66.7 MPa. The changed flake ordering
caused by Ca2+ ions increased electrical conductivity and decreased the electron spin–lattice relaxation
rate T−1

1 . The electron spin relaxation rate increased in comparison to the results obtained previously for
hydrothermally produced GO paper, whereas the specific conductivity also increased to ~20–40 S·m−1

(compared to 2–7 S·m−1 undoped rGO fibres/films and 1.2 × 10−4 S·m−1 for GO paper). The sample
is paramagnetic, exhibiting two EPR signals resulting from two different sp3 defects (-OH groups),
other structural defects, as well as conduction electrons. The relaxation T1 rates can be described by a
direct process and multiphoton Raman scattering for temperatures reaching 100 K. Thermal reduction
increases the T1 relaxation rate. Removing the oxygen surface groups makes the formation of local
phonons easier, which ends with a T5 relaxation order dependence.

Our results point to an easy way of tuning the properties of hydrothermally formed graphene
oxide-based structures by replacing containers with calcium, which could bridge the flakes by
inter-connections and enhance the flake–flake interactions, thus forming more conductive fibers for
multiple applications, including electronics, bio-electronics, and cell-culture applications.
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19. Tadyszak, K.; Augustyniak-Jabłokow, M.A.; Więckowski, A.B.; Najder-Kozdrowska, L.; Strzelczyk, R.;
Andrzejewski, B. Origin of electron paramagnetic resonance signal in anthracite. Carbon 2015, 94, 53–59.
[CrossRef]

20. Augustyniak-Jabłokow, M.A.; Tadyszak, K.; Strzelczyk, R.; Fedaruk, R.; Carmieli, R. Slow spin relaxation of
paramagnetic centers in graphene oxide. Carbon 2019, 152, 98–105. [CrossRef]
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51. Eng, A.Y.S.; Poh, H.L.; Šaněk, F.; Maryško, M.; Matějková, S.; Sofer, Z.; Pumera, M. Searching for Magnetism in
Hydrogenated Graphene: Using Highly Hydrogenated Graphene Prepared via Birch Reduction of Graphite
Oxides. ACS Nano 2013, 7, 5930–5939. [CrossRef] [PubMed]

52. Xie, L.; Wang, X.; Lu, J.; Ni, Z.; Luo, Z.; Mao, H.; Wang, R.; Wang, Y.; Huang, H.; Qi, D.; et al. Room temperature
ferromagnetism in partially hydrogenated epitaxial graphene. Appl. Phys. Lett. 2011, 98, 193113. [CrossRef]

53. Feng, Q.; Tang, N.; Liu, F.; Cao, Q.; Zheng, W.; Ren, W.; Wan, X.; Du, Y. Obtaining High Localized Spin
Magnetic Moments by Fluorination of Reduced Graphene Oxide. ACS Nano 2013, 7, 6729–6734. [CrossRef]
[PubMed]

54. Kim, H.-J.; Cho, J.-H. Fluorine-induced local magnetic moment in graphene: A hybrid DFT study. Phys. Rev. B
2013, 87, 174435. [CrossRef]

55. Sepioni, M.; Nair, R.R.; Rablen, S.; Narayanan, J.; Tuna, F.; Winpenny, R.; Geim, A.K.; Grigorieva, I.V. Limits
on Intrinsic Magnetism in Graphene. Phys. Rev. Lett. 2010, 105, 207205. [CrossRef]

56. Lehtinen, P.O.; Foster, A.S.; Ayuela, A.; Krasheninnikov, A.; Nordlund, K.; Nieminen, R.M. Magnetic
Properties and Diffusion of Adatoms on a Graphene Sheet. Phys. Rev. Lett. 2003, 91, 017202. [CrossRef]

57. Boukhvalov, D.W. Modeling of hydrogen and hydroxyl group migration on graphene. Phys. Chem. Chem. Phys.
2010, 12, 15367–15371. [CrossRef]

http://dx.doi.org/10.1063/1.4996914
http://dx.doi.org/10.5714/CL.2010.11.2.090
http://dx.doi.org/10.1063/1.4869026
http://dx.doi.org/10.1109/TMAG.2018.2873508
http://dx.doi.org/10.1016/j.compscitech.2014.06.012
http://dx.doi.org/10.1002/pc.23809
http://dx.doi.org/10.1080/00405000.2018.1454088
http://dx.doi.org/10.1088/2053-1591/aab926
http://dx.doi.org/10.1016/j.mattod.2015.06.009
http://dx.doi.org/10.1103/PhysRevB.77.073412
http://dx.doi.org/10.1021/nl802810g
http://dx.doi.org/10.1088/0034-4885/73/5/056501
http://dx.doi.org/10.1063/1.3628245
http://dx.doi.org/10.1103/PhysRevB.75.125408
http://dx.doi.org/10.1103/PhysRevB.79.075413
http://dx.doi.org/10.1038/nphys2183
http://dx.doi.org/10.1021/nn4016289
http://www.ncbi.nlm.nih.gov/pubmed/23777325
http://dx.doi.org/10.1063/1.3589970
http://dx.doi.org/10.1021/nn4027905
http://www.ncbi.nlm.nih.gov/pubmed/23869665
http://dx.doi.org/10.1103/PhysRevB.87.174435
http://dx.doi.org/10.1103/PhysRevLett.105.207205
http://dx.doi.org/10.1103/PhysRevLett.91.017202
http://dx.doi.org/10.1039/c0cp01009j


Nanomaterials 2020, 10, 957 15 of 15

58. Ganguly, A.; Sharma, S.; Papakonstantinou, P.; Hamilton, J. Probing the Thermal Deoxygenation of Graphene
Oxide Using High-Resolution In Situ X-ray-Based Spectroscopies. J. Phys. Chem. C 2011, 115, 17009–17019.
[CrossRef]

59. Mattevi, C.; Eda, G.; Agnoli, S.; Miller, S.; Mkhoyan, K.A.; Celik, O.; Mastrogiovanni, D.; Granozzi, G.;
Garfunkel, E.; Chhowalla, M. Evolution of Electrical, Chemical, and Structural Properties of Transparent and
Conducting Chemically Derived Graphene Thin Films. Adv. Funct. Mater. 2009, 19, 2577–2583. [CrossRef]

60. Panich, A.M.; Shames, A.I.; Tsindlekht, M.I.; Osipov, V.Y.; Patel, M.; Savaram, K.; He, H. Structure and
Magnetic Properties of Pristine and Fe-Doped Micro- and Nanographenes. J. Phys. Chem. C 2016, 120,
3042–3053. [CrossRef]

61. Tadyszak, K.; Rudowicz, C.; Ohta, H.; Sakurai, T. Electron magnetic resonance data on high-spin Mn
(III; S = 2) ions in porphyrinic and salen complexes modeled by microscopic spin Hamiltonian approach.
J. Inorg. Biochem. 2017, 175, 36–46. [CrossRef] [PubMed]

62. Tadyszak, K.; Rudowicz, C. EMR data on Mn(III; S = 2) ions in MnTPPCl complex modelled by microscopic
spin hamiltonian approach. Acta Phys. Pol. A 2017, 132, 15–18. [CrossRef]

63. Rudowicz, C.; Tadyszak, K. Single magnetic 3dNadatoms on surfaces—Proper outlook on compatibility of
orthorhombic zero-field splitting parameters and their relationships with magnetic anisotropy quantities.
Polyhedron 2017, 127, 126–134. [CrossRef]

64. Panich, A.M.; Shames, A.I.; Aleksenskii, A.E.; Dideikin, A. Magnetic resonance evidence of manganese–graphene
complexes in reduced graphene oxide. Solid State Commun. 2012, 152, 466–468. [CrossRef]

65. Panich, A.M.; Shames, A.I.; Sergeev, N.A. Paramagnetic Impurities in Graphene Oxide. Appl. Magn. Reson.
2013, 44, 107–116. [CrossRef]
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