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Abstract: Recent experimental advancements have enabled the creation of tunable localized
electrostatic potentials in graphene/hexagonal boron nitride (hBN) heterostructures without concealing
the graphene surface. These potentials corral graphene electrons yielding systems akin to
electrostatically defined quantum dots (QDs). The spectroscopic characterization of these exposed
QDs with the scanning tunneling microscope (STM) revealed intriguing resonances that are consistent
with a tunneling probability of 100% across the QD walls. This effect, known as Klein tunneling,
is emblematic of relativistic particles, underscoring the uniqueness of these graphene QDs. Despite
the advancements with electrostatically defined graphene QDs, a complete understanding of their
spectroscopic features still remains elusive. In this study, we address this lapse in knowledge by
comprehensively considering the electrostatic environment of exposed graphene QDs. We then
implement these considerations into tight binding calculations to enable simulations of the graphene
QD local density of states. We find that the inclusion of the STM tip’s electrostatics in conjunction
with that of the underlying hBN charges reproduces all of the experimentally resolved spectroscopic
features. Our work provides an effective approach for modeling the electrostatics of exposed graphene
QDs. The methods discussed here can be applied to other electrostatically defined QD systems that
are also exposed.

Keywords: graphene; quantum dots; p-n junctions; nanoelectronics

1. Introduction

The endeavor to corral graphene’s massless Dirac fermions has led to the development of
multiple techniques and novel procedures for charge carrier confinement. These techniques include
the use of lithographic patterning [1–4], ultra-high vacuum chemical synthesis [5–8], controlled
deposition of adatoms [9], and application of perpendicular magnetic fields [10–12]. However, such
techniques require either complicated fabrication procedures or rely on rigid material synthesis schemes.
Recently, a flexible procedure was developed to corral graphene charges that employs a scanning
tunneling microscope (STM) and a graphene/hexagonal boron nitride (hBN) heterostructure [13,14].
This procedure works by using an STM tip to locally induce charge in the underlying hBN, thus creating
persistent and embedded local gates within hBN. These local gates enable the corralling of electrons in
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an exposed circular p-n junction, which effectively behaves as a quantum dot (QD) [14]. Such QDs
have been used to develop novel electronic devices such as Berry phase switches [15] and have enabled
the unprecedented visualization of correlated relativistic charges under large magnetic fields [16].
Despite the rampant progress on these exposed graphene QDs, their spatially resolved spectroscopic
characterization still remains not well understood.

An important commonality in existing works on exposed graphene QDs is that the influence of
the STM tip has been excluded in the theoretical modeling of QD states. This is in spite of several
experiments that show the STM tip itself can induce a small QD [17], and even create coulomb-like
confinement [18]. In this study, we address the influence of the STM tip on exposed graphene QDs
by comparing our visualization of QD states with tight-binding (TB) calculations that include the
electrostatics of the STM tip and underlying charged hBN. Our results demonstrate that accounting
for the influence of the STM tip is necessary to reproduce key features seen in the experimental data.
Additionally, we use the insight from our study to show how the tip’s influence can be mitigated by
choosing an appropriately sized QD.

2. Materials and Methods

The experiments we present in this work were performed on heterostructures composed of a
single graphene layer on a 45 nm thick hBN resting on a SiO2/p-doped Si substrate as depicted in
Figure 1a. Both graphene and hBN were mechanically exfoliated from bulk crystals. The graphene/hBN
heterostructure was assembled using a standard polymer-based transfer technique [19]. Following this
assembly, the surface of graphene was cleared of debris and polymer residue using a Cypher S atomic
force microscope from Asylum (High Wombe, UK) while in contact mode [20]. We perform this step to
ensure the absence of contaminants that could affect the electronic properties of our QDs. The creation
and characterization of graphene QDs were performed with a commercial low-temperature STM
(Erligheim, Germany) from Createc operating at 4.8 K.
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Figure 1. Schematic layout and potential of an exposed graphene Quantum Dot (QD). (a) Schematic 
showing the scanning tunneling microscope (STM) circuit and graphene/hexagonal boron nitride 
Figure 1. Schematic layout and potential of an exposed graphene Quantum Dot (QD). (a) Schematic
showing the scanning tunneling microscope (STM) circuit and graphene/hexagonal boron nitride (hBN)
heterostructure. The circular p-doped region outlines the QD created by applying a bias voltage (VS)
pulse between the tip and the graphene/hBN heterostructure while holding the back-gate voltage (VG)
constant. (b) Top: UD(r) (red curve) is the potential of the QD which is outlined by tracing along the
Dirac point in each cone. Bottom: Side-view schematic of the QD in a graphene/hBN heterostructure
for VG > 0. The application of a high electric field by the STM tip induces a localized net charge
accumulation after exciting defects in hBN. Applying VG with opposite polarity to charges in hBN
induces the spatial variation in doping on graphene which forms the QD boundaries.

Figure 1a shows a schematic of the STM circuit used. A sample bias (VS) is applied between
graphene and the grounded STM tip to incite a tunneling current between them and enable probing
of electronic states. The back-gate (VG) connected to the p-doped Si layer is used to remotely tune
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graphene’s Fermi level (EF). We use these control voltages to create a graphene QD by applying a
VS pulse between graphene and the STM tip while maintaining VG at a constant value [13–16,21].
During the application of this pulse, defects in hBN underneath the tip become ionized with opposite
polarity to VG. The end result of this process is depicted in Figure 1b for the case where VG > 0. At a
fixed positive value of VG, graphene becomes globally n-doped except for the circular region where
the pulse was applied. In this region, an excess of negative charges embedded in the hBN acts as a
local back-gate that p-dopes graphene. The resulting spatial variation of the charge neutrality point
(also known as the Dirac point in graphene) with respect to EF (dashed orange line) gives rise to an
electrostatic potential UD(r). A profile of this electrostatic potential is outlined in Figure 1b (red curve)
and specifies the boundary of the exposed graphene QD.

3. Results

To map and visualize the electronic properties of the states in the exposed graphene QD,
we use scanning tunneling microscopy (STM) and spectroscopy (STS). Figure 2a shows an STM
topographic map of graphene’s ultra-flat surface after the creation of a QD. For the case where
VG > 0, the approximate regions where graphene is p and n-doped are colored brown and green,
respectively. With STS we can obtain the differential conductance (dI/dVS) at a specific point on
graphene underneath the STM tip. This dI/dVS signal is proportional to graphene’s local density of
states (LDOS) [22]. By performing this measurement at different points within the QD, we reveal the
coarse spatial dependence of the QD states. In Figure 2b we plot dI/dVS as a function of VS taken at
the center (black curve) and boundaries (blue and orange curves) of the QD at points corresponding to
the colored crosses in Figure 2a. These curves clearly display differences between the signals recovered
at the center and edges of the QD. At the edges, the dI/dVS curves have prominent peaks while at the
center, these peaks are suppressed and broadened.

To attain a more comprehensive understanding of the spatial dependence of the exposed graphene
QD’s LDOS, we obtain dI/dVS(VS) curves at multiple points along the dashed cyan line in Figure 2a.
Figure 2c–e show the compiled dI/dVS(VS) curves plotted as a function of distance, where the origin is
defined at the center of the graphene QD. Additionally, each of these image plots are taken at different
values of VG, which offsets the global graphene doping. Following the schematic in Figure 1b, as VG
changes, EF also changes relative to the QD’s potential (UD(r)). For Figure 2c, EF is near the top of the
potential UD(r), which creates a shallow QD. From the image plots in Figure 2d,e, it is apparent that as
VG decreases (hole density increases), the QD gains depth and width as the difference between EF and
UD(r) increases.

The patterns and features observed in Figure 2b–e can be explained by considering the behavior of
massless Dirac fermions corralled within a circular and harmonic electrostatic potential. Due to Klein
tunneling, a p-n junction on graphene perfectly transmits quasiparticles at normal incidence to the
junction but reflects them at larger incident angles [23–25]. Therefore, in a circular potential, electrons
with high angular momenta have oblique incidence with the barrier and become internally reflected.
This leads to charge carrier trapping and the formation of resonant states [26–30] with pronounced
intensities near the boundary of the circular potential, in agreement with Figure 2b. Additionally,
in Figure 2b we see evidence of the internal reflection due to Klein tunneling. This can be seen in
the manifestation of differing peak widths between the dI/dVS curve taken at the QD’s center and
curves taken at the QD’s edges. As electrons with high angular momenta get trapped near the edges,
these states exhibit longer trapping times and thus narrower spectroscopic peaks [14,17]. Moreover,
the bright nodal features in Figs 2c–e can be attributed to the eigenstates of the exposed graphene
QD [14]. The profile of the confinement potential in this QD is parabolic, akin to that of a harmonic
oscillator. However, unlike Schrödinger fermions in a harmonic potential, these nodal patterns are
unevenly spaced in energy. Instead, the nodal patterns formed by these massless Dirac fermions
become more closely packed as VS decreases (see. Figure 2d) [14,17,28–30].
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edges of the QD (~ ௌܸ = −100 mV). A clear downward bending of the QD states is also visible near the 
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experiments, spatial variations in doping across graphene originate from localized hBN defect 
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tip will create a mobile doping profile that changes with the STM tip’s position. An exact solution for 
the charge density in graphene would require inaccessible experimental parameters such as the 

Figure 2. Scanning Tunneling Spectroscopy (STS) of an exposed graphene QD. (a) Topography of
graphene acquired with the scanning tunneling microscope. Regions where graphene is n and p-doped
are indicated with green and brown color scales, respectively. (b) Differential conductance spectra
(dI/dVS) obtained at the corresponding crosses indicated in (a). Each spectrum is offset for clarity and
was taken with VG = 22 V. (c–e) Spatial dependence of dI/dVS spectra with different VG, which is
indicated in each panel. These images map the spatial dependence of graphene QD states obtained
along the dashed cyan line in (a). Dashed vertical lines in (d) correspond to spectra displayed in (b).
Tunneling parameters: VS = −0.1 V, I = 1 nA, Vac = 2 mV.

In addition to the well understood features described above, there are some features that lack
explanation. For example, all three plots in Figure 2c–e show a bright skirt-like feature around the
edges of the QD (~VS = −100 mV). A clear downward bending of the QD states is also visible near the
QD boundaries for all values of VG. This bending effect is particularly pronounced in Figure 2c, where
the strong distortion of states creates an envelope-like feature. As we will soon show, these features
can be reproduced after comprehensive consideration of the QD electrostatic environment.

4. Discussion

To study the effect of the STM tip on exposed graphene QDs, we use simplified electrostatics
and a numerical tight binding model. We first discuss our considerations for the electrostatics. In our
experiments, spatial variations in doping across graphene originate from localized hBN defect charges
(see Figure 1b) and inadvertent gating from the STM tip. To first approximation, the localized hBN
defect charges will create a fixed spatially varying doping profile. On the other hand, the STM tip
will create a mobile doping profile that changes with the STM tip’s position. An exact solution for the
charge density in graphene would require inaccessible experimental parameters such as the spatial
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distribution of hBN defect charges as well as the in-situ STM tip’s geometry. To circumvent these
difficulties we proceed by making a set of simple approximations for the doping profiles due to the
hBN defects and the STM tip.

We first focus on the doping profile due to charged defects in the underlying hBN. The potential
profile of a graphene QD can be extracted by tracking the spatial evolution of the region with reduced
dI/dVS intensity. This region corresponds to the spatially varying Dirac point and can be seen in
measurements similar to those shown in Figure 2c–e. Figure 3a shows an example of an extracted
potential profile UD(r) (red curve). This UD(r) is then converted to a doping profile n(r) by the

relation n(r) = sgn[UD(r)] ∗
UD(r)

2

}2v2
Fπ

; with vF = 1× 106 m/s, where UD(r) replaces the energy term [31].

The resulting plot after smoothing is shown in Figure 3b. We note that the STM data in Figure 3a, which
is the source of our estimate for the hBN defect potential, necessarily include the effect of the STM tip.
To remove this effect so that we may treat it separately, we preemptively reduce the lateral extent of the
potential profile in Figure 3b to 65% while leaving the energy scale unchanged. The resulting adjusted
charge density profile is shown in Figure 3c.
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(see Figure 4a). The resulting two-dimensional (2D) image plot displays changes in the tunneling 
current between the tip and graphene as we vary their relative band alignments. In Figure 4a we 
observe several confined states appearing as a result of the STM tip’s local top gating effect, which 
were previously reported by Y. Zhao et al. [17]. As we vary ௌܸ for different values of ܸீ  we obtain 
a ݀ܫ/݀ ௌܸ signal that includes the contribution from two channels during the tunneling process. This 
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graphene at an energy determined by the sample bias. Since the horizontal axis ܸீ  roughly indicates 

Figure 3. Charge density profile induced on graphene by charged hBN defects. (a) Experimentally
approximated QD potential profile. The underlying two-dimensional (2D) plot shows the spatial
dependence of QD states (similar to Figure 2c–e). The red line (same as UD(r) in Figure 1b) represents
the extracted potential profile for the graphene QD. (b) QD’s charge density profile converted and
smoothed from the extracted potential profile in (a). (c) QD’s charge density profile used in our
tight-binding (TB) calculation after adjustment. This profile’s x-axis is 65% of the profile in (b).

After obtaining the induced charge density profile on graphene due to the charged hBN defects
alone, we proceed to estimate the induced charge density due to the STM tip. In our experiments,
we use a tip made of tungsten. Since tungsten has a different work function than graphene, there is a
finite work function mismatch (∆Φ) between the STM tip and graphene. In the tunneling regime, the
STM tip remains at a distance ~7.5 Å from the graphene surface. Because of the finite ∆Φ, there is a
shift of the graphene bands even when VS = 0 and VG = 0. For |∆Φ| �|VS|, the polarity and intensity
of the tip induced doping is dominated by ∆Φ. Therefore, in this regime we can acquire an estimate
for the doping profile induced by the STM tip by obtaining an approximation of ∆Φ.

To get an estimate of ∆Φ and ultimately the electrostatic effect of the STM tip, we measure and
plot the dependence of dI/dVS as function of VS and VG on pristine graphene prior to creating a QD
(see Figure 4a). The resulting two-dimensional (2D) image plot displays changes in the tunneling
current between the tip and graphene as we vary their relative band alignments. In Figure 4a we
observe several confined states appearing as a result of the STM tip’s local top gating effect, which
were previously reported by Y. Zhao et al. [17]. As we vary VS for different values of VG we obtain a
dI/dVS signal that includes the contribution from two channels during the tunneling process. This is a
common occurrence for low dimensional systems with low charge density [32,33]. The first channel
corresponds to the differential tunneling current between states of the STM tip and states in graphene



Nanomaterials 2020, 10, 1154 6 of 12

at an energy determined by the sample bias. Since the horizontal axis VG roughly indicates changes in
n and because EF ∝ sgn[n] ×

√
|n| for graphene, tip-induced states exhibit inverted “S”-shape fans in

this channel. To obtain an estimate for ∆Φ, however, we focus on the second channel. This channel
corresponds to the differential tunneling current between the topmost filled states in graphene and
states in the STM tip. Consequently, signal traces in this channel will manifest as lines along which
graphene retains a constant charge density n [21,34]. One such line appears in Figure 4a enclosed by an
orange box. This feature results from the charging of a tip-induced confined state as it aligns with EF.
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Figure 4. Determination of the charge density profile induced by the STM tip on graphene.
(a) Experimentally determined dI/dVS(VG, VS) on pristine graphene. This two-dimensional (2D)
plot is used to determine the magnitude of the STM tip’s band shifting effect on graphene. The inverted
“S” shaped features correspond to direct tunneling into tip-induced confined states. Diagonal features
correspond to the charging of spectroscopic features as they coincide with EF. The dashed orange box
encloses a charging feature due to a tip-induced state and the green dashed line outlines a dI/dVS

suppression belonging to graphene’s charge neutrality point (CNP). The dashed white line indicates
where VS = 0. Tunneling parameters: VS = −0.2 V, I = 1 nA, Vac = 2 mV. (b) Charge density profile
induced on graphene by the STM tip. The induced charge density intensity is extracted from the
extrapolation in (a). The shape of this density profile is determined by assuming the tip to be a charged
sphere with a radius of 80 nm.

After identifying the origin of the tunneling features in Figure 4a for different band alignment
configurations, we are ready to obtain an estimate for ∆Φ. First, we note that for pristine graphene
and for ∆Φ = 0, graphene’s charge neutrality (CNP) point will cross the Fermi level at VS = 0 mV
and VG = 0 V in a dI/dVS (VG, VS) plot. However, because ∆Φ , 0, graphene’s CNP will cross the
Fermi level at nonzero VG and VS values. To this end, we find the value of VS at which graphene’s
charge neutrality point (CNP) crosses EF at VG = 0. With this VS value we can estimate the STM tip’s
top gating effect due to ∆Φ on the surface of graphene in the absence of gating from below. We follow
the slope of the charging feature inside the orange box and trace a green dashed line with the same
slope along the furthest dark fringe on the right (see Figure 4a). The suppression of dI/dVS along this
dark fringe indicates where graphene’s CNP crosses EF. Finally, we extend this green dashed line
downward and find that it crosses VG = 0 at VS ≈ −290 mV. We note that this value for VS is greater in
magnitude than the VS range in our measurements (−100 m < VS <100 mV). Thus, we can reasonably
assume that the effect of ∆Φ dominates within our experimental VS range used to map the QD states.

With an estimate for the graphene band shift due to ∆Φ between the STM tip and graphene we
can approximate the profile for the charge induced on graphene by the STM tip. If we assume the STM
tip’s apex and graphene act as a parallel plate capacitor with a 7.5 Å separation, then the VS ≈ −290 mV
offset corresponds to a maximum tip induced charge density of ∼ 2.14×1012 cm−2. We calculated the
shape of the tip’s doping profile by using a standard Poisson solver; where the tip is modeled by a
charged sphere with an 80 nm radius that is placed 7.5 Å away from a metal surface. The tip radius
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and distance to graphene that we used are both consistent with values found in the literature [18,35,36].
With this analysis we acquire the tip induced doping profile shown in Figure 4b.

We obtained approximations for the charge density profiles induced on graphene due to charged
defects in the underlying hBN and the STM tip. We proceed by adding these contributions to obtain
a potential profile resulting from the summation of the induced charge densities. After adding the
charge densities induced on graphene from Figures 3d and 4b, we convert the resulting charge density

n(r) into a potential profile UD(r); where UD(r) = sgn[n(r)] ∗ }vF

√
π
∣∣∣n(r)∣∣∣. Figure 5a–c shows 2D

maps of the potentials resulting from the cumulative charge densities of the hBN defects and STM tip.
The color scale corresponds to the potential value; where red and blue indicate high and low values,
respectively. Notably, each of the potential maps differ because the position of the tip changes between
them. As a comparison, we also show a 2D potential map without the effect of the STM tip (Figure 5d).
When the STM tip is at the center (Figure 5a) or 50 nm away from the center (Figure 5b), the potential
map has the highest value at the STM tip’s location, as indicated by the red dot at the corresponding
locations. Additionally, we plot line cuts of the potential maps in Figure 5e–g. Here the QD’s potential
reveals a distorted profile with a prominent peak. For maps with the STM tip 100 nm away from the
center (Figure 5c), the potential profile has two separate peaks (Figure 5g); effectively becoming an
asymmetric double QD system.

Nanomaterials 2020, 10, x FOR PEER REVIEW 7 of 11 

 

The tip radius and distance to graphene that we used are both consistent with values found in the 
literature [18,35,36]. With this analysis we acquire the tip induced doping profile shown in Figure 4b. 

We obtained approximations for the charge density profiles induced on graphene due to 
charged defects in the underlying hBN and the STM tip. We proceed by adding these contributions 
to obtain a potential profile resulting from the summation of the induced charge densities. After 
adding the charge densities induced on graphene from Figures 3d and 4b, we convert the resulting 
charge density ݊(ݎ) into a potential profile ܷ(ݎ); where ܷ(ݎ) ൌsgnሾ݊(ݎ)ሿ ∗ ݒிඥ(ݎ)݊|ߨ|. Figure 
5a–c shows 2D maps of the potentials resulting from the cumulative charge densities of the hBN 
defects and STM tip. The color scale corresponds to the potential value; where red and blue indicate 
high and low values, respectively. Notably, each of the potential maps differ because the position of 
the tip changes between them. As a comparison, we also show a 2D potential map without the effect 
of the STM tip (Figure 5d). When the STM tip is at the center (Figure 5a) or 50 nm away from the 
center (Figure 5b), the potential map has the highest value at the STM tip’s location, as indicated by 
the red dot at the corresponding locations. Additionally, we plot line cuts of the potential maps in 
Figure 5e–g. Here the QD’s potential reveals a distorted profile with a prominent peak. For maps 
with the STM tip 100 nm away from the center (Figure 5c), the potential profile has two separate 
peaks (Figure 5g); effectively becoming an asymmetric double QD system. 

 
Figure 5. Simulation of the local density of states (LDOS) of an exposed graphene QD with an STM 
tip at a fixed position. (a–c) Spatial 2D map of graphene’s Dirac point energy with respect to ܧி after 
adding the contributions from hBN defects (Figure 3c) and the STM tip (Figure 4b). The STM tip’s 
location varies for each of these maps. (d) Spatial 2D map of the graphene Dirac point energy with 
respect to ܧி determined by only considering the contribution from hBN defects (Figure 3c). (e–h) 
Respective potential profile line cuts along the yellow dashed lines in (a–d). (i–l) Calculated LDOS 
distributions for each corresponding potential map. These simulations reveal the effect of the STM tip 
on the QD states for tip positions placed at different distances from the QD’s center. 

We now discuss our numerical TB calculations, which use the potential profiles from Figure 5a–
d. These calculations allow us to simulate the QD’s LDOS in the presence of a fixed STM tip. Figure 
5i shows the calculated LDOS distribution of a graphene QD when the STM tip is fixed at the center. 
In this image we note several distinct nodes that correspond to graphene QD states [26–30]. In Figure 
5j,k we show the calculated LDOS distributions when the STM tip is fixed 50 nm and 100 nm away 

Figure 5. Simulation of the local density of states (LDOS) of an exposed graphene QD with an STM
tip at a fixed position. (a–c) Spatial 2D map of graphene’s Dirac point energy with respect to EF after
adding the contributions from hBN defects (Figure 3c) and the STM tip (Figure 4b). The STM tip’s
location varies for each of these maps. (d) Spatial 2D map of the graphene Dirac point energy with
respect to EF determined by only considering the contribution from hBN defects (Figure 3c). (e–h)
Respective potential profile line cuts along the yellow dashed lines in (a–d). (i–l) Calculated LDOS
distributions for each corresponding potential map. These simulations reveal the effect of the STM tip
on the QD states for tip positions placed at different distances from the QD’s center.
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We now discuss our numerical TB calculations, which use the potential profiles from Figure 5a–d.
These calculations allow us to simulate the QD’s LDOS in the presence of a fixed STM tip. Figure 5i
shows the calculated LDOS distribution of a graphene QD when the STM tip is fixed at the center. In this
image we note several distinct nodes that correspond to graphene QD states [26–30]. In Figure 5j,k
we show the calculated LDOS distributions when the STM tip is fixed 50 nm and 100 nm away from
the QD’s center. As a comparison we also show the calculated LDOS of a QD that excludes the effect
of the STM tip (Figure 5l). When the tip is fixed at the QD’s center (Figure 5i) or 50 nm away from
the center (Figure 5j), several new states with higher LDOS appear at the tip’s location. We also note
that the LDOS distribution and intensities away from the tip’s location (in Figure 5i,j) are similar to
the calculated LDOS that excludes the tip’s effect (Figure 5l). When the tip is fixed 100 nm away
from the QD’s center, we observe a new state with a much higher LDOS intensity at the tip’s position
(Figure 5k). Similar to the previous cases, the LDOS distribution and intensities away from the tip’s
location remains unaffected.

After demonstrating that graphene QD states are affected by an STM tip at a fixed position with
our calculations, we study the case for a movable STM tip, which is more akin to our experiment.
In measurements such as those shown in Figure 2c–e, each vertical array of pixels in the image
corresponds to a dI/dVS curve acquired at the location of the STM tip. Consequently, to compare our
experimental results with our simulations, we calculate the QD’s LDOS with the STM tip located at
each position along a line that crosses the QD. After obtaining the LDOS distribution from each profile
(similar to those in Figure 5e–g), we compile the single dI/dVS curves calculated specifically at the
STM tip’s location for each point within the QD and along the line that crosses the QD. In Figure 6a we
show the result of this compilation process.

We now consider how varying VG affects the QD states in our calculation. By changing VG the
global electron and hole densities in graphene are offset. We simulate this effect by shifting the charge
density profile due to the hBN defects (see Figure 3c). Specifically, this profile is shifted up to simulate
an increase in hole density in graphene. Onto this shifted profile we add the unchanged STM tip’s
charge density profile (Figure 4b) and perform the sequence of calculations as described for Figure 6a.
Figure 6b,c show the complete results for two additional values of VG.

To highlight the importance of the STM tip’s influence on our exposed graphene QDs, we show
LDOS calculations at different VG values that omit the tip’s presence (Figure 6d–f). Clearly, by
comparing these simulations with measurements from Figure 2c–e and the simulations in Figure 6a–c,
it is evident that a tip-inclusive model achieves better agreement with our experimental results. Similar
agreement can be seen with other experimental results as well [14–16]. Moreover, the model that omits
the STM tip (Figure 6d–f) lacks several key features from our experiment. For example, the deflection
of states near the edges of the QD are missing in Figs 6d–f. On the other hand, the tip-inclusive model
captures this feature consistently. In addition, we note that the presence of a continuous bright line that
wraps around the edge of the QD’s profile for higher VG values is shared by the experiment (Figure 2c)
and the comprehensive model (Figure 6b), but absent in the model that ignores the tip. Finally, for the
graphene QD from the experiment we note that the QD states are less distorted at higher values of
VG, see for example Figure 2e. This insightful trend is also displayed in the comprehensive model
indicating that the effect of the tip can be mitigated when a sufficiently large QD is achieved.
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Figure 6. Simulation of the LDOS in a graphene QD with a moving STM tip for different VG

configurations. (a–c) Simulated LDOS spectra along a line that crosses the center of a graphene QD.
This simulation includes the influence of the STM tip. The LDOS spectra at each position is calculated
with the tip fixed at that location. (d–f) Simulated LDOS spectra along a line that crosses the center
of the graphene QD without considering the effect of the STM tip. The potentials induced by hBN
defects used in (a–c) are the same as those used in (d–f), respectively. By comparing our results that
include the effect of the STM tip (a–c) with those that exclude it (d–f), we find that a comprehensive
treatment of the QD electrostatic environment is necessary to achieve agreement between theory and
the experimental results from Figure 2c–e.

5. Conclusions

In conclusion, we showed that incorporating the STM tip’s electrostatics in conjunction with that of
the underlying hBN charges enables a more complete understanding of the experimental spectroscopic
features of exposed graphene QDs. We compared experimental STM data obtained on graphene
QDs with simulations that include the tip-induced potential as well as with simulations that neglect
this potential. The agreement between experiments and simulations is greater when the simulations
include the influence of the tip. In particular, the experimentally observed bright envelope of the
potential and the deflection of states close to the QD edge are only reproduced when the tip-induced
potential is included. Our results highlight the importance of considering the effect of the STM tip
when interpreting spectroscopic characterization of exposed graphene QD states. Our analysis also
reveals the intriguing possibility of studying the interplay between states confined by the potential due
to hBN defects and the potential due to the STM tip (see Figure 5k). Studies that seek to reduce such
interplay may use insights from our simulations to mitigate the tip’s effect by tuning VG. Additionally,
the interaction between these two QDs could potentially be used to emulate relativistic molecular
behavior or other complex coupled QD systems [37].
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