Recovery of Neodymium (III) from Aqueous Phase by Chitosan-Manganese-Ferrite Magnetic Beads
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of Manganese-Ferrite
2.3. Synthesis of Chitosan-Manganese Ferrite Magnetic Beads
2.4. Characterization
2.5. pH Study
2.6. Equilibrium Study
2.7. Kinetics
2.8. Desorption Cycles
3. Results
3.1. MnFe2O4 Particles
3.1.1. Characterization
3.1.2. pH Dependence
3.2. CS-MF Beads
3.2.1. Morphology and Elemental Characterization
3.2.2. FTIR, XRD, and Magnetic Evaluation
3.2.3. pH Dependence
3.3. Equilibrium Isotherms
3.4. Kinetics
3.5. Reusability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Moldoveanu, G.A.; Papangelakis, V.G. Hydrometallurgy recovery of rare earth elements adsorbed on clay minerals: I. Desorption mechanism. Hydrometallurgy 2012, 117–118, 71–78. [Google Scholar] [CrossRef]
- Pavel, C.C.; Thiel, C.; Degreif, S.; Blagoeva, D.; Buchert, M.; Schüler, D.; Tzimas, E. Role of substitution in mitigating the supply pressure of rare earths in electric road transport applications. Sustain. Mater. Technol. 2017, 12, 62–72. [Google Scholar] [CrossRef]
- Murthy, Z.V.P.; Choudhary, A. Application of nanofiltration to treat rare earth element (neodymium) containing water. J. Rare Earths 2011, 29, 974–978. [Google Scholar] [CrossRef]
- Das, N.; Das, D. Recovery of rare earth metals through biosorption: An overview. J. Rare Earths 2013, 31, 933–943. [Google Scholar] [CrossRef]
- Pavón, S.; Fortuny, A.; Coll, M.T.; Sastre, A.M. Rare earths separation from fluorescent lamp wastes using ionic liquids as extractant agents. Waste Manag. 2018, 82, 241–248. [Google Scholar] [CrossRef]
- Lapo, B.; Bou, J.J.; Hoyo, J.; Carrillo, M.; Peña, K.; Tzanov, T.; Sastre, A.M. A potential lignocellulosic biomass based on banana waste for critical rare earths recovery from aqueous solutions. Environ. Pollut. 2020, 264, 114409. [Google Scholar] [CrossRef]
- Guibal, E.; Tobin, J.M. Metal-anion sorption by chitosan beads: Equilibrium and kinetic studies. Ind. Eng. Chem. Res. 1998, 37, 1454–1463. [Google Scholar] [CrossRef]
- Kumar, S.; Nair, R.R.; Pillai, P.B.; Gupta, S.N.; Iyengar, M.A.R.; Sood, A.K. Graphene oxide-MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS Appl. Mater. Interfaces 2014, 6, 17426–17436. [Google Scholar] [CrossRef]
- Reddy, D.H.K.; Yun, Y.S. Spinel ferrite magnetic adsorbents: Alternative future materials for water purification? Coord. Chem. Rev. 2016, 315, 90–111. [Google Scholar] [CrossRef]
- Sanchez, C.; Shea, K.; Kitagawa, S. Recent progress in hybrid materials science. Chem. Soc. Rev. 2011, 40, 471–472. [Google Scholar] [CrossRef]
- Xiao, Y.; Liang, H.; Chen, W.; Wang, Z. Synthesis and adsorption behavior of chitosan-coated MnFe2O4 nanoparticles for trace heavy metal ions removal. Appl. Surf. Sci. 2013, 285, 498–504. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, T.; Yan, L.; Guo, X.; Cui, L.; Wei, Q.; Du, B. Preparation of novel cobalt ferrite/chitosan grafted with graphene composite as effective adsorbents for mercury ions. J. Mol. Liq. 2014, 198, 381–387. [Google Scholar] [CrossRef]
- Zhou, L.; Ji, L.; Ma, P.C.; Shao, Y.; Zhang, H.; Gao, W.; Li, Y. Development of carbon nanotubes/CoFe2O4 magnetic hybrid material for removal of tetrabromobisphenol A and Pb(II). J. Hazard. Mater. 2014, 265, 104–114. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.; Zheng, X.; Xu, X.; Zhang, F.; Liu, E.; Wang, Y.; Li, C.; Yan, Y. Preparation of diethylenetriamine-modified magnetic chitosan nanoparticles for adsorption of rare-earth metal ions. New J. Chem. 2017, 47, 7739–7750. [Google Scholar] [CrossRef]
- Galhoum, A.A.; Mahfouz, M.G.; Atia, A.A.; Vincent, T.; Guibal, E. Diethylenetriamine-functionalized chitosan magnetic nano-based particles for the sorption of rare earth metal ions [Nd (III), Dy (III) and Yb (III)]. Cellulose 2015, 22, 2589–2605. [Google Scholar] [CrossRef]
- Galhoum, A.A.; Mafhouz, M.; Abdel-Rehem, S.; Gomaa, N.; Atia, A.; Guibal, E.; Vincent, T. Cysteine-functionalized chitosan magnetic nano-based particles for the recovery of light and heavy rare earth metals: Uptake kinetics and sorption isotherms. Nanomaterials 2015, 5, 154–179. [Google Scholar] [CrossRef] [Green Version]
- Tu, Y.J.; You, C.F.; Lo, S.C.; Chan, T.S.; Chung, C.H. Recycling of neodymium enhanced by functionalized magnetic ferrite. Environ. Technol. 2019, 40, 1592–1604. [Google Scholar] [CrossRef]
- Galindo, R.; Menendez, N.; Crespo, P.; Velasco, V.; Bomati-miguel, O. Journal of Magnetism and Comparison of different methodologies for obtaining nickel nanoferrites. J. Magn. Magn. Mater. 2014, 361, 118–125. [Google Scholar] [CrossRef]
- Hu, L.; De Montferrand, C.; Lalatonne, Y.; Motte, L.; Brioude, A. Effect of cobalt doping concentration on the crystalline structure and magnetic properties of monodisperse CoxFe3−xO4 nanoparticles within nonpolar and aqueous solvents. J. Phys. Chem. C 2012, 116, 4349–4355. [Google Scholar] [CrossRef]
- Lapo, B.; Demey, H.; Zapata, J.; Romero, C.; Sastre, A.M. Sorption of Hg(II) and Pb(II) ions on chitosan-iron (III) from aqueous solutions: Single and binary systems. Polymers 2018, 10, 367. [Google Scholar] [CrossRef] [Green Version]
- Lapo, B.; Demey, H.; Carchi, T.; Sastre, A.M. Antimony removal from water by a chitosan-iron (III) biocomposite. Polymers 2019, 11, 351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demey, H.; Lapo, B.; Ruiz, M.; Fortuny, A.; Marchand, M.; Sastre, A.M. Neodymium recovery by chitosan/iron(III) hydroxide [ChiFer(III)] sorbent material: Batch and column systems. Polymers 2018, 10, 204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, K.L.; Hameed, B.H. Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J. Taiwan Inst. Chem. Eng. 2017, 74, 25–48. [Google Scholar] [CrossRef]
- Meng, Y.; Chen, D.; Sun, Y.; Jiao, D.; Zeng, D.; Liu, Z. Adsorption of Cu2+ ions using chitosan-modified magnetic Mn ferrite nanoparticles synthesized by microwave-assisted hydrothermal method. Appl. Surf. Sci. 2015, 324, 745–750. [Google Scholar] [CrossRef]
- Kosmulski, M. Surface Charging and Points of Zero Charge; CRC Press: Boca Raton, FL, USA, 2009; ISBN 9781420051896. [Google Scholar]
- Menendez, J.; Illan, M.; León, C.; Radovic, L. On the difference between the isoelectric point and the point of zero charge of carbons. Carbon 1995, 33, 1655–1657. [Google Scholar] [CrossRef]
- Babic, B.M.; Milonjic, S.K.; Polovina, M.J.; Kaludierovic, B. Point of zero charge and intrinsic equilibrium constants of activated carbon cloth. Carbon 1999, 37, 477–481. [Google Scholar] [CrossRef]
- Krešić, N. Hydrogeology and Groundwater Modeling; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Auffan, M.; Rose, J.; Proux, O.; Borschneck, D.; Masion, A.; Chaurand, P.; Hazemann, J.L.; Chaneac, C.; Jolivet, J.P.; Wiesner, M.R.; et al. Enhanced adsorption of arsenic onto maghemites nanoparticles: As(III) as a probe of the surface structure and heterogeneity. Langmuir 2008, 24, 3215–3222. [Google Scholar] [CrossRef]
- Madden, A.S.; Hochella, M.F.; Luxton, T.P. Insights for size-dependent reactivity of hematite nanomineral surfaces through Cu2+ sorption. Geochim. Cosmochim. Acta 2006, 70, 4095–4104. [Google Scholar] [CrossRef]
- Aswin, K.; Jeyanthi, J. Adsorption of lead from aqueous solution by manganese ferrite nanoparticles. Asian J. Chem. 2013, 25, 9920–9926. [Google Scholar] [CrossRef]
- Ahalya, K.; Suriyanarayanan, N.; Ranjithkumar, V. Effect of cobalt substitution on structural and magnetic properties and chromium adsorption of manganese ferrite nano particles. J. Magn. Magn. Mater. 2014, 372, 208–213. [Google Scholar] [CrossRef]
- Tu, Y.; Lo, S.; You, C. Selective and fast recovery of neodymium from seawater by magnetic iron oxide Fe3O4. Chem. Eng. J. 2015, 262, 966–972. [Google Scholar] [CrossRef]
- Joshi, S.; Kumar, M.; Chhoker, S.; Srivastava, G.; Jewariya, M.; Singh, V. Structural, magnetic, dielectric and optical properties of nickel ferrite nanoparticles synthesized by co-precipitation method. J. Mol. Struct. 2014, 1076, 55–62. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, J.; Zhou, H.; Li, W. O-carboxymethyl chitosan entrapped by silica: Preparation and adsorption behaviour toward neodymium (III) ions. J. Chem. Technol. Biotechnol. 2012, 88, 317–325. [Google Scholar] [CrossRef]
- Wang, G.; Liu, J.; Wang, X.; Xie, Z.; Deng, N. Adsorption of uranium (VI) from aqueous solution onto cross-linked chitosan. J. Hazard. Mater. 2009, 168, 1053–1058. [Google Scholar] [CrossRef]
- Abd El-Magied, M.O.; Galhoum, A.A.; Atia, A.A.; Tolba, A.A.; Maize, M.S.; Vincent, T.; Guibal, E. Cellulose and chitosan derivatives for enhanced sorption of erbium(III). Colloids Surf. A Physicochem. Eng. Asp. 2017, 529, 580–593. [Google Scholar] [CrossRef]
- Van De Velde, K.; Kiekens, P. Structure analysis and degree of substitution of chitin, chitosan and dibutyrylchitin by FT-IR spectroscopy and solid state 13C NMR. Carbohydr. Polym. 2004, 58, 409–416. [Google Scholar] [CrossRef]
- Akai, Y.S.; Ayano, K.H.; Oshioka, H.Y. A novel method of dissolving chitosan in water. Polymers 2001, 33, 640–642. [Google Scholar]
- Moratti, S.; Cabral, J. Chitosan Based Biomaterials Volume 1: Fundamentals; Woodhead Publishing: Cambridge, UK, 2017; ISBN 9781907568459. [Google Scholar]
- Limousin, G.; Gaudetb, J.; Charletc, L.; Szenknecta, S.; Barthesa, V. Sorption isotherms: A review on physical bases, modeling and measurement. Appl. Geochem. 2007, 22, 249–275. [Google Scholar] [CrossRef]
- Gunay, A.; Arslankaya, E.; Tosun, I. Lead removal from aqueous solution by natural and pretreated clinoptilolite: Adsorption equilibrium and kinetics. J. Hazard. Mater. 2007, 146, 362–371. [Google Scholar] [CrossRef]
- Sen Gupta, S.; Bhattacharyya, K.G. Kinetics of adsorption of metal ions on inorganic materials: A review. Adv. Colloid Interface Sci. 2011, 162, 39–58. [Google Scholar] [CrossRef]
- Weber, W.J.; Morris, J.C. Kinetics of adsorption on carbon from solutions. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 1963, 89, 31–60. [Google Scholar]
- Ho, Y.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
Sorbent | pH | qe (mg/g) | Metals | Authors |
---|---|---|---|---|
MnFe2O4 | 6 | 3.39 | Pb | [31] |
MnFe2O4 | 6 | 25.1 | Cr(VI) | [32] |
Fe3O4 | 8 | 24.88 | Nd(III) | [33] |
MF-60 | 6 | 37.87 | Nd(III) | This work |
Material | Langmuir | Freundlich | Sips | |||||||
---|---|---|---|---|---|---|---|---|---|---|
qmax (mg/g) | b (L/mg) | r2 | KF (mg1−1/n/g × L1/n) | n | r2 | qms (mg/g) | Ks (L/mg) | ms | r2 | |
CS-MF | 51.69 | 0.01 | 0.96 | 1.95 | 1.70 | 0.94 | 44.29 | 0.01 | 0.63 | 0.97 |
MF-60 | 35.85 | 0.28 | 0.98 | 14.9 | 5.23 | 0.82 | 36.73 | 0.31 | 1.12 | 0.97 |
CS | 10.53 | 0.09 | 0.97 | 3.32 | 4.31 | 0.95 | 18.73 | 0.17 | 0.40 | 0.96 |
Sorbent | pH | qmax (mg/g) | Authors |
---|---|---|---|
Cysteine-functionalized chitosan magnetic particles | 6 | 17.1 | [16] |
Chitosan/iron(III) hydroxide | 6 | 13.8 | [22] |
Diethylenetriamine-modified magnetic chitosan nanoparticles | 7 | 30.6 | [14] |
Diethylenetriamine-functionalized chitosan chitosan magnetic nano-based particles | 5 | 50.8 | [15] |
3-mercaptopropionic acid-tetraethyl orthosilicate ferrite | 8 | 25.58 | [17] |
CS-MF | 4 | 44.29 | This work |
Experimental | Pseudo-First-Order Rate Equation (PFORE) | Pseudo-Second-Order Rate Equation (PSORE) | |||||
Sorbent | K1 (1/min) | q1 (mg/g) | r2 | K2 (g/mg × min) | q2 (mg/g) | r2 | |
CS-MF | 0.066 | 36.69 | 0.96 | 0.0023 | 40.02 | 0.99 | |
Elovich Equation | Weber and Morris | ||||||
A | β | r2 | Kp1 (g.mg−1 × min−1/2) | r2 | Kp2 (g/mg × min1/2) | r2 | |
31.387 | 0.066 | 0.97 | 5.045 | 0.96 | 3.045 | 0.92 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durán, S.V.; Lapo, B.; Meneses, M.; Sastre, A.M. Recovery of Neodymium (III) from Aqueous Phase by Chitosan-Manganese-Ferrite Magnetic Beads. Nanomaterials 2020, 10, 1204. https://doi.org/10.3390/nano10061204
Durán SV, Lapo B, Meneses M, Sastre AM. Recovery of Neodymium (III) from Aqueous Phase by Chitosan-Manganese-Ferrite Magnetic Beads. Nanomaterials. 2020; 10(6):1204. https://doi.org/10.3390/nano10061204
Chicago/Turabian StyleDurán, Sergio Valverde, Byron Lapo, Miguel Meneses, and Ana María Sastre. 2020. "Recovery of Neodymium (III) from Aqueous Phase by Chitosan-Manganese-Ferrite Magnetic Beads" Nanomaterials 10, no. 6: 1204. https://doi.org/10.3390/nano10061204
APA StyleDurán, S. V., Lapo, B., Meneses, M., & Sastre, A. M. (2020). Recovery of Neodymium (III) from Aqueous Phase by Chitosan-Manganese-Ferrite Magnetic Beads. Nanomaterials, 10(6), 1204. https://doi.org/10.3390/nano10061204