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Abstract: In the present work, non-stoichiometric silicon oxide films (SiOx) deposited using a hot
filament chemical vapor deposition technique at short time and simple parameters of depositions are
reported. This is motivated by the numerous potential applications of SiOx films in areas such as
optoelectronics. SiOx films were characterized with different spectroscopic techniques. The deposited
films have interesting characteristics such as the presence of silicon nanoclusters without applying
thermal annealing, in addition to a strong photoluminescence after applying thermal annealing in the
vicinity of 1.5 eV, which may be attributed to the presence of small, oxidized silicon grains (less than
2 nm) or silicon nanocrystals (Si-nc). An interesting correlation was found between oxygen content,
the presence of hydrogen, and the formation of defects in the material, with parameters such as the
band gap and the Urbach energies. This correlation is interesting in the development of band gap
engineering for this material for applications in photonic devices.

Keywords: SiOx films; Si-ncs; band gap engineering; spectroscopic characterizations; ellipsometric
spectroscopy; photoluminescence

1. Introduction

The emission of visible light in nanostructured oxides (applicable to optoelectronic devices) [1–3],
light absorption effects such as the so-called down conversion effect (solar cells) [4,5], and resistive
switching (non-volatile memories of multiple states) [6–9] are some of the characteristics that make
SiOx a material that needs to be studied deeply, also taking into account that silicon is the second
most abundant material on our planet. Another favorable feature that this material provides is that it
can be obtained using multiple synthesis techniques [10–14]. Among these techniques, it has been
found that the technique of chemical vapor deposition activated using a hot filament (HFCVD) offers
important characteristics due to the ease of obtaining thin films and powders with diverse electrical
and optical characteristics. The HFCVD technique consists of a chemical process that uses high purity
molecular hydrogen as a reagent, which is dissociated to work in its atomic form. Such dissociation is
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achieved thermally through an incandescent filament at ~2000 ◦C; the chemical reaction of this process
is described in references [15,16].

Although there are several reports of the behavior of this material using various techniques [10–15],
in this investigation the spectroscopic and compositional behavior of SiOx films are analyzed, where the
material is obtained using the HFCVD technique with a short deposition time of 3 min. This material
is suitable for large-scale applications and may be important for future applications, such as light
absorbing devices (photosensors and solar cells), as well as for light emitting devices.

In addition, in this research we try to explain phenomena such as the characteristic light emission
of SiOx in approximately 1.5 eV that appears when the material has been annealed, which has been
attributed to phenomena such as the quantum confinement that is presented by a phase separation
and formation of nanocrystals or due to the formation of various defects in the material; however,
no agreement has been reached between these theories. An analysis of how deposit conditions affect
optical properties of great technological interest such as the band gap is also carried out.

2. Materials and Methods

The SiOx films were deposited on p type silicon substrates with a diameter of 2 in, orientation
(1 0 0), and resistivity of 1–5 ohm-cm. Four SiOx films were deposited using the HFCVD technique,
the parameters that were changed during the deposit process were the distance from source to substrate
(ssd) (5 mm and 8 mm) and the hydrogen flux levels (100 sccm and 25 sccm), whereas the parameters
that were kept constant are the deposit time (3 min), the voltage applied to the filaments (74 V),
the filament-to-source distance (fsd) (6 mm), and the system pressure (1 atm). A thermal annealing
was subsequently applied to the films obtained, which was applied at 1050 ◦C. This temperature is
used because it has been reported that after thermal annealing at temperatures above 1000 ◦C, SiOx

reacts to produce silicon nanocrystals or nanoclusters and structures with different oxidation states
with or without defects [17–19]. This thermal annealing was carried out in a tubular furnace with a
nitrogen flowing environment for 1 hour. In total, eight films were obtained; their labeling is described
in Table 1.

Table 1. Description of the labeling of the eight SiOx films obtained.

Hydrogen Flow Level: 25 sccm Hydrogen Flow Level: 100 sccm

Source-Substrate
Distance: Without Annealing With Annealing Without Annealing With Annealing

5 mm A1 A1’ D1 D1’

8 mm A2 A2’ D2 D2’

Regarding the chosen parameters for the deposit, it is important to consider that both the deposit
temperature and the hydrogen gas flow level are important in the formation of thin films. The deposit
temperature is regulated by the distance between the source and substrate, while the filament-to-source
distance regulates the number of precursors.

The temperatures reached for the substrate during the deposit are shown in Figure 1, as well as
the thicknesses obtained, which were measured using profilometry. The trend in the temperatures
reached by the substrate follows what was mentioned regarding the distance from source to substrate,
while at a lower flow the substrate temperature increases. The temperature follows a linear trend for all
films; however, in the case of film, D2 is disturbed in the last seconds of deposit. This could be caused
by the buckling of some filament causing a decrease in the filament-to-source distance, increasing
temperature. In the case of the thicknesses, these increase with annealing. This abnormal behavior
could be explained as an additional formation of oxide caused by diffusion of residual O2 as well as
interstitial, as mentioned in [20], where despite performing a heat treatment in an Ar environment,
there is an increase in thickness.
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Figure 1. Substrate temperature during SiOx film deposition and thickness reached for each film. 
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excitation lamp, 0.3 nm resolution, range from 370 to 1000 nm, and high sensitivity emission detector. 
The excitation line used to obtain the photoluminescence spectra was 335 nm. In addition, XPS 
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monochromatic Al XR15 X-ray source. The depth profile was acquired using Ar+ etching. The beam 
energy was 4 keV, and the sputter current was 2.5 μA. The size of the raster was approximately 15 
times larger than the XPS-measured area. Finally, micrographs were obtained using High Resolution 
Transmision Electronic Microscopy (HRTEM) in Nanotech JEOL JEM-2200FS + Cs equipment with a 
spherical aberration corrector on the condenser lens and operated at an acceleration voltage of 200 
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which were calculated using Snell's law [22]. 
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Figure 1. Substrate temperature during SiOx film deposition and thickness reached for each film.

To obtain the optical characteristics of the deposited SiOx films, measurements of the refractive
index (n) and extinction coefficient (k) were performed using spectroscopic ellipsometry on a Horiba
UVISEL ellipsometer with a spectral range of (0.6–4.8 eV) and incidence angle of 70◦. In addition, the IR
absorption spectra (FTIR) of the SRO films were obtained with a Bruker Vector 22 spectrometer in a range
from 4000 cm−1 to 400 cm−1 with a resolution of 1 cm−1. The photoluminescence (PL) spectra were also
measured with a FluroMax 3 Horiba Jobin Yvon Spectrofluorometer with a 150 W xenon excitation lamp,
0.3 nm resolution, range from 370 to 1000 nm, and high sensitivity emission detector. The excitation
line used to obtain the photoluminescence spectra was 335 nm. In addition, XPS measurements were
made using an Escalab250Xi Thermo Scientific spectrometer using a monochromatic Al XR15 X-ray
source. The depth profile was acquired using Ar+ etching. The beam energy was 4 keV, and the sputter
current was 2.5 µA. The size of the raster was approximately 15 times larger than the XPS-measured
area. Finally, micrographs were obtained using High Resolution Transmision Electronic Microscopy
(HRTEM) in Nanotech JEOL JEM-2200FS + Cs equipment with a spherical aberration corrector on the
condenser lens and operated at an acceleration voltage of 200 kV.

3. Results

The spectroscopic ellipsometry technique allows the optical parameters of interest to be known
by obtaining the change in the amplitude of the light after reflection (Ψ) and the phase change of
this (∆), through the mathematical inversion of the data (Ψ, ∆), which are converted directly into
the optical constants refractive index (n) and extinction coefficient (k) [21]. With the values n and k
obtained by spectroscopic ellipsometry the transmittance and reflectance of all deposited SiOx films
were calculated by means of the reflection and transmission coefficients for the s and p polarizations
which were calculated using Snell’s law [22].

Figure 2 shows the reflectance and transmittance obtained specifically from A1 and A1’ SiOx films.
The transmittance and reflectance of the films A1 and A1’ are shown as a sample of the results obtained,
however, Figure 3 shows the complete results of the absorption coefficients obtained. In Figure 2,
transmittance less than 85% is observed and likewise reflectance less than 35%, in addition to the typical
oscillations caused by the interference of the electromagnetic modes confined inside the films [23].
On the other hand, to analyze deeply these results, the absorption coefficient α is calculated using the
equations [23]

T � (1−R)e−αt (1)

ln(T) � ln(1−R) − αt (2)
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α =
1
t

ln
(1−R)

T
, (3)

which involve the values of reflectance and transmittance experimentally obtained. Since the specified
transmittance and reflectance data have multiple interferences, obtaining the optical absorption
coefficient is a process that may include a certain degree of error. For this reason, it is clarified that the
values obtained are parameters that describe a particular sample and not the physical property.
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Figure 3. The absorption coefficients of the SiOx films without (A1, A2, D1, D2) and with thermal
annealing (A1’, A2’, D1’, D2’) considering two source-to-substrate distances (ssd): 5mm (A1, A1’, D1,
D1’) and 8mm (A2, A2’, D2, D2’).

The α results calculated for all deposited films are shown in Figure 3, in which the inset shows the
absorption coefficients of the films deposited at a higher sdd. From this figure it is observed that the
absorption coefficient displays values which are similar to those reported in SiOx films obtained using
other methods of analysis, such as the transmittance obtained using UV-visible spectroscopy [16]. It is
worth noting that thermal annealed films increase their absorption coefficient and such a tendency
prevails in all films, in addition to a slight increase in α for films deposited with a hydrogen flow level
of 100 sccm. Such behavior results due to thermal effects provoke an atomic structural rearrangement
which enriches the absorption mechanisms inside the material. Although this phenomenon has been
previously reported in this material, it is still not well understood what type of arrangement occurs to
increase the absorption coefficient when applying thermal annealing. It has been suggested that it may
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be due to the formation of ultra-small amorphous silicon grains that induce disorder in the network
or due to the formation of nanocrystals since the optical properties of bulk and nanoscale materials
differ [24], or it has also been suggested that it may be due to an increase in the Si dangling bonds
given the hydrogen desorption [23] that is observed later. In the case of the present investigation, the
three previously mentioned phenomena occur, for which all of them could contribute to the increase
of the absorption coefficient. Theoretical studies have been carried out in other research works [25]
where the reactions that occur when applying thermal treatment are modeled.

Using the values of the absorption coefficient (α), we estimate the band gap energy (BG) using the
Tauc relation [26] where the BG was obtained using linear regression considering the equation

(αhν)1/2 = A
(
hν− Eg

)
(4)

where α is the absorption coefficient, hν is the energy of the impinging photon, Eg is the BG, and A
is an arbitrary constant. We also choose the exponent 1

2 , which corresponds to an indirect allowed
transition according to what other authors have used [27,28] for this material.

As is widely known, an amorphous material exhibits a complex structure of the density of states,
such is the case for the SiOx films. For this reason, the analysis of absorption mechanisms in this type
of material is so complex; however, we can realize an approximation of the absorption coefficient
through the presence of electronic states inside the band gap energy in the proximity of the valence and
conduction band edges, as is proposed by the Urbach energies, which is now applied for the deposited
SiOx films using Urbach’s empirical rule, given by the equation [29]

α = a0exp
(hv)
Eu

. (5)

where α is the absorption coefficient, a0 is a constant, and Eu is Urbach’s energy, from (5) we obtain the
following equation:

ln α = ln a0 +
(hv)
UE

(6)

The Urbach energy (UE) can be obtained from the inverse slope of the straight line of the path ln α
versus hv energy of the incident photon.

Figure 4 shows an example of the procedure used to calculate the BG, while the inset in this figure
shows the value of the corresponding UE for D1’ film. To obtain the BG, the linear region belonging
to the high absorption edge was taken into account in such a way that in Figure 4 it corresponds to
energies from 3 eV to 3.5 eV, while to calculate the UE we utilize the energy region that is below the
high absorption edge which corresponds to the energy range from 2.2 eV to 3 eV. This procedure
is applied to each of the deposited films, and the results are displayed in Table 2. From the results
exhibited in Table 2, it is remarkable that when we have a higher ssd in the deposit or a greater flow of
hydrogen the value of BG energy increases and the UE decreases, a trend that is accomplished for all
the films except for the D2 film, this could be due to the increase in the temperature of the substrate in
the last seconds of deposit of the film D2, whereby there was a change in the deposit conditions, so the
trend is not followed.

As can be seen, in general the thermal annealing increases the BG value and decreases the UE,
which is an indication that a structural rearrangement occurs in the atomic lattice. Due to thermal
effects such a phenomenon favors the crystallinity of the material. For that reason the UE is reduced,
indicating that the amorphous phase is also reduced. This is corroborated using the FTIR technique.
Figure 5a shows the FTIR spectra offset in the absorbance axis for all SiOx films in a range from
400 cm−1 to 1400 cm−1. The solid lines correspond to the FTIR spectra of the films without thermal
annealing and the dotted lines to the FTIR spectra with thermal annealing. By virtue of the intensity of
the localized peak in the range from 950 cm−1 to 1350 cm−1, it is difficult to appreciate clearly both the
shape and position of the peaks having less intensity. For this reason, in Figure 5b) an amplification of
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the intensity of these peaks is shown by placing the spectra on a scale from 400 cm−1 to 950 cm−1 and
from 2150 cm−1 to 2400 cm−1. All the spectra shown have been normalized with the purpose of not
considering the variation of the thickness of the films and only taking into account the variations or
shifts in wave number in the spectra.
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Table 2. Energy band gaps and Urbach energies.

Hydrogen flow: 25 sccm

A1 A2

Without annealing
2.1 eV 2.21 eV

UE: 0.53 eV UE: 0.47 eV

With annealing
2.35 eV 2.43 eV

UE: 0.40 eV UE: 0.39 eV

Hydrogen flow: 100 sccm

D1 D2

Without annealing
2.36 eV 2.13 eV

UE: 0.44 eV UE: 0.50 eV

With annealing
2.39 eV 2.49 eV

UE: 0.42 eV UE: 0.38 eV

In the obtained FTIR spectra, the characteristic absorption peaks of SiO2 were identified.
These peaks correspond to the vibration modes Si–O–Si rocking (R) at 458 cm−1, Si–O–Si bending (B)
at 812 cm−1, and Si–O–Si stretching (S) at 1082 cm−1 [15]. There are shifts in the mentioned peaks
indicating a stoichiometry different from that of SiO2, which confirms the fact that the films are
made up of SiOx. The absorption peaks attributed to the Si–H bond were also found in the H–Si≡O3

configuration, which are B at 880 cm−1 and S at 2250 cm−1; in addition, with a lower intensity absorption
peaks attributed to the Si-H bond in the H–Si≡Si3, H–Si≡O2, H–Si≡O1 configuration were found, which
are S at 2100 cm−1, 2156 cm−1, and 2119 cm−1, respectively. These configurations are reported in the
literature [29].
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Table 3 shows the positions of the absorption peaks present in the deposited SiOx films as well as
the vibrational modes and the type of molecule to which they are attributed.

Table 3. Peak positions present in the spectra of Figure 5, as well as the vibrational modes and the type
of molecule to which they are attributed.

A1 A2 D1 D2 A1’ A2’ D1’ D2’

Rocking
Si–O–Si 451 cm−1 453 cm−1 451 cm−1 455 cm−1 461 cm−1 461 cm−1 463 cm−1 463 cm−1

Bending
Si–O–Si 808 cm−1 802 cm−1 802 cm−1 800 cm−1 812 cm−1 812 cm−1 812 cm−1 812 cm−1

Stretching
Si–O–Si 1074 cm−1 1068 cm−1 1070 cm−1 1060 cm−1 1089 cm−1 1089 cm−1 1091 cm−1 1091 cm−1

Bending
H–Si≡O3

883 cm−1 881 cm−1 881 cm−1 879 cm−1 - - -

Stretching
H–Si≡O3

2258 cm−1 2258 cm−1 2256 cm−1 2256 cm−1 - - -

We can observe that, compared to the peak corresponding to the vibrational mode R of SiO2,
the peak of the SiOx films without thermal annealing shows a slight shift towards lower wave numbers,
this indicates a slight increase in silicon composition in some Si–O bonds, whereas with thermal
annealing we have a condition closer to that of the SiO2 stoichiometry.

On the other hand, the peak located at 812 cm−1 (Si–O–Si B) appears in all films; however, in films
without thermal annealing, this peak is attached to the peak located at 880 cm−1, which corresponds to
the H–Si≡O3 B molecule. This peak is closely related to the peak located at 2256 cm−1 that corresponds
to the vibrational mode S of the H–Si≡O3 molecule. Having both vibrational modes in mind we
corroborate the existence of the H–Si≡O3 configuration in the films without thermal annealing, which is
attributed to the hydrogen incorporation in the deposition process. In addition, a stronger intensity
of these vibrational modes is observed for the films deposited at a larger ssd. It is also observed
that when increasing the H–Si≡O3 B peak the Si-O-Si R peak decreases, which is highly linked to the
increase of silicon content in the material [30]. After the film is annealed, both peaks disappear due to
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the desorption of hydrogen at high temperatures and the intensity of the Si–O–Si B mode increases,
which is, as already mentioned, characteristic of SiO2.

The peak corresponding to the vibrational mode S provides information about the composition of
the deposited films. When this peak displaces towards higher wave number values it indicates that
the density of the Si–O–Si bonds is increased, and such films are more stoichiometric [31]. In films
without thermal annealing, the peak assigned to the vibrational mode of stretching is shifted towards
smaller wave numbers, suggesting a higher proportion of silicon in the amorphous phase and a greater
amount of unbound oxidation states. However, when applying thermal annealing, the peak goes
towards larger wave numbers, which indicates an increase in the Si–O–Si bonds; therefore, the oxygen
bonds are also increased and it indicates a change in the silicon excess, this makes the stoichiometry of
the films closer to that of the SiO2 films.

The XPS technique allows information to be obtained on the binding energy of the elements
present in a material. From the XPS measurements, the oxygen and silicon composition of the SiOx

films and the oxidation states Sin+ present were obtained.
Figure 6 shows the composition profile in percentage of silicon and oxygen of the films according to

the depth of penetration, where dotted line curves are shown for annealed films, while the continuous
lines represent films without thermal annealing. With this data it was possible to obtain an average
value of x in the stoichiometric SiOx ratio for each of the films using the formula O

Si = x ratio [32].
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In Figure 6, a remarkable change is observed in the amount of silicon and oxygen present in the
proximity of the film surface with respect to that present inside the volume. Such change is more
remarkable for films with thermal annealing. Particularly for the A1 and D2 films, the change is
more abrupt. Such films were deposited at a lower ssd; in addition, for these samples the annealing
effect enhanced the stoichiometry in the region near the surface due to both the atomic rearrangement



Nanomaterials 2020, 10, 1415 9 of 21

and the increment of oxygen atoms. The x values show that in general thermal annealing films
present an increase in x, which indicates an increase in the amount of oxygen and a tendency towards
SiO2 stoichiometry.

To obtain the oxidation states of silicon Sin+ (with n = 1, 2, 3, 4) corresponding to the chemical
structures Si–OSi3, Si–O2Si2, Si–O3Si, and Si-O4, respectively [33], as well as the chemical state of
silicon in bulk Si0 (Si2p3/2 and Si2p1/2), the XPS spectra of the Si2p peak were deconvolved to find the
corresponding binding energies attributed to each of the previous states. These energies are shown in
Table 4 [33].

Table 4. Binding energies of the Si core levels and the Si oxidation states.

Si2p3/2 Si2p1/2 Si1+ Si2+ Si3+ Si4+

Binding energies 99.5 eV 100 eV 101 eV 101.5 eV 102.5 eV 103.5 eV

As an example, in Figure 7 the deconvolution of the spectrum corresponding to the D2 film is
shown (a) on the surface of the film (0 to 10 nm) and (b) in the volume of the film (10 nm to 300 nm).
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Figure 7. Deconvolution of the D2 film spectra obtained using XPS (a) for the region from 0 to 10 nm
and (b) for the region from 10 to 300 nm.

The relative concentration in percentage of each oxidation state (I) can be obtained using
Equation (7) [33]:

In+

IT
× 100 = I (n = 0, 1, 2, 3, 4) (7)

where In+ is the area of the peak that represents the oxidation state Sin+, and IT is the total area of
the Si2p peak. In Figure 7 it can be seen that for the surface part of the film the binding energies
present are attributed to the oxidation states of Si0 and Si3+, with percentages of 9.9% and 90.1%,
respectively, while in volume the Si–Si bonds disappear and the oxidation states Si1+, Si3+, and Si4+

remain, with percentages of 14.4%, 42.4%, and 43.2%, respectively.
The above process was carried out for all the spectra on the surface of the film (10 nm), in the

center of the film at a depth of 60 nm, and finally at a depth of 300 nm. The results are shown in Table 5,
together with the respective oxidation state attributed to that binding energy.
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Table 5. Binding energies of the decomposed XPS peaks.

Si0 Si1+ Si2+ Si3+ Si4+ Si0 Si1+ Si2+ Si3+ Si4+

A1
10 nm - - - 102.5 eV

10.6%
104.5 eV

89.4%
A2

10 nm
99.7 eV
12.3% - - 102.8 eV

87.7% -

A1
60 nm

99.9 eV
9.3% - 101.8 eV

33.4% - 103.2 eV
57.3%

A2
60 nm - 101.2 eV

12.4% - 102.5 eV
40%

103.5 eV
47.6%

A1
300 nm

99.9 eV
9.3% - 101.8 eV

33.4% - 103.2 eV
57.3%

A2
300 nm - 101.2 eV

12.4% - 102.5 eV
40%

103.5 eV
47.6%

A1’
10 nm - 101.2 eV

12.5%
102.4 eV

38%
103.3 eV

49.5%
A2’

10 nm - - - 102.6 eV
64%

103.7 eV
36%

A1’
60 nm - - 102.6 eV

25.8%
103.7 eV

74.2%
A2’

60 nm - - - 102.6 eV
64%

103.7 eV
36%

A1’
300 nm - 101 eV

16.5%
102.6 eV

48.5%
103.7 eV

35%
A2’

300 nm - - - 102.6 eV
64%

103.7 eV
36%

D1
10 nm

99.5 eV
7.4% - - 102.3 eV

38.6%
103.2 eV

54%
D2

10 nm
99.8 eV

9.9% - - 102.7 eV
90.1% -

D1
60 nm - - 101.5 eV

18.1%
102.5 eV

40.1%
103.8 eV

40.8%
D2

60 nm - 100.9 eV
14.4% - 102.6 eV

42.4%
103.6 eV

43.2%

D1
300 nm - - 101.5 eV

18.1%
102.5 eV

40.1%
103.8 eV

40.8%
D2

300 nm - 100.9 eV
14.4% - 102.6 eV

42.4%
103.6 eV

43.2%

D1’
10 nm - 101.2 eV

14.8% - 102.8 eV
45.2%

103.8 eV
40%

D2’
10 nm - - - 102.5 eV

39.3%
103.5 eV

60.7%

D1’
60 nm - 101.2 eV

17.4% - 102.8 eV
43.8%

103.7 eV
38.8%

D2’
60 nm - - - 102.5 eV

38%
103.6 eV

62%

D1’
300 nm - - - 102.5 eV

43.7%
103.8 eV

56.3%
D2’

300 nm - - 102.5 eV
38%

103.6 eV
62%

From Table 5 it is observed that films without thermal annealing present Si0 states generally on
the surface of the film, except for the A1 film that shows it only in volume, this being also the one with
the highest silicon content. Comparing the films according to the ssd of the deposit, films deposited at
greater ssd without thermal annealing show the oxidation states Si0 and Si3+ on the surface of the film,
while in volume they have oxidation states Si1+, Si3+, and Si4+. When applying thermal annealing to
these films the oxidation states are reduced to Si3+ and Si4+, both for the surface of the film and for
the volume; that is, the stoichiometry of the films is closer to that of the SiO2 and the films tend to
become uniform in their stoichiometry, in addition the film deposited to greater flow D2’, has a higher
percentage of Si4+ oxidation state than that deposited at 25 sccm (A2’).

As for the films deposited at lower ssd without thermal annealing, the oxidation state Si1+ is
absent while the oxidation state Si2+ is only present in volume and Si3+ is only present on the surface
of the sample with lower flux level (25 sccm), but it exists both on the surface and in volume for the
sample with a higher flux level (100 sccm), and Si4+ exists for both space regions in the two samples.
Additionally, the films show significant changes in the percentages of oxidation states only in the
most superficial layer. On the other hand, the relevant characteristic of the annealed films is that they
present the oxidation states Si3+ and Si4+ in both space regions; however, the oxidation states Si0 and
Si2+ are absent. The oxidation state Si1+ exists on the surface of both samples and in volume but at
different depths.

Once the molecular bonds present in the material were identified using the FTIR technique,
in addition to the oxidation states being quantified using XPS, it was also necessary to know the
structural defects in the SiOx films, for which photoluminescence (PL) measurements were carried out.

The results obtained of such PL measurements are shown in Figure 8, where the inset in the graph
depicts the spectra obtained from the films without thermal annealing, while the main graph shows
the PL spectra obtained from the annealed films. It is worth noting that the PL intensity from all films
with thermal annealing is augmented approximately up to 4 times with respect to that of the films
without thermal annealing. Additionally, such spectra undergo a shift in the emission wavelength
towards lower energies in such a way that PL intensity lies in the range 650–900 nm. It should be
noted that the strongest PL intensity corresponds to the annealed films deposited at a flow level of
100 sccm, while for films without thermal annealing it corresponds to the films deposited at flow levels
of 100 sccm and 25 sccm, and the emission region is wider, in the range 400–800 nm. It is noticeable
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that all the emission PL bands are wide, which indicates that they are composed of several emission
peaks that have a shape similar to a Gaussian one.

For SiOx, the most accepted light emission mechanisms which give rise to the visible and near
infrared bands are attributed to the following causes: the effect of dimensional quantum confinement
in Si-ncs or silicon nanoclusters (Si-ncl) whose reported photoluminescence lies in the emission energy
range from 1.3 eV to 1.7 eV [34–36] and the effect related to defects in the oxide matrix such as
weak oxygen bonds (WOB) with a PL peak at 3 eV [36], neutral oxygen vacancy (NOV) with PL
ranging from 2.8 eV to 2.9 eV [37], hydrogen-related defects (H) with PL located in the range from
2.2 eV to 2.5 eV [38], and finally a non-bridging oxygen hole center (NBOHC) with PL from 1.8 eV
to 2 eV [39,40]. These emission mechanisms make the PL spectra exhibit a wide shape, as can be
seen in Figure 8. In order to find all possible contributions to the photoluminescent processes in the
SiOx films, the deconvolution of each spectrum was performed, by way of example. Figure 9 depicts
the deconvolution of the photoluminescent spectrum of the D2’ film. To perform the deconvolution
and in order to avoid common errors reported in the photoluminescence analysis, the spectra were
deconvolved using the PL intensity-energy differential versus energy [41].
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Figure 9. Photoluminescence spectrum deconvolved for the D2’ film.

Table 6 shows the position of the peaks obtained from the deconvolution of the photoluminescent
spectra, in addition to the defects to which the emission is attributed, according to their energy position.
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Table 6. PL deconvoluted bands and their proposed defects contributions.

A1 A1’ A2 A2’ D1 D1’ D2 D2’

WOB - 3.09 eV 3.17 eV 3.3 eV WOB - 3.15 eV 3.1 eV 3.09 eV

NOV 2.79 eV - 2.82 eV - NOV 2.90 eV - 2.82 eV -

H 2.34 eV - 2.53 eV - H 2.40 eV - 2.32 eV -

NBOHC 1.95 eV 2.04 eV - 1.82 eV NBOHC 2.03 eV 2.04 eV - 1.95 eV

Si-ncl -
1.51 eV
1.58 eV
1.74 eV

- 1.53 eV
1.63 eV Si-ncl -

1.51 eV
1.59 eV
1.76 eV

-
1.48 eV
1.53 eV
1.67 eV

As can be seen in Table 6, films without thermal annealing show photoluminescence attributed
to NOV and H, in addition to films deposited at a shorter ssd showing the presence of NBOHC,
while those deposited at a larger ssd have WOB. For annealed films, photoluminescence is mainly due
to Si-ncl effects and to a lesser extent to NBOHC and WOB defects.

4. Discussion

Using the calculated values of the BG, the UE parameters, and making a correlation with the
results obtained using XPS, we identify a clear dependence between the stoichiometric ratio (x) and
the BG and UE values. Figures 10 and 11 display how the correlation between the stoichiometric ratio
and BG and UE evolves.
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Figure 10 shows a clear tendency in films in which with a higher silicon or lower oxygen content
(lower value of x) the lower BG is obtained. Such a trend is held both with and without annealing,
and it is relevant to point out that the BG increases significantly due to both thermal annealing and the
increase of oxygen content. In addition, the UE decreases monotonously in accordance with the silicon
content decreasing with the thermal annealing, as is shown in Figure 11. Special attention deserves to
be paid to the fact that the annealed films with the larger ssd and higher flow level offer the highest BG
and stoichiometric ratio and the lowest UE.

The calculated Urbach energies occupy a wide range of values ranging from 380 meV to 530 meV.
These are considerable energy values, and it indicates in some way the level of structural disorder
that exists in the SiOx films. This disorder is remarkably diminished both with the oxygen increment
and with the thermal annealing. In addition to that the dependence among the stoichiometric ratio,
band gap and Urbach energies is well defined and agrees with the model established by Mott [31].
For values of the stoichiometry ratio x further from that of the stable configuration of silicon dioxide,
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the films undergo a greater disorder in the molecular structure of the material, which brings the
increment of aggregate energy levels inside the intrinsic band gap energy of the dioxide matrix, causing
the formation of wider band tails and consequently a smaller band gap energy that tends towards that
of the silicon one.Nanomaterials 2020, 10, x FOR PEER REVIEW 13 of 22 
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Comparing these results with the deposition parameters, we find a behavior in which, with a
lower flow level and shorter ssd, films with a higher silicon content (lower BG and higher UE) are
obtained, and therefore, the optical response of the material is substantially modified. It is worthwhile
to note that the trend in which the flow level and ssd determine the dependence between the silicon
content and BG and UE is not well defined for the case of the films without thermal annealing, contrary
to the case of the annealed films for which the increment of the ssd and flow level diminish the silicon
content and increase the BG and reduce the UE clearly. Furthermore, for the films without thermal
annealing, the presence of hydrogen is observed in the FTIR spectra of these films (see Figure 12),
which suggests that hydrogen plays an important role which causes a clear dependence between the
silicon content and the GB and UE parameters not to exist, as in the case of the annealed films in which
hydrogen is no longer present.
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Figure 12 shows an amplification of the IR spectrum in the region from 2100 cm−1 to 2400 cm−1

for the D2 film; in addition, the deconvolution made from the 2075 cm−1 peak to the 2150 cm−1 one is
shown. Such deconvolutions were performed to observe the absorption peaks attributed to the Si–H
bonds in the H–Si≡Si3, H–Si≡O2 and H–Si≡O1 configurations, while Table 7 lists the peak positions for
all films without thermal annealing, which are the ones that present the Si–H bonds.

Table 7. Si–H stretching vibration bands.

A1 A2 D1 D2

H–Si≡Si 2100 cm−1 2097 cm−1 2100 cm−1 2101 cm−1

H–Si≡O1 2117 cm−1 2108 cm−1 2115 cm−1 2119 cm−1

H–Si≡O2 2154 cm−1 2150 cm−1 2165 cm−1 2156 cm−1

H–Si≡O3 2258 cm−1 2258 cm−1 2256 cm−1 2256 cm−1

Figure 12 shows the presence of the H–Si≡Si3, H–Si≡O2, and H–Si≡O1 configurations,
whose contributions are minimal compared to the one due to the H–Si≡O3 configuration, which is
found at position 2256 cm−1 and shows a significant right shoulder which is ascribed to an effect of the
first neighbors with silicon atoms [30]. When comparing these results with those obtained using XPS,
where it is observed that the predominant oxidation states are Si3+ and Si4+, t is then confirmed that an
important part of these Si≡O3 bonds are bound to hydrogen atoms.

Regarding the hydrogen content in the films without thermal annealing, it is greater for films
deposited at a larger ssd. This is explained by indicating that a greater deposit distance leads to the
formation of weak silicon-silicon or silicon-oxygen bonds. These bonds, as it is well known, are broken
by the action of hydrogen forming covalent bonds Si–H, which explains the presence of the H–Si≡O3,
H–Si≡Si3, H–Si≡O2, and H–Si≡O1 configurations in the FTIR spectra.

The results obtained using PL are used in the analysis of the formation of defects in the SiOx films;
however, it is hitherto the most controversial and difficult topic without conclusive reasons. In the case
of the results obtained for films deposited without thermal annealing, the abovementioned result is
shown regarding the presence of weak oxygen bonds, which are shown for films deposited at a greater
ssd. Neutral oxygen vacancies are present for all films without thermal annealing, which is common
for this type of material.

The emission related to defects involving hydrogen is more evident for films deposited at a
larger ssd (A2, D2). In the case of NOVs, it is known that they react with hydrogen to form H–Si≡
configurations, so it is interesting to note that this defect is only present in films without thermal
annealing. It is very probable that films without annealing have converted a part of their NOVs into
H–Si≡O3 configurations.

Since the films without thermal annealing deposited at a shorter ssd have a higher silicon content
and oxidation states Si0 with respect to the other films, we expect that the emission at 1.9 eV is not
mostly due to NBOHC defects that are closely related to the SiO4, but to another type of defect which
is also reported with this characteristic emission, interstitial oxygen (O−2 , O−3 ), which would be more
appropriate since NBOHC is not present in the A2 and D2 films that have a greater amount of Si4+

oxidation states; however, it is not discarded that it is a contribution of both emission mechanisms.
In the case of PL in annealing films, they all show the same emission mechanisms, attributed

to WOB, NBOHC, and the greater contribution to PL is attributed to Si-ncl effects, which brings
confinement effects due to a nanocrystal formation producing an increase of the band gap, which is
controlled by the Si nanostructure size [42]; however, it is believed that there is a better explanation for
this purpose, which will be discussed later, in addition to the fact that emission intensity increases
substantially compared to that of films without thermal annealing, which indicates that the structural
rearrangement of the material is closely related to this reported emission. To understand how the
material restructuring occurs, we take into account the results obtained from the deconvolution of the
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Si2p peak, as mentioned by Tomozeiu [31]. Based on the Gibbs free energy calculations, it has been
shown that the bonds Si-(Si4) and Si-(O4) are stable, while the Si-(SinO4−n) bonds, with n = 1, 2, 3 are
unstable, being Si-(Si2O2), which corresponds to a state of Si2+ oxidation, the less stable structural
entity. The films deposited at an ssd of 5 mm without thermal annealing present this oxidation
state, which leads to a greater tension or stress of the chemical bond between the central silicon atom
and the oxygen ones, so if the conditions for the migration of an oxygen atom are satisfied, a phase
decomposition will occur following the next reaction:

Si-(Si2O2) + Si-(Si2O2)→ Si-(Si1O3) + Si-(Si3O1)

Si-(Si2O2) + Si-(Si2O2)→ Si-(O4) + Si-(Si4)

The first reaction is observed according to the oxidation states present when applying thermal
annealing to these films (Si1+ and Si3+). However, in the films deposited at a larger ssd, the states Si1+

and Si3+ are already present in the films without thermal annealing, indicating that the deposition
of the film under this condition leads to a more stable lattice growth that could be favored as the
results of FTIR indicate. Due to the incorporation of hydrogen and the formation of a greater amount
of H–Si≡O3 bonds, where hydrogen helps to reduce tension in the molecular structure, the presence
of hydrogen could be inferred not only using this technique, but could also be considered through
the photoluminescent emission band (2.2 eV to 2.5 eV) attributed to defects related to hydrogen [40].
When applying thermal annealing to these films as observed using FTIR, a hydrogen desorption occurs
so that the H–Si≡O3 bond can become a Si-(SiO3) bond with the addition of a silicon atom. It can be
observed in Table 6 that when the films were annealed, only the oxidation states Si3+ and Si4+ survived,
and such states are present in the A2’ and D2’ films that have a stoichiometry closer to that of SiO2 and
a major BG and a smaller UE.

As previously mentioned, reports that exist regarding the structural arrangements that are
presented when thermal annealing is performing in this type of films suggest, given the stoichiometry,
the formation of isolated nanoclusters or nanocrystals of silicon immersed in a SiO2 matrix, instead of
an arrangement of the type of percolated networks or Si-SiO2 sponges that are formed when there
is an excess of Si greater than 30% [20,43]. One method to characterize these silicon nanocrystals or
nanoclusters is through the XRD technique; however, a difficulty has been reported in obtaining a
diffraction pattern for very small Si nanocrystals dispersed in the amorphous SiOx matrix due to the
fact that they have a short-range crystalline order [44]; therefore, to complement this study, the HRTEM
technique was carried out in order to corroborate the presence of Si-ncs or Si-ncls. The HRTEM
micrographs for films A1 and A2 are shown in Figures 13 and 14, respectively. These figures show
the presence of silicon clusters. In Figure 13, film A1 has silicon clusters of different sizes and has the
largest clusters, which corresponds to what was observed using XPS regarding the presence of Si0

states; in addition, this film has a greater excess of silicon. In the case of Figure 14, which shows the
micrograph of film A2, the presence of silicon clusters can be seen in the same way, but in this case
with a smaller size.

The HRTEM micrographs for films D1 and D2 are shown in Figures 15 and 16, respectively.
These figures show the presence of dark spots that could represent silicon clusters in which the crystalline
orientation was not observed (Si-ncls). They have an average size of 3 nm, which corroborates what
was inferred using XPS with respect to the existence of a greater silicon concentration (Si0 state) in
films without thermal annealing.

Figures 17 and 18 show the HRTEM micrographs of the D1’ fil., Figure 17 shows a large number
of clusters with a diameter <2 nm, while Figure 18 shows an enlarged micrograph showing certain
regions with dimensions between 1 nm and 2 nm that show a certain crystalline orientation. To obtain
the crystallographic orientation, the interplanar distances were measured. The micrographs shown in
Figure 18 were analyzed using a Digital Micrograph program using Fourier transform to obtain the
reciprocal space and thus be able to obtain the interplanar distances. With the interplanar distances,
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we proceeded to search the orientation of the nanocrystals by means of the crystallographic data
provided by the database PDF 4. The presence of crystalline silicon with reference code 00-027-1402
is appreciated.
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Correlating the results obtained from the various characterizations performed and the micrographs
shown, it is important to highlight that the presence of the Si0 state in all the films without thermal
annealing is due to the formation of Si-ncls with sizes greater than 10 nm. In the case of the film A1
which is the one with the highest excess of silicon corresponding to the one that reached the highest
temperature of the deposit and has the lowest flow, it also presents Si-ncls of greater size as shown in
Figure 13. The existence of the state Si0 in the SiOx films, as can be seen in the phase decomposition,
generally occurs after samples are subjected to a thermal annealing above 1000 ◦C [31]. This thermal
process provokes the formation of Si-ncs in a SiO2 matrix. With this process the material reaches a
stable configuration; however, in this case, when applying thermal annealing, the state Si0 disappears.
This may be due to the resolution reached from the XPS measurement in depth, which may be less
than what is required to detect Si-ncs of sizes less than 10 nm.

As previously mentioned, the band of PL emission in the range from 1.3 eV to 1.7 eV is attributed
by several authors to the effect of quantum confinement in Si-ncs or silicon Si-ncls [34–36]; however,
in this theory, the size of the nanocrystal determines the color of the emission. In larger nanocrystals,
the emission tends to lower energies, and as we can see from the results, the Si-ncs and Si-ncls are
of a size that would correspond to a blue emission. These results make us take into account what is
reported by other authors [35,45] who suggest that the intense emission around 1.5 eV is caused by
small, oxidized silicon grains (1 nm or 2 nm). According to a model of molecular type emitters at the
Si/SiO2 interface in the work of Guerra and Ossicini [45], the importance of oxidation in nanocrystals
for emission is shown, and it is corroborated that those mostly oxidized have a high photoluminescence.
This could be compared with that obtained for porous silicon oxidized by Wolking et al. [46]. In their
report it is corroborated that for clusters greater than 3 nm the behavior attributed to quantum
confinement (QC) is fulfilled and that when the cluster size is smaller the emission intensity results
are greater. In this, case the emission process is attributed to the recombination of the free excitons.
For clusters between 2 and 3 nm, the previous behavior is still satisfied but not to the same rate in
which it is fulfilled in QC. Here, the recombination is related to a free hole and a trapped electron,
and finally, for clusters less than 2 nm, an emission redshift occurs and the recombination processes are
attributed to trapped excitons.

Given the size observed in Figures 17 and 18, it could be suggested that the thermal annealing in
the films induces a phase separation that further reduces the size of the Si-ncl. In addition, by virtue of
the presence of interstitial oxygen in the films without annealing, it is possible that an oxidation process
occurs of these small, silicon nanocrystals in the Si-nc/SiO2 interface. Such an event may explain why
the PL emission shifts towards red. In addition to the other experimental results obtained regarding
the increase in the amount of oxygen in the films and the rearrangement of the molecular network,
this would corroborate the theory presented in the literature [35,45].

5. Conclusions

Using the spectroscopic ellipsometry technique, the transmittance, reflectance, and absorption
coefficient of the films were calculated, with which it was subsequently possible to calculate the values
of BG and UE. Such parameters show a tendency by which, at a higher oxygen content, the value
of BG increases, while the value of the UE decreases. Similarly, the films with thermal annealing
present a decrease in the UE, which suggests a decrease in the molecular structure disorder and the
level of defects. By means of the XPS technique, it was possible to obtain an approximate value of
the stoichiometric ratio for deposited SiOx films whose values varied between 1.2 and 1.61, as well
as the oxidation states of silicon. It was observed that films deposited at a higher ssd show a greater
value of x in the stoichiometric ratio, possibly due to a greater incorporation of hydrogen, which was
sustained according to what was observed using FTIR. From the results of PL, the bands attributed
to the main defects observed in the SiOx were found. Thus, in the case of films without thermal
annealing, the violet band is ascribed to WOB defects, the blue band to NOV defects, the green band
to H, and the orange band to NBOHC, while in the case of the annealed films, they exhibited the
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emission attributed to WOB, NBOHC, and quantum confinement effects (with emission in red), due to
silicon nanocrystals. This contradicts the results obtained using XPS where the concentration of silicon
decreases with thermal annealing, which leads us to suggest the presence of small, oxidized silicon
grains (less than 2 nm) according to the results obtained, which were corroborated using HRTEM.
In addition, Si-ncls were obtained without applying thermal annealing to the deposited films, while the
annealing induces a phase separation that dramatically increases the PL, which could be an advantage
for the numerous potential applications where silicon agglomerates with small diameters enrich the
luminescent properties of the material.
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