NonToxic Silver/Poly-1-Vinyl-1,2,4-Triazole Nanocomposite Materials with Antibacterial Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of PVT
2.3. Synthesis of AgNPs Nanocomposites
2.4. Instruments for Characterization of Polymer and AgNPs Nanocomposites
2.5. Bacterial Culture
2.6. Determination of Antibacterial Action of Nanocomposites
2.7. Incubation of Nanocomposite with E. coli for Electron Microscopic Study
2.8. Primary Fibroblast Culture Isolation
2.9. Testing the Influence Studied Nanocomposite to the Fibroblast Culture
3. Results
3.1. Characterization of PVT
3.2. Synthesis and Characterization of Polymeric AgNPs Nanocomposites
3.3. Antimicrobial Activity of Polymeric AgNPs Nanocomposites
3.4. Cytotoxicity of Polymeric AgNPs Nanocomposites
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Stojkovska, J.; Jovana Zvicer, J.; Obradovic, B. Preclinical functional characterization methods of nanocomposite nydrogels containing silver nanoparticles for biomedical applications. Appl. Microbiol. Biotechnol. 2020, 104, 4643–4658. [Google Scholar] [CrossRef] [PubMed]
- Alavi, M.; Rai, M. Recent progress in nanoformulations of silver nanoparticles with cellulose, chitosan, and alginic acid biopolymers for antibacterial applications. Appl. Microbiol. Biotechnol. 2019, 103, 8669–8676. [Google Scholar] [CrossRef] [PubMed]
- Duval, R.E.; Gouyau, J.; Lamouroux, E. Limitations of recent studies dealing with the antibacterial properties of silver nanoparticles: Fact and opinion. Nanomaterials 2019, 9, 1775. [Google Scholar] [CrossRef] [Green Version]
- Franchi, L.P.; Manshian, B.B.; de Souza, T.A.; Soenen, S.J.; Matsubara, E.Y.; Rosolen, J.M.; Takahashi, C.S. Cyto- and genotoxic effects of metallic nanoparticles in untransformed human fibroblast. Toxicol. Vitro 2015, 29, 1319–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shurygina, I.A.; Fadeeva, T.V.; Umanets, V.A.; Shurygin, M.G.; Grigoriev, E.G.; Sukhov, B.G.; Ganenko, T.V.; Kostyro, Y.A.; Trofimov, B.A. Bactericidal action of Ag(0)-antithrombotic sulfated arabinogalactan nanocomposite: Coevolution of initial nanocomposite and living microbial cell to a novel nonliving nanocomposite. Nanomedicine 2011, 7, 827–833. [Google Scholar] [CrossRef]
- Fadeeva, T.V.; Shurygina, I.A.; Sukhov, B.G.; Rai, M.K.; Shurygin, M.G.; Umanets, V.A.; Lesnichaya, M.V.; Konkova, T.V.; Shurygin, D.M. Relationship between the structures and antimicrobial activities of argentic nanocomposites. Bull. Russ. Acad. Sci. Phys. 2015, 79, 273–275. [Google Scholar] [CrossRef]
- Shurygina, I.A.; Shurygin, M.G.; Sukhov, B.G. Nanobiocomposites of metals as antimicrobial agents. In Antibiotic Resistance: Mechanisms and New Antimicrobial Approaches, 1st ed.; Kon, K., Rai, M., Eds.; Academic Press: London, UK, 2016; pp. 167–186. [Google Scholar] [CrossRef]
- Tortella, G.R.; Rubilar, O.; Durán, N.; Diez, M.C.; Martínez, M.; Parada, J.; Seabra, A.B. Silver nanoparticles: Toxicity in model organisms as an overview of its hazard for human health and the environment. J. Hazard Mater. 2020, 390, 121974. [Google Scholar] [CrossRef] [PubMed]
- Shurygina, I.A.; Sosedova, L.M.; Novikov, M.A.; Titov, E.A.; Shurygin, M.G. Ecotoxicity of nanometals: The problems and solutions. In Nanomaterials: Ecotoxicity, Safety, and Public Perception; Rai, M., Biswas, J.K., Eds.; Springer: Cham, Switzerland, 2018; pp. 95–117. [Google Scholar] [CrossRef]
- Shurygina, I.A.; Shurygin, M.G. Nanoparticles in wound healing and regeneration. In Metal Nanoparticles in Pharma; Rai, M., Shegokar, R., Eds.; Springer: Cham, Switzerland, 2017; pp. 21–38. [Google Scholar] [CrossRef]
- Arokiyaraj, S.; Arasu, M.V.; Vincent, S.; Prakash, N.U.; Choi, S.H.; Oh, Y.K.; Choi, K.C.; Kim, K.H. Rapid green synthesis of silver nanoparticles from Chrysanthemum indicum L and its antibacterial and cytotoxic effects: An in vitro study. Int. J. Nanomed. 2014, 9, 379–388. [Google Scholar] [CrossRef] [Green Version]
- Składanowski, M.; Golinska, P.; Rudnicka, K.; Dahm, H.; Rai, M. Evaluation of cytotoxicity, immune compatibility and antibacterial activity of biogenic silver nanoparticles. Med. Microbiol. Immunol. 2016, 205, 603–613. [Google Scholar] [CrossRef] [Green Version]
- Guilger, M.; Pasquoto-Stigliani, T.; Bilesky-Jose, N.; Grillo, R.; Abhilash, P.C.; Fraceto, L.F.; Lima, R. Biogenic silver nanoparticles based on Trichoderma harzianum: Synthesis, characterization, toxicity evaluation and biological activity. Sci. Rep. 2017, 7, 44421. [Google Scholar] [CrossRef]
- Cinteza, L.O.; Scomoroscenco, C.; Voicu, S.N.; Nistor, C.L.; Nitu, S.G.; Trica, B.; Jecu, M.L.; Petcu, C. Chitosan-stabilized Ag nanoparticles with superior biocompatibility and their synergistic antibacterial effect in mixtures with essential oils. Nanomaterials 2018, 8, 826. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.; Joshi, M.; Butola, B.S.; Ghosh, S. Evaluation of biological and cytocompatible properties in nano silver-clay based polyethylene nanocomposites. J. Hazard Mater. 2020, 384, 121309. [Google Scholar] [CrossRef] [PubMed]
- Prozorova, G.F.; Pozdnyakov, A.S.; Kuznetsova, N.P.; Korzhova, S.A.; Emel’yanov, A.I.; Ermakova, T.G.; Fadeeva, T.V.; Sosedova, L.M. Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles. Int. J. Nanomed. 2014, 9, 1883–1889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pozdnyakov, A.S.; Emel’yanov, A.I.; Kuznetsova, N.P.; Ermakova, T.G.; Fadeeva, T.V.; Sosedova, L.M.; Prozorova, G.F. Nontoxic hydrophilic polymeric nanocomposites containing silver nanoparticles with strong antimicrobial activity. Int. J. Nanomed. 2016, 11, 1295–1304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, J.; Feng, H.; Mannerström, M.; Heinonen, T.; Pyykkö, I. Toxicity of silver nanoparticle in rat ear and BALB/c 3T3 cell line. J. Nanobiotechnol. 2014, 12, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ermakova, T.G.; Tatarova, L.A.; Kuznetsova, N.P. Vinylation of 1,2,4-triazole. Russ. J. Gen. Chem. 1997, 67, 805–807. [Google Scholar]
- Fisenko, V.P. Guidance on Experimental (Preclinical) Study of Novel Pharmacological Substances; Remedium: Moscow, Russia, 2000; 398p. [Google Scholar]
- Shurygina, I.A.; Trukhan, I.S.; Dremina, N.N.; Shurygin, M.G. Changes in oxidative phosphorylation activity in fibroblasts at p38 MAPK pathway inhibition. Int. J. Biomed. 2019, 9, 350–355. [Google Scholar] [CrossRef]
- Tamaki, M.; Harada, T.; Fujinuma, K.; Takanashi, K.; Shindo, M.; Kimura, M.; Uchida, Y. Polycationic gramicidin S analogues with both high antibiotic activity and very low hemolytic activity. Chem. Pharm. Bull. 2012, 60, 1134–1138. [Google Scholar] [CrossRef] [Green Version]
- Pareek, V.; Gupta, R.; Panwar, J. Do physico-chemical properties of silver nanoparticles decide their interaction with biological media and bactericidal action? A review. Mater. Sci. Eng. C Mater. Biol. Appl. 2018, 90, 739–749. [Google Scholar] [CrossRef] [PubMed]
- Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomed. 2020, 15, 2555–2562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gharpure, S.; Akash, A.; Ankamwar, B. A review on antimicrobial properties of metal nanoparticles. J. Nanosci. Nanotechnol. 2020, 20, 3303–3339. [Google Scholar] [CrossRef] [PubMed]
- Gunawan, C.; Faiz, M.B.; Mann, R.; Ting, S.R.S.; Sotiriou, G.A.; Marquis, C.P.; Amal, R. Nanosilver targets the bacterial cell envelope: The link with generation of reactive oxygen radicals. ACS Appl. Mater. Interfaces 2020, 12, 5557–5568. [Google Scholar] [CrossRef] [PubMed]
- Faiz, M.B.; Amal, R.; Marquis, C.P.; Harry, E.J.; Sotiriou, G.A.; Rice, S.A.; Gunawan, C. Nanosilver and the microbiological activity of the particulate solids versus the leached soluble silver. Nanotoxicology 2018, 12, 263–273. [Google Scholar] [CrossRef]
- Wu, L.; Zhu, G.; Zhang, X.; Si, Y. Silver nanoparticles inhibit denitrification by altering the viability and metabolic activity of Pseudomonas stutzeri. Sci. Total Environ. 2020, 706, 135711. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Wang, Y.; Jin, M.; Yuan, Z.; Bond, P.; Guo, J. Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes. Water Res. 2020, 169, 115229. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, L.; Si, Y.; Shu, K. Size-dependent cytotoxicity of silver nanoparticles to Azotobacter vinelandii: Growth Inhibition, cell injury, oxidative stress and internalization. PLoS ONE 2018, 13, e0209020. [Google Scholar] [CrossRef] [Green Version]
- Inkielewicz-Stepniak, I.; Santos-Martinez, M.J.; Medina, C.; Radomski, M.W. Pharmacological and toxicological effects of co-exposure of human gingival fibroblasts to silver nanoparticles and sodium fluoride. Int. J. Nanomed. 2014, 9, 1677–1687. [Google Scholar] [CrossRef] [Green Version]
- Gurunathan, S.; Qasim, M.; Park, C.; Yoo, H.; Choi, D.Y.; Song, H.; Park, C.; Kim, J.H.; Hong, K. Cytotoxicity and transcriptomic analysis of silver nanoparticles in mouse embryonic fibroblast cells. Int. J. Mol. Sci. 2018, 19, 3618. [Google Scholar] [CrossRef] [Green Version]
- Monzillo, V.; Valle, C.D.; Corbella, M.; Percivalle, E.; Sassera, D.; Scevola, D.; Marone, P. Antibacterial activity and cytotoxic effect of SIAB-GV3. New Microbiol. 2014, 37, 535–541. [Google Scholar]
- Saliev, T.; Baiskhanova, D.M.; Akhmetova, A.; Begimbetova, D.A.; Akishev, M.; Kulsharova, G.; Molkenov, A.; Nurgozhin, T.; Alekseyeva, T.; Mikhalovsky, S. Impact of electromagnetic fields on in vitro toxicity of silver and graphene nanoparticles. Electromagn. Biol. Med. 2019, 38, 21–31. [Google Scholar] [CrossRef]
- Shurygina, I.A.; Shurygin, M.G.; Dmitrieva, L.A.; Fadeeva, T.V.; Ganenko, T.V.; Tantsyrev, A.P.; Sapozhnikov, A.N.; Sukhov, B.G.; Trofimov, B.A. Bacterio- and lymphocytotoxicity of silver nanocomposite with sulfated arabinogalactan. Russ. Chem. Bull. 2015, 64, 1629–1632. [Google Scholar] [CrossRef]
- Ivask, A.; Kurvet, I.; Kasemets, K.; Blinova, I.; Aruoja, V.; Suppi, S.; Vija, H.; Käkinen, A.; Titma, T.; Heinlaan, M.; et al. Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLoS ONE 2014, 9, e102108. [Google Scholar] [CrossRef]
- Ávalos, A.; Haza, A.I.; Morales, P. Manufactured silver nanoparticles of different sizes induced DNA strand breaks and oxidative DNA damage in hepatoma and leukaemia cells and in dermal and pulmonary fibroblasts. Folia Biol. 2015, 61, 33–42. [Google Scholar]
- Bacali, C.; Baldea, I.; Moldovan, M.; Carpa, R.; Olteanu, D.E.; Filip, G.A.; Nastase, V.; Lascu, L.; Badea, M.; Constantiniuc, M.; et al. Flexural strength, biocompatibility, and antimicrobial activity of a polymethyl methacrylate denture resin enhanced with graphene and silver nanoparticles. Clin. Oral. Investig. 2019, 24, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Das, B.; Tripathy, S.; Adhikary, J.; Chattopadhyay, S.; Mandal, D.; Dash, S.K.; Das, S.; Dey, A.; Dey, S.K.; Das, D.; et al. Surface modification minimizes the toxicity of silver nanoparticles: An in vitro and in vivo study. J. Biol. Inorg. Chem. 2017, 22, 893–918. [Google Scholar] [CrossRef]
Sample | Ratio of Polymer/AgNO3 (mol) | Reducing Agent | Content of Ag in Nanocomposite (%) | Yield (%) | Solubility in H2O |
---|---|---|---|---|---|
1 | 50:1 | NaBH4 | 1.8 | 80 | + |
2 | 20:1 | NaBH4 | 5.0 | 84 | + |
3 | 15:1 | NaBH4 | 10.1 | 86 | + |
4 | 10:1 | NaBH4 | 13.6 | 82 | − |
5 | 5:1 | NaBH4 | 20.8 | 87 | − |
6 | 20:1 | Formaldehyde | 3.9 | 81 | + |
Bacteria | MIC (µg/mL) | MBC (µg/mL) |
---|---|---|
Gram-negative bacteria | ||
E. coli (ATCC 25922) | 0.5 | 1 |
P. aeruginosa (ATCC 27853) | 4 | 4 |
K. pneumonia (ATCC 700603) | 4 | 8 |
Gram-positive bacteria | ||
S. aureus (ATCC 25923) | 8 | 16 |
E. faecalis (ATCC 29212) | 4 | 8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shurygina, I.A.; Prozorova, G.F.; Trukhan, I.S.; Korzhova, S.A.; Fadeeva, T.V.; Pozdnyakov, A.S.; Dremina, N.N.; Emel’yanov, A.I.; Kuznetsova, N.P.; Shurygin, M.G. NonToxic Silver/Poly-1-Vinyl-1,2,4-Triazole Nanocomposite Materials with Antibacterial Activity. Nanomaterials 2020, 10, 1477. https://doi.org/10.3390/nano10081477
Shurygina IA, Prozorova GF, Trukhan IS, Korzhova SA, Fadeeva TV, Pozdnyakov AS, Dremina NN, Emel’yanov AI, Kuznetsova NP, Shurygin MG. NonToxic Silver/Poly-1-Vinyl-1,2,4-Triazole Nanocomposite Materials with Antibacterial Activity. Nanomaterials. 2020; 10(8):1477. https://doi.org/10.3390/nano10081477
Chicago/Turabian StyleShurygina, Irina A., Galina F. Prozorova, Irina S. Trukhan, Svetlana A. Korzhova, Tatiana V. Fadeeva, Alexander S. Pozdnyakov, Nataliya N. Dremina, Artem I. Emel’yanov, Nadezhda P. Kuznetsova, and Michael G. Shurygin. 2020. "NonToxic Silver/Poly-1-Vinyl-1,2,4-Triazole Nanocomposite Materials with Antibacterial Activity" Nanomaterials 10, no. 8: 1477. https://doi.org/10.3390/nano10081477
APA StyleShurygina, I. A., Prozorova, G. F., Trukhan, I. S., Korzhova, S. A., Fadeeva, T. V., Pozdnyakov, A. S., Dremina, N. N., Emel’yanov, A. I., Kuznetsova, N. P., & Shurygin, M. G. (2020). NonToxic Silver/Poly-1-Vinyl-1,2,4-Triazole Nanocomposite Materials with Antibacterial Activity. Nanomaterials, 10(8), 1477. https://doi.org/10.3390/nano10081477