Synthesis and Characterization of Li-C Nanocomposite for Easy and Safe Handling
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Nitta, N.; Wu, F.; Lee, J.T.; Yushin, G. Li-ion battery materials: Present and future. Mater. Today 2015, 18, 252–264. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, J.; Kintner-Meyer, M.C.; Lu, X.; Choi, D.; Lemmon, J.P.; Liu, J. Electrochemical energy storage for green grid. Chem. Rev. 2011, 111, 3577–3613. [Google Scholar] [CrossRef]
- Dunn, B.; Kamath, H.; Tarascon, J.-M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935. [Google Scholar] [CrossRef] [Green Version]
- Goodenough, J.B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2009, 22, 587–603. [Google Scholar] [CrossRef]
- Bruce, P.G.; Freunberger, S.A.; Hardwick, L.J.; Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 2012, 11, 19. [Google Scholar] [CrossRef]
- Buqa, H.; Goers, D.; Holzapfel, M.; Spahr, M.E.; Novák, P. High rate capability of graphite negative electrodes for lithium-ion batteries. J. Electrochem. Soc. 2005, 152, A474–A481. [Google Scholar] [CrossRef]
- Qian, J.; Adams, B.D.; Zheng, J.; Xu, W.; Henderson, W.A.; Wang, J.; Bowden, M.E.; Xu, S.; Hu, J.; Zhang, J.-G. Anode-free rechargeable lithium metal batteries. Adv. Funct. Mater. 2016, 26, 7094–7102. [Google Scholar] [CrossRef]
- Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J.-G. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 2014, 7, 513–537. [Google Scholar] [CrossRef]
- Neudecker, B.J.; Dudney, N.J.; Bates, J.B. “Lithium-free” Thin-film battery with in situ plated Li anode. J. Electrochem. Soc. 2000, 147, 517–523. [Google Scholar] [CrossRef]
- Roy, P.; Srivastava, S.K. Nanostructured anode materials for lithium ion batteries. J. Mater. Chem. A 2015, 3, 2454–2484. [Google Scholar] [CrossRef]
- Lin, D.; Liu, Y.; Liang, Z.; Lee, H.-W.; Sun, J.; Wang, H.; Yan, K.; Xie, J.; Cui, Y. Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes. Nat. Nanotechnol. 2016, 11, 626. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lin, D.; Liang, Z.; Zhao, J.; Yan, K.; Cui, Y. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 2016, 7, 10992. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Lin, D.; Zhao, J.; Lu, Z.; Liu, Y.; Liu, C.; Lu, Y.; Wang, H.; Yan, K.; Tao, X. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating. Proc. Natl. Acad. Sci. USA 2016, 113, 2862–2867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Tu, Z.; Archer, L.A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 2014, 13, 961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K. A lithium superionic conductor. Nat. Mater. 2011, 10, 682. [Google Scholar] [CrossRef]
- Han, X.; Gong, Y.; Fu, K.K.; He, X.; Hitz, G.T.; Dai, J.; Pearse, A.; Liu, B.; Wang, H.; Rubloff, G. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 2017, 16, 572. [Google Scholar] [CrossRef]
- Zheng, G.; Lee, S.W.; Liang, Z.; Lee, H.-W.; Yan, K.; Yao, H.; Wang, H.; Li, W.; Chu, S.; Cui, Y. Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 2014, 9, 618. [Google Scholar] [CrossRef]
- Li, N.-W.; Yin, Y.-X.; Yang, C.-P.; Guo, Y.-G. An artificial solid electrolyte interphase layer for stable lithium metal anodes. Adv. Mater. 2016, 28, 1853–1858. [Google Scholar] [CrossRef]
- Kozen, A.C.; Lin, C.-F.; Pearse, A.J.; Schroeder, M.A.; Han, X.; Hu, L.; Lee, S.-B.; Rubloff, G.W.; Noked, M. Next-generation lithium metal anode engineering via atomic layer deposition. Acs Nano 2015, 9, 5884–5892. [Google Scholar] [CrossRef]
- Cao, Y.; Meng, X.; Elam, J.W. Atomic layer Deposition of LixAlyS solid-state electrolytes for stabilizing lithium-metal anodes. Chem. Electro. Chem. 2016, 3, 858–863. [Google Scholar]
- Yang, C.-P.; Yin, Y.-X.; Zhang, S.-F.; Li, N.-W.; Guo, Y.-G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 6, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Fang, X.; Shen, C.; Liu, Y.; Zhou, C. A Carbon nanofiber network for stable lithium metal anodes with high coulombic efficiency and long cycle life. Nano Res. 2016, 9, 3428–3436. [Google Scholar] [CrossRef]
- Cheng, M.Y.; Hwang, B.J. Mesoporous carbon-encapsulated NiO nanocomposite negative electrode materials for high-rate Li-ion battery. J. Power Sources 2010, 195, 4977–4983. [Google Scholar] [CrossRef]
- Fan, Z.; Wang, B.; Xi, Y.; Xu, X.; Li, M.; Li, J.; Yang, G. A NiCo2O4 nanosheet-mesoporous carbon composite electrode for enhanced reversible lithium storage. Carbon 2016, 99, 633–641. [Google Scholar] [CrossRef]
- Nagao, M.; Otani, M.; Tomita, H.; Kanzaki, S.; Yamada, A.; Kanno, R. New three-dimensional electrode structure for the lithium battery: Nano-sized γ-Fe2O3 in a mesoporous carbon matrix. J. Power Sources 2011, 196, 4741–4746. [Google Scholar] [CrossRef]
- Zeng, L.; Zheng, C.; Deng, C.; Ding, X.; Wei, M. MoO2-ordered mesoporous carbon nanocomposite as an anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 2182–2187. [Google Scholar] [CrossRef]
- Wu, F.; Huang, R.; Mu, D.; Shen, X.; Wu, B. A novel composite with highly dispersed Fe3O4 nanocrystals on ordered mesoporous carbon as an anode for lithium ion batteries. J. Alloys Compd. 2014, 585, 783–789. [Google Scholar] [CrossRef]
- Yang, M.; Gao, Q. Copper oxide and ordered mesoporous carbon composite with high performance using as anode material for lithium-ion battery. Microporous Mesoporous Mater. 2011, 143, 230–235. [Google Scholar] [CrossRef]
- Guo, R.; Zhao, L.; Yue, W. Assembly of core–shell structured porous carbon–graphene composites as anode materials for lithium-ion batteries. Electrochim. Acta 2014, 152, 338–344. [Google Scholar] [CrossRef]
- Shen, L.; Uchaker, E.; Yuan, C.; Nie, P.; Zhang, M.; Zhang, X.; Cao, G. Three-dimensional coherent titania–mesoporous carbon nanocomposite and its lithium-ion storage properties. ACS Appl. Mater. Interfaces 2012, 4, 2985–2992. [Google Scholar] [CrossRef]
- Ma, J.; Xiang, D.; Li, Z.; Li, Q.; Wang, X.; Yin, L. TiO2 nanocrystal embedded ordered mesoporous carbons as anode materials for lithium-ion batteries with highly reversible capacity and rate performance. CrystEngComm 2013, 15, 6800–6807. [Google Scholar] [CrossRef]
- Xu, X.; Fan, Z.; Yu, X.; Ding, S.; Yu, D.; Lou, X.W. A Nanosheets-on-channel architecture constructed from MoS2 and CMK-3 for high-capacity and long-cycle-life lithium storage. Adv. Energy Mater. 2014, 4, 1400902. [Google Scholar] [CrossRef]
- Sharma, S.; Rosmi, M.S.; Yaakob, Y.; Yusop, M.Z.M.; Kalita, G.; Kitazawa, M.; Tanemura, M. In situ TEM synthesis of Y-junction carbon nanotube by electromigration induced soldering. Carbon 2018, 132, 165–171. [Google Scholar] [CrossRef]
- Yusop, M.Z.M.; Ghosh, P.; Yaakob, Y.; Kalita, G.; Sasase, M.; Hayashi, Y.; Tanemura, M. In situ TEM observation of Fe-included carbon nanofiber: Evolution of structural and electrical properties in field emission process. ACS Nano 2012, 6, 9567–9573. [Google Scholar] [CrossRef] [PubMed]
- Yaakob, Y.; Kuwataka, Y.; Yusop, M.Z.M.; Tanaka, S.; Rosmi, M.S.; Kalita, G.; Tanemura, M. Room-temperature growth of ion-induced Si-and Ge-incorporated carbon nanofibers. Phys. Status Solidi (b) 2015, 252, 1345–1349. [Google Scholar] [CrossRef]
- Tanemura, M.; Okita, T.; Yamauchi, H.; Tanemura, S.; Morishima, R. Room-temperature growth of a carbon nanofiber on the tip of conical carbon protrusions. Appl. Phys. Lett. 2004, 84, 3831–3833. [Google Scholar] [CrossRef]
- Tanemura, M.; Hatano, H.; Kitazawa, M.; Tanaka, J.; Okita, T.; Lau, S.P.; Yang, H.Y.; Yu, S.F.; Huang, L.; Miao, L. Room-temperature growth of carbon nanofibers on plastic substrates. Surf. Sci. 2006, 600, 3663–3667. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Pei, A.; Yan, K.; Sun, Y.; Wu, C.-L.; Joubert, L.-M.; Chin, R.; Koh, A.L.; Yu, Y.; et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy. Science 2017, 358, 506–510. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.H.; Huang, J.Y. In situ TEM electrochemistry of anode materials in lithium ion batteries. Energy Environ. Sci. 2011, 4, 3844–3860. [Google Scholar] [CrossRef]
- Rosmi, M.S.; Yusop, M.Z.; Kalita, G.; Yaakob, Y.; Takahashi, C.; Tanemura, M. Visualizing copper assisted graphene growth in nanoscale. Sci. Rep. 2015, 4, 7563. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, S.; Osugi, T.; Elnobi, S.; Ozeki, S.; Jaisi, B.P.; Kalita, G.; Capiglia, C.; Tanemura, M. Synthesis and Characterization of Li-C Nanocomposite for Easy and Safe Handling. Nanomaterials 2020, 10, 1483. https://doi.org/10.3390/nano10081483
Sharma S, Osugi T, Elnobi S, Ozeki S, Jaisi BP, Kalita G, Capiglia C, Tanemura M. Synthesis and Characterization of Li-C Nanocomposite for Easy and Safe Handling. Nanomaterials. 2020; 10(8):1483. https://doi.org/10.3390/nano10081483
Chicago/Turabian StyleSharma, Subash, Tetsuya Osugi, Sahar Elnobi, Shinsuke Ozeki, Balaram Paudel Jaisi, Golap Kalita, Claudio Capiglia, and Masaki Tanemura. 2020. "Synthesis and Characterization of Li-C Nanocomposite for Easy and Safe Handling" Nanomaterials 10, no. 8: 1483. https://doi.org/10.3390/nano10081483
APA StyleSharma, S., Osugi, T., Elnobi, S., Ozeki, S., Jaisi, B. P., Kalita, G., Capiglia, C., & Tanemura, M. (2020). Synthesis and Characterization of Li-C Nanocomposite for Easy and Safe Handling. Nanomaterials, 10(8), 1483. https://doi.org/10.3390/nano10081483