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Abstract: H2 plasma treatment was performed on carbon-based nonwoven fabrics (c-NFs) in a 900 W
microwave plasma-enhanced chemical vapor deposition system at 750 ◦C and 40 Torr. Consequently,
the electromagnetic wave shielding effectiveness (SE) of the c-NFs was significantly enhanced across
the operating frequency range of 0.04 to 20.0 GHz. We compared the electromagnetic wave SE of
the H2 plasma-treated c-NFs samples with that of native c-NFs samples coated with nano-sized Ag
particles. Despite having a lower surface electrical conductivity, H2 plasma-treated c-NFs samples
exhibited a considerably higher electromagnetic wave SE than the Ag-coated c-NFs samples, across
the relatively high operating frequency range of 7.0 to 20.0 GHz. The carbon component of H2

plasma-treated c-NFs samples increased significantly compared with the oxygen component. The H2

plasma treatment transformed the alcohol-type (C–O–H) compounds formed by carbon-oxygen
bonds on the surface of the native c-NFs samples into ether-type (C–O–C) compounds. On the basis
of these results, we proposed a mechanism to explain the electromagnetic wave SE enhancement
observed in H2 plasma-treated c-NFs.

Keywords: electromagnetic wave shielding effectiveness; carbon-based nonwoven fabrics; H2 plasma
treatment; absorption loss shielding mechanism; chemical composition transformation

1. Introduction

Electromagnetic waves are composed of oscillating electric and magnetic fields. Therefore, materials
with electromagnetic wave shielding capabilities are expected to interact with either one or both
of these fields. Shielding of electromagnetic waves can occur via either reflection loss, absorption
loss, or multiple reflection loss [1–4]. Reflection loss and absorption loss are considered the main
shielding mechanisms for achieving efficient absorption loss greater than 10 dB [5–8]. The shielding
effectiveness (SE) of electromagnetic wave shielding materials is given in units of dB and can be
estimated using the following empirical equation, which was proposed by Simon [8]: SE = 50 +

10log(ρf )−1 + 1.7t(f /ρ)1/2, where ρ is resistivity, t is the thickness of the shielding material, and f is the
operating frequency. In this equation, reflection loss, that is, 10log(ρf )−1, decreases with increasing
operating frequency. However, absorption loss, that is, 1.7t(f /ρ)1/2, increases with increasing operating
frequency. Therefore, at high operating frequencies required by technologies such as fifth-generation
wireless networks, the absorption loss characteristics of shielding materials are especially important
for effectively protecting electromagnetic waves.

Carbon microcoils used as electromagnetic wave shielding materials have a helical structure,
with the individual carbon nanofibers oriented along the growth direction of the microcoil axis [9,10].

Nanomaterials 2020, 10, 1611; doi:10.3390/nano10081611 www.mdpi.com/journal/nanomaterials

http://www.mdpi.com/journal/nanomaterials
http://www.mdpi.com
https://orcid.org/0000-0003-3225-8906
https://orcid.org/0000-0002-6303-7199
http://dx.doi.org/10.3390/nano10081611
http://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/2079-4991/10/8/1611?type=check_update&version=2


Nanomaterials 2020, 10, 1611 2 of 14

When an incoming electromagnetic wave reaches the carbon microcoils, the electric current flows into
the individual helical-type carbon nanofibers in varying directions, thereby inducing an electromotive
force and generating a variable magnetic field [11,12]. The geometry of the carbon microcoils stops
and rotates the incoming electromagnetic wave within the generated variable magnetic field. Thus,
the incoming electromagnetic wave energy is absorbed into the carbon microcoils and is converted
into thermal energy [13].

Similar to carbon microcoils, carbon-based nonwoven fabrics (c-NFs) consist of randomly oriented
carbon fibers. When an incoming electromagnetic wave reaches these fibers, the direction of the flowing
electric current may vary, as in the case of helical-type carbon microcoils. Subsequently, c-NFs induce
an electromotive force, eventually generating a variable magnetic field. Accordingly, c-NFs absorb the
electromagnetic waves, thus shielding against such waves. In our previous work, we reported the
superior absorption characteristics and SE of c-NFs [14].

Reflection loss of electromagnetic radiation in a material occurs owing to the interaction between
the electric field of the electromagnetic radiation and the material. However, absorption loss in a material
occurs as a result of interactions between both the electric and magnetic fields of the electromagnetic
radiation and the material. The penetration of electromagnetic waves within a limited depth range
below the surface of a shielding material is known as the skin effect. This effect is noticeable at high
operating frequencies [2,5]. The skin depth (δ) is defined as the depth at which the electromagnetic
wave field inside the material falls to 1/e of its incident value; it can be calculated using the following
equation: δ = (πσfµ)−1/2 [2,5], where σ, f, and µ denote the electrical conductivity, operating frequency,
and magnetic permeability, respectively. This equation shows that skin depth decreases with increasing
frequency, electrical conductivity, and magnetic permeability. Therefore, an electromagnetic wave
shielding material should have a high electrical conductivity as well as a high magnetic permeability
at high operating frequencies.

In the present work, we attempted to improve the electromagnetic wave SE of carbon-based
materials by increasing the electrical conductivities of well-made c-NFs with a variable magnetic field.
To achieve this, we developed a simple pretreatment method involving H2 plasma treatment or Ag
coating to enhance the electrical conductivity of the c-NFs samples. The morphologies, electrical
conductivities with and without pretreatment, and variations in chemical composition of the c-NFs
samples were investigated and discussed.

2. Materials and Methods

We fabricated c-NFs using a modified carding machine [15]. H2 plasma treatment was performed
on the c-NFs samples using a microwave plasma-enhanced chemical vapor deposition (MPECVD)
system. In general, the experimental parameters for plasma processing using MPECVD systems are
microwave generator power, substrate temperature, and plasma reaction time [16,17]. Occasionally,
total pressure is also considered. The total pressure condition is typically set in the pre-experimental
phase to generate the plasma. Therefore, in this work, the total pressure is initially set in the reactor
to form the plasma. We performed several experiments as functions of the microwave generator
power, substrate temperature, and plasma reaction time to determine the optimal conditions for the H2

plasma treatment process. In the end, we determined that H2 plasma treatment for 5 min was optimal
for investigating the mechanism that caused the SE enhancement. Figure 1 shows the MPECVD
system, and Table 1 lists the detailed experimental conditions under which the H2 plasma treatment
was performed.

Table 1. Experimental conditions for H2 plasma treatment using the microwave plasma-enhanced
chemical vapor deposition (MPECVD) system.

Substrate
Temperature (◦C)

H2 Gas
Pressure (Torr)

H2 Gas
Flow Rate (sccm)

H2 Plasma Reaction
Time (min)

Microwave
Power (W)

750 40 100 5 900
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Figure 1. Schematic of the microwave plasma-enhanced chemical vapor deposition (MPECVD) 
system: (1) microwave remote power head; (2) three-stub tuner; (3) plasma applicator; (4) microwave 
window; (5) graphite substrate; (6) manipulating heater stage; (7) pumping system; and (8) mass flow 
controller system. 
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Ag coatings of c-NFs were performed using a home-made direct current (DC) sputtering system. 
Figure 2 shows the system, and Table 2 lists the experimental conditions for the Ag coating process. 

 
Figure 2. Schematic diagram of the direct current (DC) sputtering system used to produce Ag-coated 
c-NFs. 

  

Figure 1. Schematic of the microwave plasma-enhanced chemical vapor deposition (MPECVD)
system: (1) microwave remote power head; (2) three-stub tuner; (3) plasma applicator; (4) microwave
window; (5) graphite substrate; (6) manipulating heater stage; (7) pumping system; and (8) mass flow
controller system.

Ag coatings of c-NFs were performed using a home-made direct current (DC) sputtering system.
Figure 2 shows the system, and Table 2 lists the experimental conditions for the Ag coating process.
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Figure 2. Schematic diagram of the direct current (DC) sputtering system used to produce Ag-coated c-NFs.

Table 2. Experimental conditions for producing Ag-coated carbon-based nonwoven fabrics (c-NFs)
using a direct current (DC) sputtering system.

Ar Gas
Pressure (Torr)

Ar Gas
Flow Rate (sccm)

Total Reaction
Time (min)

DC Power
(kW)

Sputter
Target

40 70 6.0 1.0 Ag

The morphologies of the samples were investigated in detail using a field-emission scanning
electron microscopy (FESEM; S-4200, Tokyo, Japan), while the chemical compositions of each sample
were examined using an energy dispersive X-ray spectroscopy (EDS; JSM-6700F, Tokyo, Japan).
Furthermore, composition analysis of the sample surfaces was performed using an X-ray photoelectron
spectroscopy (XPS; Theta Probe, Waltham, MA, USA) with a spot size of 400 µm. Resistivity values
were obtained using a four-point probe (labsysstc-400, Busan, Republic of Korea) connected to a source
meter (2400 Source Meter, Cleveland, OH, USA) and by performing calculations using Ohm’s law with
a correction factor (see Figure 3a) [3,18,19]. The following is the process for the electrical conductivity
measurement in this work. The electrical resistivity of the samples was measured using the four-point
probe system, according to the method proposed by Smits [18]. The four-point probe system consists
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of four straight-lined probes with equal inter-probe spacing of 3.0 mm. A constant current (I) was
supplied through the two outer probes. Using the two inner probes, we measured the output voltage
(V) [3]. Furthermore, the correction factors (C and F) were obtained from Smits’s study [18]. Surface
and volume resistivity were calculated using the following equation [3,18]:

Surface resistivity : ρs =
V
I

C
(

a
d

,
d
s

)
Volume resistivity : ρv = ρswF

(w
s

) (1)

where a, d, w, and s denote the length, width, and thickness of the sample and an inter-probe
spacing, respectively.
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The thicknesses of the samples were measured using a micrometer (406-250-30, Nakagawa, Japan),
as shown in Figure 3b. However, the thickness difference of the samples was not considered in this
work owing to the short time (5 min) of the H2 plasma treatment process and/or the small-sized (60 nm
in diameter) Ag particle coating treatment process performed on the carbon fibers of the samples.

The SE values of the c-NFs samples were measured using the waveguide method with a vector
network analyzer (VNA; 37369C, Kanagawa, Japan), as shown in Figure 4. The setup consisted of a
sample holder with its exterior connected to the VNA system (Figure 4).Nanomaterials 2020, 10, x 5 of 15 
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Figure 4. Schematic of the vector network analyzer (VNA) system: (1) sample; (2) wave-guide test
holders; (3) coaxial cables; (4) VNA; and (5) computer.

A coaxial sample holder and coaxial transmission test specimen were set up according to the
waveguide method. We measured scattering parameters (S11 and S21) in the 0.04 to 20.0 GHz
frequency range using a VNA [20–23]. The power coefficients, namely, reflectivity (R), absorptivity (A),
and transmissivity (T), were calculated using the equations R = PR/PI =|S11|2 and T = PT/PI = |S21|2,
where PI, PR, PA, and PT are the incident, reflected, absorbed, and transmitted powers of an electromagnetic
wave, respectively. The power coefficient relationship is expressed as R + A + T = 1. The electromagnetic
wave SE was calculated from the scattering parameters using the following equations:
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SEtot = −10log T

SER = −10log (1 − R)

SEA = −10log [T/(1 − R)]

where SEtot, SER, and SEA denote the total, reflection, and absorption SE values, respectively [23].

3. Results

Figure 5 shows photographs and FESEM images of native c-NFs samples, plasma-treated c-NFs
samples, Ag-coated c-NFs samples, and plasma-treated Ag-coated c-NFs samples. As shown in
Figure 5b, the native c-NFs samples contained numerous intersection points of randomly oriented
individual carbon fibers. When an incoming electromagnetic wave reaches an individual carbon fiber,
the electric current from the electromagnetic wave flows in a different direction from the point of
intersection. Consequently, the direction of the flowing electric current varies as it would for helical-type
carbon microcoils. Therefore, native c-NFs can induce an electromotive force, eventually producing a
variable magnetic field, and thereby enhancing the magnetic properties and electromagnetic wave
SE of the c-NFs. Consequently, the electromagnetic wave SE of a native c-NFs is enhanced via the
absorption mechanism of an electromagnetic wave. The individual carbon fibers that constitute native
c-NFs have clean surfaces (see Figure 5c), while the fibers of c-NFs that have been plasma-treated for
5 min have submicron-sized particles attached to their surfaces, as shown in Figures 5f and 6a.
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Figure 5. (a), (d), (g), and (j) are photographs; (b), (e), (h), and (k) are field-emission scanning electron
microscopy (FESEM) images; and (c), (f), (i), and (l) are magnified FESEM images. From top of bottom,
each column of images shows native carbon-based nonwoven fabrics (c-NFs) samples, plasma-treated
c-NFs samples, Ag-coated c-NFs samples, and plasma-treated Ag-coated c-NFs samples, respectively.
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Figure 6. (a) A magnified FESEM image of an individual carbon fiber in a plasma-treated c-NFs sample
and (b) the corresponding energy dispersive X-ray spectroscopy (EDS) spectrum obtained for the area
inside the dotted-circle in Figure 6a. (c) A magnified FESEM image of an individual carbon fiber has
inset showing silver particles in an Ag-coated c-NFs sample; and (d) the corresponding EDS spectrum
for the area inside the dotted-circle in the inset of Figure 6c.

The EDS spectrum in Figure 6b shows that these attached submicron-sized particles are composed
mainly of carbon. The individual carbon fibers that constitute Ag-coated c-NFs have stained surfaces,
as shown in Figure 5i. The highly magnified FESEM images of the Ag-coated c-NFs samples in Figure 6
reveal the presence of numerous nano-sized Ag particles on the surface of the individual carbon
fibers. The average Ag particle diameter was approximately 60 nm. The individual carbon fibers
that constituted the Ag-coated c-NFs samples also treated with H2 plasma had surface morphologies
similar to those of the Ag-coated c-NFs samples.

The sheet resistance (Rs) values of the native c-NFs samples, plasma-treated c-NFs samples,
Ag-coated c-NFs samples, and plasma-treated Ag-coated c-NFs samples were measured using a
four-point probe. All of the samples appeared to have a thickness of 1.5 mm. As shown in Table 3,
the electrical conductivity of the plasma-treated c-NFs samples was higher than that of the native
c-NFs samples, while the electrical conductivity of the Ag-coated c-NFs samples was higher than those
of both the plasma-treated and native samples.

Table 3. Resistivity and electrical conductivity values of the studied samples.

Samples Thickness
(mm)

Resistivity
ρ (Ω·m)

Conductivity
σ (S/m)

* Correction
Factor F (w/s)

Native c-NFs

1.5

4.60 × 10−4 2.17 × 103

0.99

c-NFs treated with H2
plasma for 5 min 3.20 × 10−4 3.13 × 103

Ag-coated c-NFs 2.77 × 10−4 3.61 × 103

Ag-coated c-NFs treated
with H2 plasma for 5 min 2.42 × 10−4 4.13 × 103

* The correction factor value comes from Table 3 of Smits’s work [18].
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The total SE values of the plasma-treated c-NFs samples were considerably higher than those of the
native c-NFs samples across the entire range of operating frequencies (see Figure 7a). Figure 7b,c show
the SE values due to reflection loss and absorption loss, respectively, of the native and plasma-treated
c-NFs samples. As shown in Figure 7b, the reflection loss SE values of the plasma-treated c-NFs
samples were lower than those of the native c-NFs samples for operating frequencies between 0.04 and
3.0 GHz. However, the values were higher for operating frequencies between 3.0 and 8.0 GHz before
finally lowering in the 8.0 to 20 GHz range. As shown in Figure 7c, for the absorption loss, the SE
values of plasma-treated c-NFs were greater than those of the native c-NFs throughout the range of
operating frequencies. These results strongly indicate that the increase in total SE for plasma-treated
c-NFs samples when compared with native c-NFs samples was mainly owing to enhanced absorption
loss throughout the range of studied operating frequencies.
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The total SE values obtained for Ag-coated c-NFs samples were considerably higher than those
obtained for native c-NFs samples in the range of operating frequencies from 0.04 to 10.0 GHz (see
Figure 8a). However, the difference in total SE values between the samples gradually decreased as the
operating frequency increased from 8.0 to 12.0 GHz. Between 12.0 and 16.0 GHz, the samples exhibited
similar total SE values, but above 16.0 GHz, the total SE of the Ag-coated c-NFs samples was slightly
lower than that of the native c-NFs samples. These results indicate that the SE enhancement achieved
through Ag coating occurred over a relatively low range of operating frequencies. Figure 8b,c show the
components of the SE spectra owing to reflection loss and absorption loss, respectively, for native c-NFs
samples and Ag-coated c-NFs samples. As shown in the reflection loss spectra, the SE of the Ag-coated
c-NFs samples was lower than that of the native c-NFs samples throughout the range of operating
frequencies (see Figure 8b). As shown in the absorption loss spectra, the SE of the Ag-coated c-NFs
samples was higher than that of the native c-NFs samples in the range of 0.04 to 8.0 GHz. However,
the difference between the SE values obtained for the Ag-coated c-NFs samples and those obtained
for the native c-NFs samples gradually decreased as the operating frequency increased from 8.0 to
16.0 GHz. Above 16.0 GHz, similar values were obtained for both samples. These results indicate
that the increased SE values obtained for Ag-coated c-NFs samples can be attributed to enhanced
absorption loss at low operating frequencies.

Nanomaterials 2020, 10, x 9 of 15 

 

frequencies. Figures 8b,c show the components of the SE spectra owing to reflection loss and 
absorption loss, respectively, for native c-NFs samples and Ag-coated c-NFs samples. As shown in 
the reflection loss spectra, the SE of the Ag-coated c-NFs samples was lower than that of the native c-
NFs samples throughout the range of operating frequencies (see Figure 8b). As shown in the 
absorption loss spectra, the SE of the Ag-coated c-NFs samples was higher than that of the native c-
NFs samples in the range of 0.04 to 8.0 GHz. However, the difference between the SE values obtained 
for the Ag-coated c-NFs samples and those obtained for the native c-NFs samples gradually 
decreased as the operating frequency increased from 8.0 to 16.0 GHz. Above 16.0 GHz, similar values 
were obtained for both samples. These results indicate that the increased SE values obtained for Ag-
coated c-NFs samples can be attributed to enhanced absorption loss at low operating frequencies. 

 
Figure 8. (a) Total SE spectra; (b) components of SE spectra owing to reflection; and (c) components 
of SE spectra owing to absorption for both native and Ag-coated c-NFs samples. 

Figures 9a–c show the total SE spectra, reflection loss spectra, and absorption loss spectra, 
respectively, for plasma-treated c-NFs samples and Ag-coated c-NFs samples. In the 0.04 to 7.0 GHz 
operating frequency range, the total SE values obtained for the Ag-coated samples were similar to 

Figure 8. (a) Total SE spectra; (b) components of SE spectra owing to reflection; and (c) components of
SE spectra owing to absorption for both native and Ag-coated c-NFs samples.



Nanomaterials 2020, 10, 1611 9 of 14

Figure 9a–c show the total SE spectra, reflection loss spectra, and absorption loss spectra,
respectively, for plasma-treated c-NFs samples and Ag-coated c-NFs samples. In the 0.04 to 7.0 GHz
operating frequency range, the total SE values obtained for the Ag-coated samples were similar to
those obtained for the plasma-treated samples. Above 7.0 GHz, however, the total SE of the Ag-coated
samples decreased slightly, while that of the plasma-treated samples increased. Consequently, the total
SE values obtained for the plasma-treated samples were higher than those obtained for the Ag-coated
samples in the 7.0 to 20.0 GHz operating frequency range. As shown in the reflection loss spectra in
Figure 9b, the SE values obtained for the plasma-treated samples were higher than those obtained for
the Ag-coated samples for operating frequencies between 0.04 and 11.0 GHz, but lower for frequencies
above 12.0 GHz. As shown in the absorption loss spectra in Figure 9c, the SE values obtained for the
plasma-treated samples were lower than those obtained for the Ag-coated samples for frequencies
between 0.04 and 8.0 GHz, but higher for frequencies between 8.0 and 20.0 GHz. Furthermore,
the difference between the values obtained for these samples gradually increased as the operating
frequency increased. Therefore, the enhanced total SE exhibited by the plasma-treated samples when
compared with the Ag-coated samples could be attributed primarily to enhanced absorption loss at
high operating frequencies between 7.0 and 20.0 GHz.
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The combined results contained in Figures 7–9 indicate that subjecting native c-NFs samples to
either H2 plasma treatment or Ag coating enhanced the total SE of the samples for low operating
frequencies. As shown in Table 3, the enhanced total SE of the treated samples can be attributed to the
fact that the treated samples exhibited higher electrical conductivity than the native samples.

The data in Figure 9 reveal that H2 plasma treatment enhanced electromagnetic wave SE more
significantly than Ag coating. This was owing to an enhancement in the absorption loss effects at high
operating frequencies above 7.0 GHz and occurred even though the surface electrical conductivity of
the H2 plasma-treated samples was lower than that of the Ag-coated samples. Skin depth (δ) decreases
as electrical conductivity (σ) and magnetic permeability (µ) increase [2,8]. Therefore, the materials
used to shield electromagnetic wave radiation should have a high electrical conductivity as well as
a high magnetic permeability. The obtained results indicate that H2 plasma treatment enhances the
magnetic characteristics of native c-NFs to a greater extent than Ag coating. Furthermore, the results
also indicate that H2 plasma treatment may alter the surface chemical composition of native c-NFs.

To investigate plasma treatment-induced variations in the surface chemical composition of native
c-NFs, we performed XPS analysis on both native c-NFs samples and plasma-treated c-NFs samples,
with the results shown in Figure 10. Table 4 lists the elemental compositions and binding energies
studied via XPS.
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(b) plasma-treated c-NFs.

Oxygen and carbon components are typically observed on the surface of the carbon fibers that
constitute native c-NFs, as shown in Figure 10 [24,25]. The presence of a native oxygen component
on the surface of a carbon fiber is owing to the residual oxygen that remains in the reactor during
the reaction. A comparison of the data in Figure 10a,b revealed a notable change in the chemical
composition of the carbon fiber surface after treatment with H2 plasma for only 5 min. Specifically,
the plasma treatment increased the carbon component of the surface composition by 5%. Table 4 lists
the O (1s) binding energy values obtained for samples of native c-NFs and plasma-treated c-NFs. The O
(1s) binding energy values of the native c-NFs samples corresponded to alcohol-type compounds
(C–O–H), while that of plasma-treated c-NFs samples corresponded to ether-type compounds (C–O–C).

The combined results of Figure 10 and Table 4 indicate a more significant increase in the carbon
component than in the oxygen component on the surface of plasma-treated c-NFs carbon fibers.
Furthermore, the difference in binding energies observed for native c-NFs and plasma-treated c-NFs
may imply a transformation of carbon–oxygen bonds from alcohol-type (C–O–H) to ether-type (C–O–C).
Therefore, we suggest that this transformation caused an increase in the carbon component present on
the surface of the carbon fibers. Furthermore, the transformation of O–H bonds in C–O–H groups
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into O–C bonds in C–O–C groups may have enhanced the magnetic characteristics of the surface
of the plasma-treated carbon fibers. In other words, the increased number of electrons provided by
the carbon atoms in the O–C bonds as compared with the hydrogen atoms contained by O–H bonds
may have led to enhanced magnetic characteristics. Figure 11a provides a schematic of the surface
chemical compositions of each sample. Figure 11b depicts the electrical conductivity of the samples,
and Figure 11c shows the total SE spectra of the samples.

Table 4. X-ray photoelectron spectroscopy (XPS) characterization of native and plasma-treated
c-NFs samples.

Samples
Binding Energy (eV) * Binding Energy of Reference Compounds (eV)

O (1s) O (1s)

Native c-NFs 532.78 532.8 (C–O–H)
c-NFs treated with H2 plasma for 5 min 532.57 532.5 (C–O–C)

* The reference compound biding energy values were obtained from Kerber et al. [26] and Beamson et al. [27].
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Figure 11. (a) Schematic revealing the surface chemical compositions of native c-NFs, plasma-treated
c-NFs, Ag-coated c-NFs, and plasma-treated Ag-coated c-NFs; (b) bar graphs showing electrical
conductivities of each sample; (c) variations in total SE as a function of operating frequency for
each sample.

The observed total SE of plasma-treated c-NF was greater than 45 dB across the entire range of
operating frequencies studied in this work. When compared with SE values previously reported in
the literature for other materials, the SE values reported in the present study rank among the highest
(see Table 5). These results suggest that H2 plasma-treated c-NFs can be used to manufacture effective
electromagnetic wave shielding materials for use in diverse industrial fields.
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Table 5. Previously reported shielding effectiveness (SE) values of carbon-based materials.

Carbon-Based
Materials

Thickness
(mm)

Conductivity or
Sheet Resistance

Operating
Frequency (GHz) SE (dB) Refs.

*CFC/*CNTs/*CIPs 6.0 - 1–18 52–73 [28]

25 wt% *MWCNTs/*PMMA 0.1 >10 S/cm 0.1–14 17–22 [29]

Activated carbon fiber/*PA 4.0 -

2–18

10–27 [30]

*CNTs-Ni40Co60/*PVDF 4.5 1.7 × 10−4 S/cm 11–41 [31]

Functionalized (maleic
anhydride modified)
*MWCNTs/*PMMA

1.0 1.33 × 106 Ω/sq 13–18 [32]

33 wt% *GS/*PANI 2.4 20 S/cm 20–34 [33]
25 wt% *SWCNT/*PANI 2.4 34 S/cm 17–32

*MG/*LDPE 2.0–2.1 - 5–21 [34]

*MWCNTs/*PCL 20.0 >4.0 S/m 0.04–40 60–80 [35]

Native c-NFs 1.5 2.17 × 103 S/m

0.04–20

39–55

This
Work

c-NFs treated with H2 plasma for 5 min 1.5 3.13 × 103 S/m 46–75

Ag coated c-NFs 1.5 3.61 × 103 S/m 47–67

Ag coated c-NFs plasma-treated with H2
plasma for 5 min 1.5 4.13 × 103 S/m 49–75

*CFC: layered carbon fiber composites, *CIPs: carbonyl iron powders, *CNTs: carbon nanotubes, *GS: graphene
sheet, *LDPE: low density polyethylene, *MG: natural microcrystalline graphite, *MWCNTs: multi-walled carbon
nanotubes, *PA: polyamide, *PANI: polyaniline, *PCL: polycaprolactone, *PMMA: poly(methyl methacrylate),
*PVDF: polyvinylidene fluoride, *SWCNT: single-wall carbon nanotube.

4. Conclusions

Despite the surface electrical conductivity of H2 plasma-treated c-NFs being lower than that of
Ag-coated c-NFs, H2 plasma treatment dramatically enhanced electromagnetic wave SE by enhancing
absorption loss effect at high operating frequencies between 7.0 and 20.0 GHz. After 5 min of H2 plasma
treatment, the proportion of carbon on the surface of the carbon fibers appeared to have increased
via the transformation of alcohol-type (C–O–H) compounds into ether-type (C–O–C) compounds.
Because more electrons were present in the carbon of O–C bonds than in the hydrogen of O–H
bonds, this transformation may have enhanced the magnetic characteristics of the carbon fiber surface.
The increased magnetic permeability led to a decrease in skin depth, which in turn increased the
total SE.
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