Disposable and Low-Cost Electrode Based on Graphene Paper-Nafion-Bi Nanostructures for Ultra-Trace Determination of Pb(II) and Cd(II)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Electrode Fabrication
2.3. Instrumental Characterization
2.4. SWASV Procedure
3. Results
3.1. Morphology Characterization
3.2. Analytical Performances
3.3. Electrode Stability
3.4. EIS Characterization
3.5. Surface Characterization
3.6. Interfering Species and Application to Real Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Reuben, A.; Elliott, M.; Caspi, A. Implications of legacy lead for children’s brain development. Nat. Med. 2020, 26, 23–25. [Google Scholar] [CrossRef] [PubMed]
- International Programme on Chemical Safety: Cadmium. Available online: www.who.int/ipcs/assessment/public_health/cadmium/en/ (accessed on 15 August 2020).
- Lead Poisoning and Health. Available online: www.who.int/news-room/fact-sheets/detail/lead-poisoning-and-health (accessed on 15 August 2020).
- EPA’s 2018 Edition of the Drinking Water Standards and Health Advisories Tables. Available online: https://nepis.epa.gov/ (accessed on 15 August 2020).
- European Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption. Available online: https://eur-lex.europa.eu/ (accessed on 15 August 2020).
- Julshamn, K.; Maage, A.; Norli, H.S.; Grobecker, K.H.; Jorhem, L.; Fecher, P. Determination of Arsenic, Cadmium, Mercury, and Lead by Inductively Coupled Plasma/Mass Spectrometry in Foods after Pressure Digestion: NMKL. Interlab. Study J. AOAC Int. 2007, 90, 844. [Google Scholar] [CrossRef] [Green Version]
- Brombach, C.-C.; Chen, B.; Corns, W.T.; Feldmann, J.; Krupp, E.M.; Feldmann, J. Methylmercury in water samples at the pg/L level by online preconcentration liquid chromatography cold vapor-atomic fluorescence spectrometry. Spectrochim. Acta Part B Spectrosc. 2015, 105, 103–108. [Google Scholar] [CrossRef]
- Lu, Y.; Liang, X.; Niyungeko, C.; Zhou, J.; Xu, J.; Tian, G. A review of the identification and detection of heavy metal ions in the environment by voltammetry. Talanta 2018, 178, 324–338. [Google Scholar] [CrossRef] [PubMed]
- Economou, A. Screen-Printed Electrodes Modified with “Green” Metals for Electrochemical Stripping Analysis of Toxic Elements. Sensors 2018, 18, 1032. [Google Scholar] [CrossRef] [Green Version]
- Frutos-Puerto, S.; Miró, C.; Pinilla-Gil, E. Nafion-Protected Sputtered-Bismuth Screen-Printed Electrode for On-site Voltammetric Measurements of Cd(II) and Pb(II) in Natural Water Samples. Sensors 2019, 19, 279. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Lu, J.; Hočevar, S.B.; Farias, P.A.M.; Ogorevc, B. Bismuth-Coated Carbon Electrodes for Anodic Stripping Voltammetry. Anal. Chem. 2000, 72, 3218–3222. [Google Scholar] [CrossRef]
- Economou, A. Bismuth-film electrodes: Recent developments and potentialities for electroanalysis. TrAc Trends Anal. Chem. 2005, 24, 334–340. [Google Scholar] [CrossRef]
- Serrano, N.; Díaz-Cruz, J.M.; Ariño, C.; Esteban, M. Ex situ Deposited Bismuth Film on Screen-Printed Carbon Electrode: A Disposable Device for Stripping Voltammetry of Heavy Metal Ions. Electroanalysis 2010, 22, 1460–1467. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, H.; Liu, G. Sensitive determination of trace Cd(ii) and Pb(ii) in soil by an improved stripping voltammetry method using two different in situ plated bismuth-film electrodes based on a novel electrochemical measurement system. RSC Adv. 2018, 8, 5079–5089. [Google Scholar] [CrossRef] [Green Version]
- Sochr, J.; Machková, M.; Machyňák, L.; Cacho, F.; Švorc, L. Heavy metals determination using various in situ bismuth film modified carbon-based electrodes. Acta Chim. Slovaca 2016, 9, 28–35. [Google Scholar] [CrossRef] [Green Version]
- Dahaghin, Z.; Kilmartin, P.A.; Mousavi, H.Z. Simultaneous determination of lead(II) and cadmium(II) at a glassy carbon electrode modified with GOFe3O4 @benzothiazole-2-carboxaldehyde using square wave anodic stripping voltammetry. J. Mol. Liq. 2018, 249, 1125–1132. [Google Scholar] [CrossRef]
- Kefala, G.; Economou, A.; Voulgaropoulos, A.; Sofoniou, M. A study of bismuth-film electrodes for the detection of trace metals by anodic stripping voltammetry and their application to the determination of Pb and Zn in tap water and human hair. Talanta 2003, 61, 603–610. [Google Scholar] [CrossRef]
- Xiao, L.; Wang, B.; Ji, L.; Wang, F.; Yuan, Q.; Hu, G.; Dong, A.; Gan, W. An efficient electrochemical sensor based on three-dimensionally interconnected mesoporous graphene framework for simultaneous determination of Cd(II) and Pb(II). Electrochim. Acta 2016, 222, 1371–1377. [Google Scholar] [CrossRef]
- Alam, A.U.; Howlader, M.M.R.; Hu, N.-X.; Deen, M.J. Electrochemical sensing of lead in drinking water using β-cyclodextrin-modified MWCNTs. Sens. Actuators B Chem. 2019, 296, 126632. [Google Scholar] [CrossRef] [Green Version]
- Hormigos, R.M.; Gismera, M.J.; Procopio, J.R.; Sevilla, M.T. Disposable screen-printed electrode modified with bismuth–PSS composites as high sensitive sensor for cadmium and lead determination. J. Electroanal. Chem. 2016, 767, 114–122. [Google Scholar] [CrossRef]
- Salih, F.E.; Ouarzane, A.; El Rhazi, M. Electrochemical detection of lead (II) at bismuth/Poly(1,8-diaminonaphthalene) modified carbon paste electrode. Arab. J. Chem. 2017, 10, 596–603. [Google Scholar] [CrossRef] [Green Version]
- McCreery, R.L. Advanced Carbon Electrode Materials for Molecular Electrochemistry. Chem. Rev. 2008, 108, 2646–2687. [Google Scholar] [CrossRef]
- Scandurra, A.; Ruffino, F.; Sanzaro, S.; Grimaldi, M.G. Laser and thermal dewetting of gold layer onto graphene paper for non-enzymatic electrochemical detection of glucose and fructose. Sens. Actuators B Chem. 2019, 301, 127113. [Google Scholar] [CrossRef]
- Pujol, L.; Evrard, D.; Serrano, K.G.; Freyssinier, M.; Ruffien-Cizsak, A.; Gros, P. Electrochemical sensors and devices for heavy metals assay in water: The French groups’ contribution. Front. Chem. 2014, 2, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Welch, C.M.; Compton, R.G. The use of nanoparticles in electroanalysis: A review. Anal. Bioanal. Chem. 2006, 384, 601–619. [Google Scholar] [CrossRef] [PubMed]
- Santangelo, M.F.; Shtepliuk, I.; Filippini, D.; Puglisi, D.; Vagin, M.; Yakimova, R.; Eriksson, J. Epitaxial Graphene Sensors Combined with 3D-Printed Microfluidic Chip for Heavy Metals Detection. Sensors 2019, 19, 2393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, H.; Chen, T.; Liu, X.; Ma, H. Ultrasensitive and simultaneous detection of heavy metal ions based on three-dimensional graphene-carbon nanotubes hybrid electrode materials. Anal. Chim. Acta 2014, 852, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Pandey, S.K.; Sachan, S.; Singh, S.K. Ultra-trace sensing of cadmium and lead by square wave anodic stripping voltammetry using ionic liquid modified graphene oxide. Mater. Sci. Energy Technol. 2019, 2, 667–675. [Google Scholar] [CrossRef]
- Xu, H.; Zeng, L.; Huang, D.; Xian, Y.; Jin, L. A Nafion-coated bismuth film electrode for the determination of heavy metals in vegetable using differential pulse anodic stripping voltammetry: An alternative to mercury-based electrodes. Food Chem. 2008, 109, 834–839. [Google Scholar] [CrossRef]
- Lee, S.; Bong, S.; Ha, J.; Kwak, M.; Park, S.-K.; Piao, Y. Electrochemical deposition of bismuth on activated graphene-nafion composite for anodic stripping voltammetric determination of trace heavy metals. Sens. Actuators B Chem. 2015, 215, 62–69. [Google Scholar] [CrossRef]
- Palisoc, S.; Sow, V.A.; Natividad, M. Fabrication of a bismuth nanoparticle/Nafion modified screen-printed graphene electrode for in situ environmental monitoring. Anal. Methods 2019, 11, 1591–1603. [Google Scholar] [CrossRef]
- Zhao, G.; Yin, Y.; Wang, H.; Liu, G.; Wang, Z. Sensitive stripping voltammetric determination of Cd(II) and Pb(II) by a Bi/multi-walled carbon nanotube-emeraldine base polyaniline-Nafion composite modified glassy carbon electrode. Electrochim. Acta 2016, 220, 267–275. [Google Scholar] [CrossRef]
- Segura, R.; Pizarro, J.A.; Oyarzun, M.P.; Castillo, A.D.; Díaz, K.J.; Placencio, A.B. Determination of Lead and Cadmium in Water Samples by Adsorptive Stripping Voltammetry Using a Bismuth film/1-Nitroso-2-Napthol/Nafion Modified Glassy Carbon Electrode. Int. J. Electrochem. Sci. 2016, 11, 1707–1719. [Google Scholar]
- Thanh, N.M.; Luyen, N.D.; Toan, T.T.T.; Phong, N.H.; Van Hop, N. Voltammetry Determination of Pb(II), Cd(II), and Zn(II) at Bismuth Film Electrode Combined with 8-Hydroxyquinoline as a Complexing Agent. J. Anal. Methods Chem. 2019, 2019, 4593135–4593211. [Google Scholar] [CrossRef]
- Baldrianova, L.; Agrafiotou, P.; Svancara, I.; Jannakoudakis, A.; Sotiropoulos, S. The effect of acetate concentration, solution pH and conductivity on the anodic stripping voltammetry of lead and cadmium ions at in situ bismuth-plated carbon microelectrodes. J. Electroanal. Chem. 2011, 660, 31–36. [Google Scholar] [CrossRef]
- Tharamani, C.N.; Thejaswini, H.C.; Sampath, S. Synthesis of size-controlled Bi particles by electrochemical deposition. Bull. Mater. Sci. 2008, 31, 207–212. [Google Scholar] [CrossRef] [Green Version]
- Walter, E.C.; Zach, M.; Favier, F.; Murray, B.J.; Inazu, K.; Hemminger, J.C.; Penner, R.M. Metal Nanowire Arrays by Electrodeposition. ChemPhysChem 2003, 4, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Hou, H.; Dai, L.; Li, Y.; Zhu, J.; Wang, L. Preparation of dendritic bismuth film electrodes and their application for detection of trace Pb(II) and Cd(II). Chin. J. Chem. Eng. 2016, 24, 410–414. [Google Scholar] [CrossRef]
- Saturno, J.; Valera, D.; Carrero, H.; Fernández, L. Electroanalytical detection of Pb, Cd and traces of Cr at micro/nano-structured bismuth film electrodes. Sens. Actuators B Chem. 2011, 159, 92–96. [Google Scholar] [CrossRef]
- Structure of Nafion™ Perfluorinated Resin Solution. Available online: www.sigmaaldrich.com (accessed on 16 August 2020).
- Desimoni, E.; Brunetti, B. About Estimating the Limit of Detection by the Signal to Noise Approach. Pharm. Anal. Acta 2015, 6. [Google Scholar] [CrossRef]
- Scandurra, A.; Indelli, G.F.; Pignataro, S. Patterned metallizations in perfluorosulphonate membranes by printing methods. Surf. Interface Anal. 2012, 44, 1171–1176. [Google Scholar] [CrossRef]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy; Chastain, J., Ed.; Perkin-Elmer Corporation, Physical Electronics Division: Eden Prairie, MN, USA, 1992. [Google Scholar]
- Lagadic, I.L.; Mitchell, M.K.; Payne, B.D. Highly effective adsorption of heavy metal ions by a thiol-functionalized magnesium phyllosilicate clay. Env. Sci. Technol. 2001, 35, 984–990. [Google Scholar] [CrossRef]
- Suzer, S. Differential Charging in X-ray Photoelectron Spectroscopy: A Nuisance or a Useful Tool? Anal. Chem. 2003, 75, 7026–7029. [Google Scholar] [CrossRef]
- Scandurra, A.; Cavallaro, A.; Pignataro, S.; Tiziani, R.; Gobbato, L.; Cognetti, C. Curing and electrical conductivity of conductive glues for die attach in microelectronics. Surf. Interface Anal. 2006, 38, 429–432. [Google Scholar] [CrossRef]
- X-ray Photoelectron Spectroscopy (XPS) Reference Pages. Available online: www.xpsfitting.com (accessed on 4 February 2020).
Electrode Name | Nafion Layer | Bi Electro-Deposition |
---|---|---|
GP_Bi | Not present | yes |
GP_naf_Bi | Overnight soaked without ion exchange | yes |
GP_naf_ex_Bi | Overnight soaked with Bi3+ ion exchange | yes |
Analytes | Electrode Structure | Steps of Production (1) | Method | LOD (ppb) | Linear Detection Range (ppb) | Reference | |
---|---|---|---|---|---|---|---|
Cd2+ | Pb2+ | ||||||
Pb + Cd | Bi dendritic on glassy carbon H2 template | 2 | SWASV | 0.4 | 0.1 | 5–50 | [38] |
Pb + Cd + Zn | Nafion coated Bi electrode | 5 | DPASV | 0.17 | 0.17 | 4–36 | [29] |
Pb + Cd | Mesoporous graphene | 5 | DPASV | 0.5 | 0.1 | 0.5–110 | [18] |
Pb + Cd | MWCNT + graphene oxide | 16 | DPASV | 0.1 | 0.2 | 0.5–30 | [27] |
Pb + Cd | Bi PSS composite | 5 | 0.1 | 0.27 | 5–40 | [20] | |
Pb + Cd | Graphene oxide + nafion + BMIM-PF₆ (2) | 7 | SWASV | 0.33 | 0.42 | 2.4–70 | [28] |
Pb | Bi electro-deposition on graphene paper | 1 | SWASV | - | 0.15 | 12.5–200 | This work |
Pb + Cd | Bi electro-deposition on graphene paper | 1 | SWASV | 0.25 | 0.12 | 12.5–200 | This work |
Pb + Cd | nafion deposition on graphene paper, Bi3+ ion exchange + Bi electro-deposition | 3 | SWASV | 0.1 | 0.1 | 5–100 | This work |
Bi° | Bi(III) | R-SO3− | R-SH/R-S-R’ | |
---|---|---|---|---|
GP_naf_ex_Bi | 16.2 | 11.2 | 39.5 | 33.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scandurra, A.; Ruffino, F.; Urso, M.; Grimaldi, M.G.; Mirabella, S. Disposable and Low-Cost Electrode Based on Graphene Paper-Nafion-Bi Nanostructures for Ultra-Trace Determination of Pb(II) and Cd(II). Nanomaterials 2020, 10, 1620. https://doi.org/10.3390/nano10081620
Scandurra A, Ruffino F, Urso M, Grimaldi MG, Mirabella S. Disposable and Low-Cost Electrode Based on Graphene Paper-Nafion-Bi Nanostructures for Ultra-Trace Determination of Pb(II) and Cd(II). Nanomaterials. 2020; 10(8):1620. https://doi.org/10.3390/nano10081620
Chicago/Turabian StyleScandurra, Antonino, Francesco Ruffino, Mario Urso, Maria Grazia Grimaldi, and Salvo Mirabella. 2020. "Disposable and Low-Cost Electrode Based on Graphene Paper-Nafion-Bi Nanostructures for Ultra-Trace Determination of Pb(II) and Cd(II)" Nanomaterials 10, no. 8: 1620. https://doi.org/10.3390/nano10081620
APA StyleScandurra, A., Ruffino, F., Urso, M., Grimaldi, M. G., & Mirabella, S. (2020). Disposable and Low-Cost Electrode Based on Graphene Paper-Nafion-Bi Nanostructures for Ultra-Trace Determination of Pb(II) and Cd(II). Nanomaterials, 10(8), 1620. https://doi.org/10.3390/nano10081620