Sustainable Nanotechnologies for Curative and Preventive Wood Deacidification Treatments: An Eco-Friendly and Innovative Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Wood Samples from the “Lyon Saint-George 4”, Gallo-Roman Wreck
2.2. Synthesis and Characterization of CH and MH NPs
2.3. Preventive and Curative Treatments on the Dry Wood Samples by Using CH and MH NPs
2.4. Analysis of the Wooden Samples and of the Efficiency of the Treatments
3. Results
3.1. Study of the Wood Samples before Treatments
3.2. Efficiency of the Treatments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fojutowski, A.; Wróblewska, H.; Komorowicz, M.; Kropacz, A.; Noskowiak, A.; Pomian, I. Changes in the properties of English oak wood (Quercus robur L.) as a result of remaining submerged in Baltic Sea waters for two years. Int. Biodeterior. Biodegrad. 2014, 86B, 122–128. [Google Scholar] [CrossRef]
- Gjelstrup Björdal, C. Microbial degradation of waterlogged archaeological wood. J. Cult. Herit. 2012, 13, S118–S122. [Google Scholar] [CrossRef]
- Łucejko, J.J.; Modugno, F.; Ribechini, E.; Del Río, J.C. Characterisation of archaeological waterlogged wood by pyrolytic and mass spectrometric techniques. Anal. Chim. Acta 2009, 654, 26–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curci, J. The Reburial of Waterlogged Archaeological Wood in Wet Environments. Tech. Briefs Hist. Archaeol. 2006, 1, 21–25. [Google Scholar]
- Blanchette, R.A. A review of microbial deterioration found in archaeological wood from different environments. Int. Biodeterior. Biodegrad. 2000, 46, 189–204. [Google Scholar] [CrossRef]
- Björdal, C.G.; Nilsson, T. Decomposition of waterlogged archaeological wood. In Proceedings of the Eighth ICOM Group on Wet Organic Archaeological Materials Conference, Stockholm, Sweden, 11–15 June 2001; pp. 235–247. [Google Scholar]
- Tiano, P. Biodegradation of cultural heritage: Decay mechanisms and control methods. In Proceedings of the Ninth ARIADNE Workshop “Historic Material and their Diagnostic,” ARCCHIP, Prague, Czech Republic, 22–28 April 2002. [Google Scholar]
- Björdal, C.G.; Nilsson, T.; Daniel, G. Microbial decay of waterlogged archaeological wood found in Sweden. Applicable to archaeology and conservation. Int. Biodeterior. Biodegrad. 1999, 43, 63–73. [Google Scholar] [CrossRef]
- Almkvist, G.; Hocker, E.; Sahlstedt, M. Iron Removal from Waterlogged Wood; Swedish University of Agricultural Sciences: Uppsala, Sweden, 2013. [Google Scholar]
- Stramm, J.A. Dimensional stabilization of Wood with Carbowaxes. In Forest Products Research Society; Box, P.O., Ed.; University Station: Madison, WI, USA, 1956; Volume 5, pp. 201–204. [Google Scholar]
- Fors, Y.; Sandström, M. Sulfur and iron in shipwrecks cause conservation concerns. Chem. Soc. Rev. 2006, 35, 399–415. [Google Scholar] [CrossRef]
- Giorgi, R.; Chelazzi, D.; Baglioni, P. Nanoparticles of calcium hydroxide for wood conservation. The deacidification of the Vasa warship. Langmuir 2005, 21, 10743–10748. [Google Scholar] [CrossRef]
- Kilmister, K. Preserving Our Past. An Investigation into Archaeological Wood from the Shipwreck of the Batavia. Bachelor’s Thesis, Western Australia University, Perth, Australia, 2001. [Google Scholar]
- Rosenquist, A.M. The stabilizing of wood found in the Viking ship of Oseberg. Part I. Stud. Conserv. 1959, 4, 13–22. [Google Scholar] [CrossRef]
- Rosenquist, A.M. The stabilization of wood found in the Viking ship of Oseberg. Part II. Stud. Conserv. 1959, 4, 62–72. [Google Scholar] [CrossRef]
- Organ, R.M. Carbowax and Other Materials in the Treatment of Water-logged Paleolithic Wood. Stud. Conserv. 1959, 4, 96–105. [Google Scholar] [CrossRef]
- Morén, R.E.; Centerwall, K.B.S. The Use of Polyglycols in the Stabilizing and Preservation of Wood; Meddelanden från Lunds Universitets Historika Museum: Lund, Switzerland, 1960; pp. 176–196. [Google Scholar]
- Barkman, L. Treatment of waterlogged finds, Papers from the First Southern Hemisphere Conference on Maritime Archaeology; Oceans Society of Australia: Melbourne, Australia, 1977; pp. 120–126. [Google Scholar]
- Preston, J.; Smith, A.D.; Schofield, E.J.; Chadwick, A.V.; Jones, M.A.; Watts, J.E.M. The effects of Mary Rose conservation treatment on iron oxidation processes and microbial communities contributing to acid production in marine archaeological timbers. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, V.R. RSC Materials Monographs 1. In Polymer Electrolytes; Connor, J.A., Ed.; The Royal Society of Chemistry: Cambridge, UK, 1997. [Google Scholar]
- Poggi, G.; Toccafondi, N.; Chelazzi, D.; Canton, P.; Giorgi, R.; Baglioni, P. Calcium hydroxide nanoparticles from solvothermal reaction for the deacidification of degraded waterlogged wood. J. Colloid Interface Sci. 2016, 473, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, R.; Chelazzi, D.; Baglioni, P. Conservation of acid waterlogged shipwrecks: Nanotechnologies for de-acidification. Appl. Phys. A 2006, 83, 567–571. [Google Scholar] [CrossRef]
- Andriulo, F.; Braovac, S.; Kutzke, H.; Giorgi, R.; Baglioni, P. Nanotechnologies for the restoration of alum-treated archaeological wood. Appl. Phys. A 2016, 122. [Google Scholar] [CrossRef]
- Cavallaro, G.; Milioto, S.; Parisi, F.; Lazzara, G. Halloysite Nanotubes Loaded with Calcium Hydroxide: Alkaline Fillers for the Deacidification of Waterlogged Archeological Woods. ACS Appl. Mater. Interfaces 2018, 10, 27355–27364. [Google Scholar] [CrossRef]
- Schofield, E.J.; Sarangi, R.; Mehta, A.; Jones, A.M.; Mosselmans, F.; Chadwick, A.V. Nanoparticle de-acidification of the Mary Rose. Mater. Today 2011, 14, 354–358. [Google Scholar] [CrossRef]
- Volpe, R.; Taglieri, G.; Daniele, V.; Del Re, G. A Process for the Synthesis of Ca(OH)2 Nanoparticles by Means of Ionic Exchange Resin. European Patent EP2880101, 21 December 2016. [Google Scholar]
- Taglieri, G.; Felice, B.; Daniele, V.; Ferrante, F. Mg(OH)2 nanoparticles produced at room temperature by an innovative, facile, and scalable synthesis route. J. Nanopart. Res. 2015, 17, 411–424. [Google Scholar] [CrossRef]
- Taglieri, G.; Daniele, V.; Macera, L. Synthesizing alkaline earth metal hydroxides nanoparticles through an innovative single-step and eco-friendly method. Solid State Phenom. 2019, 286, 3–14. [Google Scholar] [CrossRef]
- Daniele, V.; Taglieri, G.; Macera, L.; Rosatelli, G.; Otero, J.; Charola, A.E. Green approach for an eco-compatible consolidation of the Agrigento biocalcarenites surface. Constr. Build. Mater. 2018, 186, 1188–1199. [Google Scholar] [CrossRef]
- Taglieri, G.; Daniele, V.; Macera, L.; Mignemi, A. Innovative and green nanolime treatment tailored to consolidate the original mortar of the façade of a medieval building in L’Aquila (Italy). Constr. Build. Mater. 2019, 221, 643–650. [Google Scholar] [CrossRef]
- Taglieri, G.; Felice, B.; Daniele, V.; Volpe, R.; Mondelli, C. Analysis of the carbonatation process of nanosized Ca(OH)2 particles synthesized by exchange ion process. Proc. Inst. Mech. Eng. Part N J. Nanoeng. Nanosyst. 2016, 230, 25–31. [Google Scholar] [CrossRef]
- Macera, L.; Gigli, L.; Daniele, V.; Plaisier, J.R.; Arrizza, L.; Taglieri, G. Synchrotron investigations of the nanolime reactivity on biocalcarenite stone surfaces. Constr. Build. Mater. 2020, 262, 120066. [Google Scholar] [CrossRef]
- Macera, L.; Taglieri, G.; Daniele, V.; Passacantando, M.; D’orazio, F. Nano-sized Fe(III) oxide particles starting from an innovative and eco-friendly synthesis method. Nanomaterials 2020, 10, 323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taglieri, G.; Daniele, V.; Macera, L.; Mondelli, C. Nano Ca (OH)2 synthesis using a cost-effective and innovative method: Reactivity study. J. Am. Ceram. Soc. 2017, 100, 5766–5778. [Google Scholar] [CrossRef]
- Steinemann, A. Volatile emissions from common consumer products. Air Qual. Atmos. Health 2015, 8, 273–281. [Google Scholar] [CrossRef]
- Alexander, L.; Klug, H.P.E. X-Ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd ed.; Wiley-VCH: New York, NY, USA, 1974. [Google Scholar]
- Mondelli, C.; Schweins, R.; Taglieri, G. Lime Solutions for Cultural Heritage Conservation Studied by SANS; Proposal 1-03-20, D11 instrument; Large-scale Facility Institut Laue-Langevin: Grenoble, France, 2011. [Google Scholar]
- Schindelholz, E.; Blanchette, R.; Held, B.; Jurgens, J.; Cook, D.; Drews, M.; Hand, S.; Seifert, B. An evaluation of supercritical drying and PEG/freeze drying of waterlogged archeological wood. In Proceedings of the 10th ICOM Group on Wet Organic Archaeological Materials Conference, Amsterdam, The Netherlands, 10–15 September 2007; pp. 399–416. [Google Scholar]
- Bish, D.L.; Post, J.E. Modern Powder Diffraction; Mineralogical Society of America: Washington, DC, USA, 1989. [Google Scholar]
- Rodriguez-Navarro, C.; Ruiz-Agudo, E.; Ortega-Huertas, M.; Hansen, E. Nanostructure and Colloidal Behavior of Ca(OH)2: Implications for the Conservation of Cultural Heritage. Langmuir 2005, 21, 10948–10957. [Google Scholar] [CrossRef]
- Hammouda, B.; Ho, D.L.; Kline, S.R. Insight into clustering in polyethylene oxide solutions. Macromolecules 2004, 37, 6932–6937. [Google Scholar] [CrossRef]
- Schmidt, P.W. Small-angle scattering studies of disordered, porous and fractal systems. J. Appl. Cryst. 1991, 24, 414–435. [Google Scholar] [CrossRef]
- Hurd, A.J.; Schaefer, D.W.; Martin, J.E. Surface and mass fractals in vapor-phase aggregates. Phys. Rev. A Gen. Phys. 1987, 35, 2361–2364. [Google Scholar] [CrossRef]
- Gibson, L.J. The hierarchical structure and mechanics of plant materials. J. R. Soc. Interface 2012, 9, 2749–2766. [Google Scholar] [CrossRef] [PubMed]
- Falk, R.H. Wood Handbook, Wood as an Engineering Material; U.S. Department of Agriculture, Forest Products Laboratory: Hanover, NH, USA, 2010.
- Vartanian, E.; Barres, O.; Roque, C. FTIR spectroscopy of woods: A new approach to study the weathering of the carving face of a sculpture. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 136, 1255–1259. [Google Scholar] [CrossRef]
- Fan, M.; Dai, D.; Huang, B. Fourier Transform Infrared Spectroscopy for Natural Fibres, Fourier Transform—Materials Analysis. In Fourier Transform—Materials Analysis; Salih, M.S., Ed.; InTech Open: Rijeka, Croatia, 2012; ISBN 978-953-51-0594-7. [Google Scholar]
- Kránitz, K.; Sonderegger, W.; Bues, C.T.; Niemz, P. Effects of aging on wood: A literature review. Wood Sci. Technol. 2016, 50, 7–22. [Google Scholar] [CrossRef]
- Guyette, R.P.; Stambaugh, M. The age ad density of ancient and modern oak wood in steams and sediments. IAWA J. 2003, 24, 345–353. [Google Scholar] [CrossRef] [Green Version]
XRF | XRD | |||||
---|---|---|---|---|---|---|
Fe | S | Ca | Si | FeS2 | SiO2 | CaCO3 |
15% | 5% | 0.8% | 0.2% | 95.5% | 4.0% | 0.5% |
“Non-Acidic” Wood Samples | Acidic Wood Sample | |||
---|---|---|---|---|
Untreated | pH before acidification | pH after acidification | pH Untreated | pH Treated with MH8w |
5.31 ± 0.01 | 3.70 ± 0.01 | |||
Treated | pH preventive treatment # | pH curative treatment § | 1.56 ± 0.01 | 6.65 ± 0.01 |
CH4a | 7.53 ± 0.01 | 6.64 ± 0.01 | ||
CH8a | 7.52 ± 0.01 | 6.72 ± 0.01 | ||
MH4a | 7.83 ± 0.01 | 7.66 ± 0.01 | ||
MH8a | 7.89 ± 0.01 | 7.67 ± 0.01 | ||
MH8w | 7.83 ± 0.01 | 7.66 ± 0.01 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taglieri, G.; Daniele, V.; Macera, L.; Schweins, R.; Zorzi, S.; Capron, M.; Chaumat, G.; Mondelli, C. Sustainable Nanotechnologies for Curative and Preventive Wood Deacidification Treatments: An Eco-Friendly and Innovative Approach. Nanomaterials 2020, 10, 1744. https://doi.org/10.3390/nano10091744
Taglieri G, Daniele V, Macera L, Schweins R, Zorzi S, Capron M, Chaumat G, Mondelli C. Sustainable Nanotechnologies for Curative and Preventive Wood Deacidification Treatments: An Eco-Friendly and Innovative Approach. Nanomaterials. 2020; 10(9):1744. https://doi.org/10.3390/nano10091744
Chicago/Turabian StyleTaglieri, Giuliana, Valeria Daniele, Ludovico Macera, Ralf Schweins, Sandro Zorzi, Marie Capron, Gilles Chaumat, and Claudia Mondelli. 2020. "Sustainable Nanotechnologies for Curative and Preventive Wood Deacidification Treatments: An Eco-Friendly and Innovative Approach" Nanomaterials 10, no. 9: 1744. https://doi.org/10.3390/nano10091744
APA StyleTaglieri, G., Daniele, V., Macera, L., Schweins, R., Zorzi, S., Capron, M., Chaumat, G., & Mondelli, C. (2020). Sustainable Nanotechnologies for Curative and Preventive Wood Deacidification Treatments: An Eco-Friendly and Innovative Approach. Nanomaterials, 10(9), 1744. https://doi.org/10.3390/nano10091744