Micro-Structure Determines the Intrinsic Property Difference of Bio-Based Nitrogen-Doped Porous Carbon—A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Nitrogen-Enriched Porous Carbons
2.3. Materials Characterization
2.4. Electrochemical Measurements
2.5. Pollutants Removal
3. Results and Discussion
3.1. Selection of Raw Materials
3.2. Selection of Preparation Methods
3.3. Characterization of Material Properties
3.4. Electrochemical Properties
3.5. Adsorption Performance Test
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wu, X.L.; Wen, T.; Guo, H.L.; Yang, S.; Wang, X.; Xu, A.W. Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors. ACS Nano 2013, 7, 3589–3597. [Google Scholar] [CrossRef]
- Chen, L.; Hu, X.; Cai, T.; Yang, Y.; Zhao, R.; Liu, C.; Li, A.; Jiang, C. Degradation of Triclosan in soils by thermally activated persulfate under conditions representative of in situ chemical oxidation (ISCO). Chem. Eng. J. 2019, 369, 344–352. [Google Scholar] [CrossRef]
- Yun, S.; Fang, W.; Du, T.; Hu, X.; Huang, X.; Li, X.; Zhang, C.; Lund, P.D. Use of bio-based carbon materials for improving biogas yield and digestate stability. Energy 2018, 164, 898–909. [Google Scholar] [CrossRef]
- Keiluweit, M.; Nico, P.S.; Johnson, M.G.; Kleber, M. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ. Sci. Technol. 2010, 44, 1247–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, H.; He, W.; Zong, C.; Lu, L. Template-free synthesis of renewable macroporous carbon via yeast cells for high-performance supercapacitor electrode materials. ACS Appl. Mater. Inter. 2013, 5, 2261–2268. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Lin, N.; Liu, D.; Xu, J.; Sha, J.; Yin, J.; Tan, X.; Yang, H.; Lu, H.; Lin, H. Direct carbonization of rice husk to prepare porous carbon for supercapacitor applications. Energy 2017, 128, 618–625. [Google Scholar] [CrossRef]
- Xiao, P.W.; Meng, Q.; Zhao, L.; Li, J.J.; Wei, Z.; Han, B.H. Biomass-derived flexible porous carbon materials and their applications in supercapacitor and gas adsorption. Mater. Design. 2017, 129, 164–172. [Google Scholar] [CrossRef]
- Hao, P.; Zhao, Z.; Tian, J.; Li, H.; Sang, Y.; Yu, G.; Cai, H.; Liu, H.; Wong, C.P.; Umar, A. Hierarchical porous carbon aerogel derived from bagasse for high performance supercapacitor electrode. Nanoscale 2014, 6, 12120–12129. [Google Scholar] [CrossRef]
- Han, Y.; Shen, N.; Zhang, S.; Li, D.; Li, X. Fish gill-derived activated carbon for supercapacitor application. J. Alloy. Compd. 2017, 694, 636–642. [Google Scholar] [CrossRef]
- Rana, M.; Subramani, K.; Sathish, M.; Gautam, U.K. Soya derived heteroatom doped carbon as a promising platform for oxygen reduction, supercapacitor and CO2 capture. Carbon 2017, 114, 679–689. [Google Scholar] [CrossRef]
- Li, X.; Ding, S.; Xiao, X.; Shao, J.; Wei, J.; Pang, H.; Yu, Y. N,S Co-doped 3D mesoporous carbon-Co3Si2O5(OH)(4) architectures for high-performance flexible pseudo-solid-state supercapacitors. J. Mater. Chem. A. 2017, 5, 12774–12781. [Google Scholar] [CrossRef]
- Tang, Z.; Pei, Z.; Wang, Z.; Li, H.; Zeng, J.; Ruan, Z.; Huang, Y.; Zhu, M.; Xue, Q.; Yu, J.; et al. Highly anisotropic, multichannel wood carbon with optimized heteroatom doping for supercapacitor and oxygen reduction reaction. Carbon 2018, 130, 532–543. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, H.; Huang, Y.; Wang, W.; Wei, S. Hierarchical porous carbon obtained from animal bone and evaluation in electric double-layer capacitors. Carbon 2011, 49, 838–843. [Google Scholar] [CrossRef]
- Zhu, H.; Yin, J.; Wang, X.; Wang, H.; Yang, X. Microorganism-derived heteroatom-doped carbon materials for oxygen reduction and supercapacitors. Adv. Funct. Mater. 2013, 23, 1305–1312. [Google Scholar] [CrossRef]
- He, X.; Ling, P.; Qiu, J.; Yu, M.; Zhang, X.; Yu, C.; Zheng, M. Efficient preparation of biomass-based mesoporous carbons for supercapacitors with both high energy density and high power density. J. Power Sources 2013, 240, 109–113. [Google Scholar] [CrossRef]
- Liou, T.-H. Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation. Chem. Eng. J. 2010, 158, 129–142. [Google Scholar] [CrossRef]
- Gercel, O.; Ozcan, A.; Ozcan, A.S.; Gercel, H.F. Preparation of activated carbon from a renewable bio-plant of Euphorbia rigida by H2SO4 activation and its adsorption behavior in aqueous solutions. Appl. Surf. Sci. 2007, 253, 4843–4852. [Google Scholar] [CrossRef]
- Yu, M.; Han, Y.; Li, Y.; Li, J.; Wang, L. Polypyrrole-anchored cattail biomass-derived carbon aerogels for high performance binder-free supercapacitors. Carbohyd. Polym. 2018, 199, 555–562. [Google Scholar] [CrossRef]
- Su, X.L.; Jiang, S.; Zheng, G.P.; Zheng, X.C.; Yang, J.H.; Liu, Z.Y. High-performance supercapacitors based on porous activated carbons from cattail wool. J. Mater. Sci. 2018, 53, 9191–9205. [Google Scholar] [CrossRef]
- Yu, M.; Han, Y.; Li, J.; Wang, L. CO2-activated porous carbon derived from cattail biomass for removal of malachite green dye and application as supercapacitors. Chem. Eng. J. 2017, 317, 493–502. [Google Scholar] [CrossRef]
- Fan, Z.; Qi, D.; Xiao, Y.; Yan, J.; Wei, T. One-step synthesis of biomass-derived porous carbon foam for high performance supercapacitors. Mater. Lett. 2013, 101, 29–32. [Google Scholar] [CrossRef]
- Blankenship, T.S.; Mokaya, R. Cigarette butt-derived carbons have ultra-high surface area and unprecedented hydrogen storage capacity. Energ. Environ. Sci. 2017, 10, 2552–2562. [Google Scholar] [CrossRef]
- Liu, J.; Deng, Y.; Li, X.; Wang, L. Promising nitrogen-rich porous carbons derived from one-step calcium chloride activation of biomass-based waste for high performance supercapacitors. Acs. Sustain. Chem. Eng. 2016, 4, 177–187. [Google Scholar] [CrossRef]
- Ding, J.; Wang, H.; Li, Z.; Cui, K.; Karpuzov, D.; Tan, X.; Kohandehghan, A.; Mitlin, D. Peanut shell hybrid sodium ion capacitor with extreme energy-power rivals lithium ion capacitors. Energ. Environ. Sci. 2015, 8, 941–955. [Google Scholar] [CrossRef]
- Wu, H.; Deng, Y.; Mou, J.; Zheng, Q.; Xie, F.; Long, E.; Xu, C.; Lin, D. Activator-induced tuning of micromorphology and electrochemical properties in biomass carbonaceous materials derived from mushroom for lithium-sulfur batteries. Electrochim. Acta. 2017, 242, 146–158. [Google Scholar] [CrossRef]
- Moraes, J.C.B.; Tashima, M.M.; Akasaki, J.L.; Melges, J.L.P.; Monzo, J.; Borrachero, M.V.; Soriano, L.; Paya, J. Effect of sugar cane straw ash (SCSA) as solid precursor and the alkaline activator composition on alkali-activated binders based on blast furnace slag (BFS). Constr. Build. Mater. 2017, 144, 214–224. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Wang, P.; Zhang, Y.; Wang, L.; Zhang, L.; Zhang, L.; Xu, L.; Liu, L. Biomass based nitrogen-doped structure-tunable versatile porous carbon materials. J. Mater. Chem. A 2017, 5, 12958–12968. [Google Scholar] [CrossRef]
- Aziz, M.; Ismail, A.F. X-Ray Photoelectron Spectroscopy (XPS). In Membrane Characterization; Hilal, N., Ismail, A.F., Matsuura, T., Oatley-Radcliffe, D., Eds.; Chapter 5; Elsevier: Amsterdam, The Netherlands, 2017; pp. 81–93. [Google Scholar] [CrossRef]
- Brundle, C.R. 5.1—XPS: X-Ray Photoelectron Spectroscopy. In Encyclopedia of Materials Characterization; Brundle, C.R., Evans, C.A., Wilson, S., Eds.; Butterworth-Heinemann: Boston, MA, USA, 1992; pp. 282–299. [Google Scholar] [CrossRef]
- Seyama, H.; Soma, M.; Theng, B.K.G. X-Ray Photoelectron Spectroscopy. In Developments in Clay Science; Bergaya, F., Lagaly, G., Eds.; Chapter 2.5; Elsevier: Amsterdam, The Netherlands, 2013; pp. 161–176. [Google Scholar] [CrossRef]
- Zhao, Y.Q.L.M.; Tao, P.Y.; Zhang, Y.J.; Gong, X.T.; Yang, Z.; Zhang, G.Q.; Li, H.L. Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors. J. Power. Sources 2016, 307, 391–400. [Google Scholar] [CrossRef]
- Xu, J.; Tan, Z.; Zeng, W.; Chen, G.; Wu, S.; Zhao, Y.; Ni, K.; Tao, Z.; Ikram, M.; Ji, H.; et al. A hierarchical carbon derived from sponge-templated activation of graphene oxide for high-performance supercapacitor electrodes. Adv. Mater. 2016, 28, 5222. [Google Scholar] [CrossRef]
- Wang, X.; Yun, S.; Fang, W.; Zhang, C.; Liang, X.; Lei, Z.; Liu, Z. Layer-stacking activated carbon derived from sunflower stalk as electrode materials for high-performance supercapacitors. ACS Sustain. Chem. Eng. 2018, 6, 11397–11407. [Google Scholar] [CrossRef]
- Song, S.; Ma, F.; Wu, G.; Ma, D.; Geng, W.; Wan, J. Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. J. Mater. Chem. A 2015, 3, 18154–18162. [Google Scholar] [CrossRef]
- Wang, Z.; Yun, S.; Wang, X.; Wang, C.; Si, Y.; Zhang, Y.; Xu, H. Aloe peel-derived honeycomb-like bio-based carbon with controllable morphology and its superior electrochemical properties for new energy devices. Ceram. Int. 2019, 45, 4208–4218. [Google Scholar] [CrossRef]
- Sulaiman, R.; Hadj-Kali, M.K.; Hasan, S.W.; Mulyono, S.; AlNashef, I.M. Investigating the solubility of chlorophenols in hydrophobic ionic liquids. J. Chem. Thermodyn. 2019, 135, 97–106. [Google Scholar] [CrossRef]
- Guo, J.; Wu, C.; Zhang, J.; Jiang, S.; Lv, S.; Lu, D.; Qi, X.; Feng, C.; Liang, W.; Chang, X. Anthropometric measures at age 3 years in associations with prenatal and postnatal exposures to chlorophenols. Chemosphere 2019, 228, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Lone, M.I.; Nabi, A.; Dar, N.J.; Hussain, A.; Nazam, N.; Hamid, A.; Ahmad, W. Toxicogenetic evaluation of dichlorophene in peripheral blood and in the cells of the immune system using molecular and flow cytometric approaches. Chemosphere 2017, 167, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Zhang, J.; Wan, J.; Gao, J.; Wang, Y. Removal of roxarsone from synthetic livestock wastewater by sodium alginate loading with micro-scale zerovalent iron. Desalin. Water. Treat. 2019, 143, 382–388. [Google Scholar] [CrossRef] [Green Version]
Material | Yield (%) | Elemental Analysis | XPS | ||||
---|---|---|---|---|---|---|---|
C (%) | N (%) | H (%) | C (%) | N (%) | O (%) | ||
CH-100 | N/A | 76.44 | 2.15 | 1.23 | 78.45 | 1.84 | 19.72 |
NRPC-112 | 15.4 | 64.43 | 8.98 | 1.40 | 80.45 | 8.44 | 10.81 |
C800 | N/A | 78.82 | 1.24 | 2.56 | 84.61 | 1.16 | 14.23 |
CN800 | 11.7 | 65.98 | 7.52 | 3.17 | 78.76 | 7.35 | 13.89 |
SBET (m2 g−1) | Pore Volume (cm3 g−1) | ||||||
---|---|---|---|---|---|---|---|
Material | Total | Micro | Meso | Total | Micro | Meso | Dp(nm) |
CH-100 | 15 | 6 | 9 | 0.016 | 0.0018 | 0.0142 | 4.57 |
NRPC-112 | 2573 | 2398 | 175 | 0.89 | 0.78 | 0.11 | 1.99 |
C800 | 21 | 3 | 18 | 0.06 | 0.001 | 0.059 | 11.73 |
CN800 | 865 | 831 | 34 | 0.44 | 0.38 | 0.06 | 2.05 |
Current Density (A g−1) | 0.5 | 1 | 2 | 5 | 10 |
---|---|---|---|---|---|
NRPC-112 | 340 | 329 | 316 | 287 | 273 |
CN800 | 246 | 216 | 189 | 158 | 111 |
Adsorbent | Adsorption Capacity (mg g−1) | ||
---|---|---|---|
DCP | TCS | ROX | |
NRPC-112 | 174 | 205 | 94 |
CN800 | 308 | 225 | 142 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Liu, Y.; Zhang, Y.; Chen, Y.; Zan, X. Micro-Structure Determines the Intrinsic Property Difference of Bio-Based Nitrogen-Doped Porous Carbon—A Case Study. Nanomaterials 2020, 10, 1765. https://doi.org/10.3390/nano10091765
Jiang Y, Liu Y, Zhang Y, Chen Y, Zan X. Micro-Structure Determines the Intrinsic Property Difference of Bio-Based Nitrogen-Doped Porous Carbon—A Case Study. Nanomaterials. 2020; 10(9):1765. https://doi.org/10.3390/nano10091765
Chicago/Turabian StyleJiang, Yingfang, Yanxia Liu, Yagang Zhang, Yidan Chen, and Xingjie Zan. 2020. "Micro-Structure Determines the Intrinsic Property Difference of Bio-Based Nitrogen-Doped Porous Carbon—A Case Study" Nanomaterials 10, no. 9: 1765. https://doi.org/10.3390/nano10091765
APA StyleJiang, Y., Liu, Y., Zhang, Y., Chen, Y., & Zan, X. (2020). Micro-Structure Determines the Intrinsic Property Difference of Bio-Based Nitrogen-Doped Porous Carbon—A Case Study. Nanomaterials, 10(9), 1765. https://doi.org/10.3390/nano10091765