

Supplementary Materials

Tyrosine-Modification of Polypropylenimine (PPI) and Polyethylenimine (PEI) Strongly Improves Efficacy of siRNA-Mediated Gene Knockdown

Sandra Noske, Michael Karimov, Achim Aigner * and Alexander Ewe *

Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, Leipzig University, Faculty of Medicine, Leipzig, 04107, Germany; Sandra.noske@medizin.uni-leipzig.de (S.N.); michael.karimov@medizin.uni-leipzig.de (M.K.)

* Correspondence: achim.aigner@medizin.uni-leipzig.de (A.A.); alexander.ewe@medizin.uni-leipzig.de (A.E.); Tel.: +49-(0)341-9724660 (A.A.)

Figure S1. (**A**) Synthesis scheme for the generation of PPI-G4-Y. (**B**) 1H-NMR analysis of PPI-G4-Y. Relevant signals are highlighted.

Figure S2. (**A**) Knockdown efficacies of PPI-G4 dendrimer-based siRNA complexes with (right) or without (left) tyrosine modification, as determined by luciferase knockdown in PC3-EGFP/Luc reporter cells. Bars show results upon transfection with complexes containing negative control siRNA (black) or luciferase-specific siRNA (grey), respectively, with bars normalized for untreated (UT) negative control. (**B**) Luciferase knockdown on the mRNA level in PC3-EGFP/Luc cells, as determined by RT-qPCR. (**C**) Knockdown efficacies of various tyrosine-modified PPI- or PEI-based siRNA complexes targeting EGFP in PC3-EGFP/Luc cells (original flow cytometry data from Figure 3A).

Figure S3. Knockdown efficacies of PPI-G4 dendrimer-based siRNA complexes upon storage for three days at different temperatures, in the absence or presence of FCS at the indicated concentrations, as determined by luciferase activity in PC3-EGFP/Luc cells.

siRNA		Sequence (5' – 3')	Vendor
siLuc 2	sense	CGUACGCGGAAUACUUCGA dTdT	Dharmacon
	antisense	UCGAAGUAUUCCGCGUACG dTdT	Lafayette, CO, USA
siLuc 3	sense	CUUACGCUGAGUACUUCGA dTdT	Europentos Consista Relaium
	antisense	UCGAAGUACUCAGCGUAAG dTdT	Eurogentec, Seraing, Beigium
siGAPDH	sense	CCUCAACUACAUGGUUUAC dTdT	Eurogentec
	antisense	GUAAACCAUGUAGUUGAGG dTdT	Seraing, Belgium
siEGFP	sense	GCAGCACGACUUCUUCAAG dTdT	Eurogentec
	antisense	CUUGAAGAAGUCGUGCUGC dTdT	Seraing, Belgium

Table S1. siRNAs used in this study.

Table S2. Sequences of primers used in this study.

Primer		Sequence (5' – 3')	Vendor
RPLP0	forward	TCTACAACCCTGAAGTGCTTGAT	- Eurofins Genomics, Ebersberg, Germany
	reverse	CAATCTGCAGACAGACACTGG	
GAPDH	forward	GGTGTGAACCATGAGAAGTATGA	Pianoscionas Cara Correspond
	reverse	GAGTCCTTCCACGATACCAAAG	Bianoscience, Gera, Germany
Luc3	forward	TTACACCCGAGGGGGATGAT	Ermefine Companying Ehemehang Commany
	reverse	TCTCACACACAGTTCGCCTC	Euronnis Genomics, Ebersberg, Germany