Atomic Force Microscope Study of Ag-Conduct Polymer Hybrid Films: Evidence for Light-Induced Charge Separation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Ag Nano Particles (NPs)
2.2. Preparation of the Sample
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zada, A.; Muhammad, P.; Ahmad, W.; Hussain, Z.; Ali, S.; Khan, M.; Khan, Q.; Maqbool, M. Surface Plasmonic-Assisted Photocatalysis and Optoelectronic Devices with Noble Metal Nanocrystals: Design, Synthesis, and Applications. Adv. Funct. Mater. 2020, 30, 1906744. [Google Scholar] [CrossRef]
- Lemire, C.; Meyer, R.; Shaikhutdinov, S.; Freund, H.-J. Do Quantum Size Effects Control CO Adsorption on Gold Nanoparticles? Angew. Chem. Int. Ed. 2004, 43, 118–121. [Google Scholar] [CrossRef]
- Ammari, H.; Deng, Y.; Millien, P. Surface Plasmon Resonance of Nanoparticles and Applications in Imaging. Arch. Ration. Mech. Anal. 2016, 220, 109–153. [Google Scholar] [CrossRef]
- Jing, J.-Y.; Wang, Q.; Zhao, W.-M.; Wang, B.-T. Long-range surface plasmon resonance and its sensing applications: A review. Opt. Lasers Eng. 2019, 112, 103–118. [Google Scholar] [CrossRef]
- Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Wong, K.K.Y.; Ho, C.-M.; Lok, C.-N.; Yu, W.-Y.; Che, C.-M.; Chiu, J.-F.; Tam, P.K.H. Topical Delivery of Silver Nanoparticles Promotes Wound Healing. Chem. Med. Chem. 2007, 2, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Hajipour, M.J.; Fromm, K.M.; Ashkarran, A.A.; De Aberasturi, D.J.; De Larramendi, I.R.; Lu, J.; Serpooshan, V.; Parak, W.J.; Mahmoudi, M. Antibacterial properties of nanoparticles. Trends Biotechnol. 2012, 30, 499–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.-F.; Liu, Z.; Shen, W.; Gurunathan, S. Silver Nanoparticles: Synthesis, Characterization, Properties, Applications, and Therapeutic Approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef]
- Burdușel, A.-C.; Fufă, O.; Grumezescu, A.; Mogoantă, L.; Ficai, A.; Andronescu, E. Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview. Nanomaterials 2018, 8, 681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasher, P.; Sharma, M.; Mudila, H.; Gupta, G.; Sharma, A.K.; Kumar, D.; Bakshi, H.A.; Negi, P.; Kapoor, D.N.; Chellappan, D.K.; et al. Emerging trends in clinical implications of bio-conjugated silver nanoparticles in drug delivery. Colloid Interface Sci. Commun. 2020, 35, 100244. [Google Scholar] [CrossRef]
- Bocková, M.; Slabý, J.; Špringer, T.; Homola, J. Advances in Surface Plasmon Resonance Imaging and Microscopy and Their Biological Applications. Annu. Rev. Anal. Chem. 2019, 12, 151–176. [Google Scholar] [CrossRef] [PubMed]
- Su’Ait, M.S.; Rahman, M.Y.A.; Ahmad, A. Review on polymer electrolyte in dye-sensitized solar cells (DSSCs). Sol. Energy 2015, 115, 452–470. [Google Scholar] [CrossRef]
- Kayser, L.; Lipomi, D.J. Stretchable Conductive Polymers and Composites Based on PEDOT and PEDOT:PSS. Adv. Mater. 2019, 31, e1806133. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Lin, F.; Hubble, D.; Wang, Y.; Li, Y.; Murphy, I.A.; Jang, S.-H.; Yang, J.; Jen, A.K.-Y. Tuning self-healing properties of stiff, ion-conductive polymers. J. Mater. Chem. A 2019, 7, 6773–6783. [Google Scholar] [CrossRef]
- Konishi, Y.; Tanabe, I.; Tatsuma, T. Plasmon-induced oxidation of gold nanoparticles on TiO2 in the presence of ligands. Dalton Trans. 2013, 42, 15937. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Pan, F.; Zhang, L.; Zhou, X.; Wang, Z.; Nian, Y.; Liu, C.; Tang, W.; Ma, Q.; Ni, Z.; et al. Impact of the Siloxane-Terminated Side Chain on Photovoltaic Performances of the Dithienylbenzodithiophene–Difluorobenzotriazole-Based Wide Band Gap Polymer Donor in Non-Fullerene Polymer Solar Cells. ACS Appl. Mater. Interfaces 2019, 11, 29094–29104. [Google Scholar] [CrossRef]
- Husain, A.A.; Hasan, W.Z.W.; Shafie, S.; Hamidon, M.N.; Pandey, S.S. A review of transparent solar photovoltaic technologies. Renew. Sustain. Energy Rev. 2018, 94, 779–791. [Google Scholar] [CrossRef]
- Rezaei, B.; Taromi, F.A.; Ahmadi, Z.; Rigi, S.A.; Yousefi, N. Enhancement of power conversion efficiency of bulk heterojunction polymer solar cells using core/shell, Au/graphene plasmonic nanostructure. Mater. Chem. Phys. 2019, 228, 325–335. [Google Scholar] [CrossRef]
- Lu, L.; Luo, Z.; Xu, T.; Yu, L. Cooperative Plasmonic Effect of Ag and Au Nanoparticles on Enhancing Performance of Polymer Solar Cells. Nano Lett. 2012, 13, 59–64. [Google Scholar] [CrossRef]
- Kaçuş, H.; Aydogan, S.; Biber, M.; Metin, Ö.; Sevim, M. The power conversion efficiency optimization of the solar cells by doping of (Au:Ag) nanoparticles into P3HT:PCBM active layer prepared with chlorobenzene and chloroform solvents. Mater. Res. Express 2019, 6, 095104. [Google Scholar]
- Wu, S.; Wu, Z.; Lin, D.; Zhong, Z.; Jiang, Z.; Yang, X.J. Photogenerated charges and surface potential variations investigated on single Si nanorods by electrostatic force microscopy combined with laser irradiation. Nanoscale Res. Lett. 2014, 9, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xuan, H.; Wu, Y.; Song, K.; Liu, R.; Chen, X.; Li, Y. Charges on nano-islands and fibrils of poly(3-hexylthiophene-2,5-diyl)–light-modulation, injection and transportation. RSC Adv. 2016, 6, 15577–15584. [Google Scholar] [CrossRef]
- Liu, R. Imaging of Photoinduced Interfacial Charge Separation in Conjugated Polymer/Semiconductor Nanocomposites. J. Phys. Chem. C 2009, 113, 9368–9374. [Google Scholar] [CrossRef]
- Kazuma, E.; Tatsuma, T. In Situ Nanoimaging of Photoinduced Charge Separation at the Plasmonic Au Nanoparticle-TiO2Interface. Adv. Mater. Interfaces 2014, 1, 1400066. [Google Scholar] [CrossRef]
- Yalcin, S.E.; Labastide, J.A.; Sowle, D.L.; Barnes, M.D. Spectral Properties of Multiply Charged Semiconductor Quantum Dots. Nano Lett. 2011, 11, 4425–4430. [Google Scholar] [CrossRef]
- Costi, R.; Cohen, G.; Salant, A.; Rabani, E.; Banin, U. Electrostatic Force Microscopy Study of Single Au−CdSe Hybrid Nanodumbbells: Evidence for Light-Induced Charge Separation. Nano Lett. 2009, 9, 2031–2039. [Google Scholar] [CrossRef]
- Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S.E. Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics? Angew. Chem. Int. Ed. 2008, 48, 60–103. [Google Scholar] [CrossRef]
- Xu, B.; Li, Y.-D.; Gao, Y.; Liu, S.; Lv, D.; Zhao, S.; Gao, H.; Yang, G.; Li, N.; Ge, L. Ag-AgI/Bi3O4Cl for efficient visible light photocatalytic degradation of methyl orange: The surface plasmon resonance effect of Ag and mechanism insight. Appl. Catal. B Environ. 2019, 246, 140–148. [Google Scholar] [CrossRef]
- Gong, J.; Li, G.; Tang, Z. Self-assembly of noble metal nanocrystals: Fabrication, optical property, and application. Nano Today 2012, 7, 564–585. [Google Scholar] [CrossRef]
- Manceau, M.; Rivaton, A.; Gardette, J.-L.; Guillerez, S.; Lemaître, N. The mechanism of photo- and thermooxidation of poly(3-hexylthiophene) (P3HT) reconsidered. Polym. Degrad. Stab. 2009, 94, 898–907. [Google Scholar] [CrossRef]
- Schulz, G.L.; Fischer, F.S.U.; Trefz, D.; Melnyk, A.; Hamidi-Sakr, A.; Brinkmann, M.; Andrienko, D.; Ludwigs, S. The PCPDTBT Family: Correlations between Chemical Structure, Polymorphism, and Device Performance. Macromolecules 2017, 50, 1402–1414. [Google Scholar] [CrossRef]
- Gu, Y.; Wang, C.; Russell, T. Multi-Length-Scale Morphologies in PCPDTBT/PCBM Bulk-Heterojunction Solar Cells. Adv. Energy Mater. 2012, 2, 683–690. [Google Scholar] [CrossRef]
- Tsoi, W.C.; James, D.T.; Kim, J.S.; Nicholson, P.G.; Murphy, C.E.; Bradley, D.D.C.; Nelson, J.; Kim, J.-S. The Nature of In-Plane Skeleton Raman Modes of P3HT and Their Correlation to the Degree of Molecular Order in P3HT:PCBM Blend Thin Films. J. Am. Chem. Soc. 2011, 133, 9834–9843. [Google Scholar] [CrossRef]
- Doris, M.; Aziz, F.; Alhummiany, H.; Bawazeer, T.; Alsenany, N.; Mahmoud, A.; Zakaria, R.; Sulaiman, K.; Supangat, A. Determining the Effect of Centrifugal Force on the Desired Growth and Properties of PCPDTBT as p-Type Nanowires. Nanoscale Res. Lett. 2017, 12, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, F.S.U.; Trefz, D.; Back, J.; Kayunkid, N.; Tornow, B.; Rech, B.; Yager, K.G.; Singh, G.; Karim, A.; Neher, D.; et al. Highly Crystalline Films of PCPDTBT with Branched Side Chains by Solvent Vapor Crystallization: Influence on Opto-Electronic Properties. Adv. Mater. 2014, 27, 1223–1228. [Google Scholar] [CrossRef]
- Heim, T.; Lmimouni, K.; Vuillaume, D. Ambipolar Charge Injection and Transport in a Single Pentacene Monolayer Island. Nano Lett. 2004, 4, 2145–2150. [Google Scholar] [CrossRef] [Green Version]
- Yan, M.; Bernstein, G.H. A quantitative method for dual-pass electrostatic force microscopy phase measurements. Surf. Interface Anal. 2007, 39, 354–358. [Google Scholar] [CrossRef]
- Yalcin, S.E.; Yang, B.; Labastide, J.A.; Barnes, M.D. Electrostatic Force Microscopy and Spectral Studies of Electron Attachment to Single Quantum Dots on Indium Tin Oxide Substrates. J. Phys. Chem. C 2012, 116, 15847–15853. [Google Scholar] [CrossRef]
- Kim, J.; Jasper, W.J.; Hinestroza, J.P. Charge Characterization of an Electrically Charged Fiber via Electrostatic Force Microscopy. J. Eng. Fibers Fabr. 2006, 1, 155892500600100203. [Google Scholar] [CrossRef] [Green Version]
- Freitas, J.N.; Gonçalves, A.S.; Nogueira, A.F. A comprehensive review of the application of chalcogenide nanoparticles in polymer solar cells. Nanoscale 2014, 6, 6371–6397. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Jiao, Y.; Rechberger, S.; Perea, J.D.; Meyer, M.; Kazerouni, N.; Spiecker, E.; Ade, H.; Brabec, C.J.; Fink, R.; et al. Crystallization of Sensitizers Controls Morphology and Performance in Si-/C-PCPDTBT-Sensitized P3HT:ICBA Ternary Blends. Macromolecules 2017, 50, 2415–2423. [Google Scholar] [CrossRef]
- Sakar, M.; Subramanian, B.; Sarveswaran, G. A prototypical development of plasmonic multiferroic bismuth ferrite particulate and fiber nanostructures and their remarkable photocatalytic activity under sunlight. J. Mater. Chem. C 2014, 2, 6835–6842. [Google Scholar]
Samples | Charge with Light-Off (10−19 nC) | Charge with Light-On (10−19 nC) |
---|---|---|
FTO | −7.2 ± 2.1 | −5.1 ± 1.7 |
P3HT | 2.8 ± 2.4 | −32 ± 2.1 |
PCPDTBT | −84 ± 3.9 | −0.00 ± 4.9 |
ITO | −8.1 ± 6.1 | 2.7 ± 7.1 |
Glass | 5.2 ± 0.2 | 6.8 ± 1.5 |
Si | 21 ± 3.9 | −3.7 ± 0.54 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Wang, D.; Liu, J.; Cai, H.; Zhang, Y. Atomic Force Microscope Study of Ag-Conduct Polymer Hybrid Films: Evidence for Light-Induced Charge Separation. Nanomaterials 2020, 10, 1819. https://doi.org/10.3390/nano10091819
Wu Y, Wang D, Liu J, Cai H, Zhang Y. Atomic Force Microscope Study of Ag-Conduct Polymer Hybrid Films: Evidence for Light-Induced Charge Separation. Nanomaterials. 2020; 10(9):1819. https://doi.org/10.3390/nano10091819
Chicago/Turabian StyleWu, Yinghui, Dong Wang, Jinyuan Liu, Houzhi Cai, and Yueqiang Zhang. 2020. "Atomic Force Microscope Study of Ag-Conduct Polymer Hybrid Films: Evidence for Light-Induced Charge Separation" Nanomaterials 10, no. 9: 1819. https://doi.org/10.3390/nano10091819
APA StyleWu, Y., Wang, D., Liu, J., Cai, H., & Zhang, Y. (2020). Atomic Force Microscope Study of Ag-Conduct Polymer Hybrid Films: Evidence for Light-Induced Charge Separation. Nanomaterials, 10(9), 1819. https://doi.org/10.3390/nano10091819