Colloidally Stable P(DMA-AGME)-Ale-Coated Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+ Nanoparticles as a Multimodal Contrast Agent for Down- and Upconversion Luminescence, Magnetic Resonance Imaging, and Computed Tomography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+ Nanoparticles
2.3. Modification of GdF3:Tb3+,Yb3+,Nd3+@P(DMA-AGME)-Ale Nanoparticles with Cy7-Ale
2.4. Characterization of Nanoparticles
2.5. In Vitro Cytotoxicity
2.6. Downconversion Confocal Laser Scanning Microscopy
2.7. Upconversion Confocal Laser Scanning Microscopy
2.8. In Vitro Longitudinal (T1) and Transversal Relaxation (T2) and Relaxivity (r1,2) Measurement
2.9. In Vivo Magnetic Resonance Imaging (MRI)
2.10. In Vitro and In Vivo CT Investigation and Imaging
2.11. In Vivo Optical Imaging
3. Results and Discussion
3.1. Synthesis of Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+@P(DMA-AGME)-Ale Nanoparticles
3.2. Down- and Upconversion Luminescence of Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+@P(DMA-AGME)-Ale Nanoparticles
3.3. Cytotoxicity of Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+@P(DMA-AGME)-Ale Nanoparticles
3.4. Intracellular Uptake of Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+@P(DMA-AGME)-Ale Nanoparticles Determined by Laser Scanning Confocal Microscopy
3.5. MR Relaxometry of Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+@P(DMA-AGME)-Ale Nanoparticles
3.6. In Vivo MR Imaging of Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+@P(DMA-AGME)-Ale Nanoparticles
3.7. In Vitro and In Vivo CT Investigation and Imaging of Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+@P(DMA-AGME)-Ale Nanoparticles
3.8. In Vivo Optical Imaging of GdF3:Tb3+,Yb3+,Nd3+@P(DMA-AGME)-Ale-Cy7 Nanoparticles
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walter, A.; Paul-Gilloteaux, P.; Plochberger, B.; Sefc, L.; Verkade, P.; Mannheim, J.G.; Slezak, P.; Unterhuber, A.; Marchetti-Deschmann, M.; Ogris, M.; et al. Correlated multimodal imaging in life sciences: Expanding the biomedical horizon. Front. Phys. 2020, 8, 1–28. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.N.; Li, X.D.; Chang, J. Multimodality imaging in nanomedicine and nanotheranostics. Cancer Biol. Med. 2016, 13, 339–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, B.P.; Cawthorne, C.; Archibald, S.J. Multimodal nanoparticle imaging agents: Design and applications. Phil. Trans. R. Soc. A 2017, 375, 20170261. [Google Scholar] [CrossRef] [PubMed]
- Key, J.; Leary, J.F. Nanoparticles for multimodal in vivo imaging in nanomedicine. Int. J. Nanomed. 2014, 9, 711–726. [Google Scholar]
- Rodriguez-Liviano, S.; Nunez, N.O.; Rivera-Fernández, S.; de la Fuente, J.M.; Ocana, M. Ionic liquid mediated synthesis and surface modification of multifunctional mesoporous Eu:GdF3 nanoparticles for biomedical applications. Langmuir 2013, 29, 3411–3418. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-Y.; Ma, P.-C.; Zhang, J.-C.; Wang, Y.-H. Efficient down- and up-conversion luminescence in Er3+–Yb3+ co-doped Y7O6F9 for photovoltaics. ACS Appl. Energy Mater. 2018, 1, 447–454. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, X.; Zhang, W.; Li, C.; Zhu, C. Facile synthesis of NaYF4:Ln/NaYF4:Eu composite with up-conversion and down-shifting luminescence. J. Photochem. Photobiol. A 2020, 391, 112388. [Google Scholar] [CrossRef]
- Shapoval, O.; Kaman, O.; Hromádková, J.; Vavřík, D.; Jirák, D.; Machová, D.; Parnica, J.; Horák, D. Multimodal PSSMA-functionalized GdF3:Eu3+(Tb3+) nanoparticles for luminescence imaging, MRI, and X-ray computed tomography. ChemPlusChem 2019, 84, 1135–1139. [Google Scholar] [CrossRef] [PubMed]
- Branca, M.; Pelletier, F.; Cottin, B.; Ciuculescu, D.; Lin, C.C.; Serra, R.; Mattei, J.G.; Casanove, M.J.; Tan, R.; Respaud, M.; et al. Design of FeBi nanoparticles for imaging applications. Faraday Discuss. 2014, 175, 97–111. [Google Scholar] [CrossRef]
- Liang, S.Y.; Zhou, Q.; Wang, M.; Zhu, Y.H.; Wu, Q.Z.; Yang, X.L. Water-soluble L-cysteine-coated FePt nanoparticles as dual MRI/CT imaging contrast agent for glioma. Int. J. Nanomed. 2015, 10, 2325–2333. [Google Scholar]
- Carril, M.; Fernández, I.; Rodríguez, J.; García, I.; Penadés, S. Gold-coated iron oxide glyconanoparticles for MRI, CT, and US multimodal imaging. Part. Part. Syst. Char. 2013, 31, 81–87. [Google Scholar] [CrossRef]
- Alric, C.; Taleb, J.; Le Duc, G.; Mandon, C.; Billotey, C.; Le Meur-Herland, A.; Brochard, T.; Vocanson, F.; Janier, M.; Perriat, P.; et al. Gadolinium chelate coated gold nanoparticles as contrast agents for both X-ray computed tomography and magnetic resonance imaging. J. Am. Chem. Soc. 2008, 130, 5908–5915. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Du, S.R.; Zheng, X.-Y.; Lyu, G.M.; Sun, L.D.; Li, L.D.; Zhang, P.Z.; Zhang, C.; Yan, C.H. Lanthanide nanoparticles: From design toward bioimaging and therapy. Chem. Rev. 2015, 115, 10725–10815. [Google Scholar] [CrossRef] [PubMed]
- Passuello, T.; Pedroni, M.; Piccinelli, F.; Polizzi, S.; Marzola, P.; Tambalo, S.; Conti, G.; Benati, D.; Vetrone, F.; Bettinelli, M.; et al. PEG-capped, lanthanide doped GdF3 nanoparticles: Luminescent and T2 contrast agents for optical and MRI multimodal imaging. Nanoscale 2012, 4, 7682–7689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biju, S.; Gallo, J.; Banobre-Lopez, M.; Manshian, B.; Soenen, S.; Himmelreich, U.; Vander Elst, L.; Parac-Vogt, T. A magnetic chameleon: Biocompatible lanthanide nanoparticles with magnetic field dependent properties as contrast agents for MRI and optical imaging in biological window. Chem. Eur. J. 2018, 24, 7388–7397. [Google Scholar] [CrossRef]
- Ni, D.L.; Zhang, J.W.; Bu, W.B.; Zhang, C.; Yao, Z.; Xing, H.; Wang, J.; Duan, F.; Liu, Y.; Fan, W.; et al. PEGylated NaHoF4 nanoparticles as contrast agents for both X-ray computed tomography and ultra-high field magnetic resonance imaging. Biomaterials 2016, 76, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Donati, T.; Wilson, J.; Kölbel, T.; Clough, R.E. Modern diagnostics for type B aortic dissection. Gefasschirurgie 2015, 20, 420–427. [Google Scholar] [CrossRef] [Green Version]
- Viswanathan, S.; Kovacs, Z.; Green, K.N.; Ratnakar, S.J.; Sherry, A.D. Alternatives to gadolinium-based metal chelates for magnetic resonance imaging. Chem. Rev. 2010, 110, 2960–3018. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Yang, R.; Zou, H.; Shen, X.; Zheng, J.; Wei, W. High-efficiency simultaneous three-photon absorption upconversion luminescence of a terbium-doped germanate glass. Jpn. J. Appl. Phys. 2016, 55, 122402. [Google Scholar] [CrossRef]
- Prorok, K.; Pawlyta, M.; Stręk, W.; Bednarkiewicz, A. Energy migration up-conversion of Tb3+ in Yb3+ and Nd3+ codoped active-core/active-shell colloidal nanoparticles. Chem. Mater. 2016, 28, 2295–2300. [Google Scholar] [CrossRef]
- Subramanian, M.; Thakur, P.; Gautam, S.; Chae, K.H.; Tanemura, M.; Hihara, T.; Vijayalakshmi, S.; Soga, T.; Kim, S.S.; Asokan, K. Investigations on the structural, optical and electronic properties of Nd doped ZnO thin films. J. Phys. D 2009, 42, 105410. [Google Scholar] [CrossRef]
- Yi, Z.; Li, X.; Lu, W.; Liu, H.; Zeng, S.; Hao, J. Hybrid lanthanide nanoparticles as a new class of binary contrast agents for in vivo T1/T2 dual-weighted MRI and synergistic tumor diagnosis. J. Mater. Chem. B 2016, 4, 2715–2722. [Google Scholar] [CrossRef] [PubMed]
- Abdesselem, M.; Schoeffel, M.; Maurin, I.; Ramodiharilafy, R.; Autret, G.; Clément, O.; Tharaux, P.L.; Boilot, J.P.; Gacoin, T.; Bouzigues, C.; et al. Multifunctional rare-earth vanadate nanoparticles: Luminescent labels, oxidant sensors, and MRI contrast agents. ACS Nano 2014, 8, 11126–11137. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.K.; Mudring, A.-V.; Ghosh, P. Recent trends in binary and ternary rare-earth fluoride nanophosphors: How structural and physical properties influence optical behavior. J. Lumin. 2017, 189, 44–63. [Google Scholar] [CrossRef]
- Feldmann, C. Polyol-mediated synthesis of nanoscale functional materials. Adv. Funct. Mater. 2003, 13, 101–107. [Google Scholar] [CrossRef]
- Dang, T.M.D.; Le, T.T.T.; Fribourg-Blanc, E.; Dang, M.C. Influence of surfactant on the preparation of silver nanoparticles by polyol method. Adv. Nat. Sci. Nanosci. Nanotechnol. 2012, 3, 035004. [Google Scholar] [CrossRef]
- Schubert, J.; Chanana, M. Coating matters: Review on colloidal stability of nanoparticles with biocompatible coatings in biologi-cal media, living cells and organisms. Curr. Med. Chem. 2018, 25, 4553–4586. [Google Scholar] [CrossRef]
- Gao, J.; Ran, X.; Shi, C.; Cheng, H.; Cheng, T.; Su, Y. One-step solvothermal synthesis of highly water-soluble, negatively charged superparamagnetic Fe3O4 colloidal nanocrystal clusters. Nanoscale 2013, 5, 7026–7033. [Google Scholar] [CrossRef]
- Oleksa, V.; Macková, H.; Patsula, V.; Dydowitzová, A.; Janoušková, O.; Horák, D. Doxorubicin-conjugated iron oxide nanoparticles: Surface engineering and biomedical investigation. ChemPlusChem 2020, 85, 1156–1163. [Google Scholar] [CrossRef]
- Kostiv, U.; Engstová, H.; Krajnik, B.; Šlouf, M.; Proks, V.; Podhorodecky, A.; Ježek, P.; Horák, D. Monodisperse core-shell NaYF4:Yb3+/Er3+@NaYF4:Nd3+-PEG-GGGRGDSGGGY-NH2 nanoparticles excitable at 808 and 980 nm: Design, surface engineering, and application in life sciences. Front. Chem. 2020, 8, 497. [Google Scholar] [CrossRef]
- Zasonska, B.A.; Boiko, N.; Horák, D.; Klyuchivska, O.; Macková, H.; Beneš, M.; Babič, M.; Trchová, M.; Hromádková, J.; Stoika, R. The use of hydrophilic poly(N,N-dimethylacrylamide) for promoting engulfment of magnetic γ-Fe2O3 nanoparticles by mammalian cells. J. Biomed. Nanotechnol. 2013, 9, 479–491. [Google Scholar] [CrossRef] [PubMed]
- Gregori, M.; Bertani, D.; Cazzaniga, E.; Orlando, A.; Mauri, M.; Bianchi, A.; Re, F.; Sesana, S.; Minniti, S.; Francolini, M.; et al. Investigation of functionalized poly(N,N-dimethylacrylamide)-block-polystyrene nanoparticles as novel drug delivery system to overcome the blood–brain barrier in vitro. Macromol. Biosci. 2015, 15, 1687–1697. [Google Scholar] [CrossRef] [PubMed]
- Poul, L.; Ammar, S.; Jouini, N.; Fievet, F.; Villain, F. A synthesis of inorganic compounds (metal, oxide and hydroxide) in polyol medium: A versatile route related to the sol-gel process. J. Sol-Gel. Sci. Tech. 2003, 26, 261–265. [Google Scholar] [CrossRef]
- Clayton, K.N.; Salameh, J.W.; Wereley, S.T.; Kinzer-Ursem, T.L. Physical characterization of nanoparticle size and surface mo-dification using particle scattering diffusometry. Biomicrofluidics 2016, 10, 054107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, T.L.; Rodriguez-Lorenzo, L.; Hirsch, V.; Balog, S.; Urban, D.; Jud, C.; Rothen-Rutishauser, B.; Lattuada, M.; Petri-Fink, A. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem. Soc. Rev. 2015, 44, 6287–6305. [Google Scholar] [CrossRef] [Green Version]
- Porfire, A.; Achim, M.; Tefas, L.; Sylvester, B. Liposomal nanoformulations as current tumor-targeting approach to cancer therapy. In Liposomes; Catala, A., Ed.; Intech: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Andrews, K.W.; Dyson, D.J.; Keown, S.R. Interpretation of Electron Diffraction Patterns; Plenum Press: New York, NY, USA, 1967. [Google Scholar]
- Mishra, K.; Singh, S.K.; Singh, A.K.; Rai, M.; Gupta, B.P.; Rai, S.B. New perspective in garnet phosphor: Low temperature synthesis, nanostructures, and observation of multimodal luminescence. Inorg. Chem. 2014, 53, 9561–9569. [Google Scholar] [CrossRef]
- Liang, H.J.; Chen, G.Y.; Li, L.; Liu, Y.; Qin, F.; Zhang, Z.G. Upconversion luminescence in Yb3+/Tb3+-codoped monodisperse NaYF4 nanocrystals. Opt. Commun. 2009, 282, 3028–3031. [Google Scholar] [CrossRef]
- Zhang, W.J.; Chen, Q.J.; Qian, Q.; Zhang, Q.Y.; Jiang, Z.H. Cooperative energy transfer in Tb3+/Yb3+- and Nd3+/Yb3+/Tb3+-codoped oxyfluoride glasses. Phys. B Condens. Matter. 2010, 405, 1062–1066. [Google Scholar] [CrossRef]
- Debasu, M.L.; Ananias, D.; Pinho, S.L.C.; Geraldes, C.F.G.C.; Carlos, L.D.; Rocha, J. (Gd,Yb,Tb)PO4 up-conversion nanocrystals for bimodal luminescence–MR imaging. Nanoscale 2012, 4, 5154–5162. [Google Scholar] [CrossRef]
- Zhang, P.; He, Y.; Liu, J.; Feng, J.; Sun, Z.; Lei, P.; Yuan, Q.; Zhang, H. Core-shell BaYbF5:Tm@BaGdF5:Yb,Tm nanocrystals for in vivo trimodal UCL/CT/MR imaging. RSC Adv. 2016, 6, 14283–14289. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, Y.; Sun, L.; Chen, N.; Li, L.; Shi, S.; Malaisamy, S.; Yan, C. TbF3 nanoparticles as dual-mode contrast agents for ultrahigh field magnetic resonance imaging and X-ray computed tomography. Nano Res. 2016, 9, 1135–1147. [Google Scholar] [CrossRef]
Particles | Dn (nm) | Ð | Dh (nm) | PD | ξ-Potential (mV) |
---|---|---|---|---|---|
GdF3:Tb3+,Yb3+,Nd3+ @P(DMA-AGME)-Ale | 59 | 1.16 | 74 | 0.08 | 2 |
TbF3:Gd3+,Yb3+,Nd3+ @P(DMA-AGME)-Ale | 51 | 1.15 | 82 | 0.07 | 1 |
Particles | [Gd3+] mmol/mL | [Tb3+] mmol/mL | [Yb3+] mmol/mL | [Nd3+] mmol/mL | ∑ [Ln3+] mmol/mL | r1 (mM−1 s−1) | r2 (mM−1 s−1) | r2/r1 |
---|---|---|---|---|---|---|---|---|
GdF3 | 143.5 | - | - | - | 143.5 | 1.05 ± 0.05 | 1.27 ± 0.02 | 1.21 |
GdF3:10%Yb3+ | 133.5 | - | 16.6 | - | 150.1 | 1.41 ± 0.10 | 1.66 ± 0.02 | 1.18 |
GdF3:10%Nd3+ | 130.6 | - | - | 14.0 | 144.6 | 1.34 ± 0.05 | 1.63 ± 0.04 | 1.22 |
GdF3:5%Yb3+,5%Nd3+ | 125.2 | - | 6.5 | 9.9 | 141.6 | 1.54 ± 0.08 | 1.86 ± 0.04 | 1.21 |
GdF3:20%Tb3+,5%Yb3+,5%Nd3+ | 92.4 | 27.8 | 6.9 | 10.6 | 137.7 | 1.29 ± 0.02 | 1.59 ± 0.03 | 1.23 |
GdF3:40%Tb3+,5%Yb3+,5%Nd3+ | 63.2 | 52.6 | 6.2 | 9.5 | 131.5 | 1.07 ± 0.01 | 1.77 ± 0.01 | 1.65 |
TbF3:40%Gd3+,5%Yb3+,5%Nd3+ | 58.5 | 60.2 | 6.5 | 10.1 | 135.3 | 1.09 ± 0.01 | 2.34 ± 0.08 | 2.16 |
TbF3:20%Gd3+,5%Yb3+,5%Nd3+ | 30.8 | 103.8 | 8.2 | 7.6 | 150.4 | 0.69 ± 0.03 | 1.03 ± 0.02 | 1.51 |
TbF3:5%Yb3+,5%Nd3+ | - | 125.2 | 7 | 10.8 | 143.0 | 0.04 ± 0.01 | 2.01 ± 0.01 | 57.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shapoval, O.; Oleksa, V.; Šlouf, M.; Lobaz, V.; Trhlíková, O.; Filipová, M.; Janoušková, O.; Engstová, H.; Pankrác, J.; Modrý, A.; et al. Colloidally Stable P(DMA-AGME)-Ale-Coated Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+ Nanoparticles as a Multimodal Contrast Agent for Down- and Upconversion Luminescence, Magnetic Resonance Imaging, and Computed Tomography. Nanomaterials 2021, 11, 230. https://doi.org/10.3390/nano11010230
Shapoval O, Oleksa V, Šlouf M, Lobaz V, Trhlíková O, Filipová M, Janoušková O, Engstová H, Pankrác J, Modrý A, et al. Colloidally Stable P(DMA-AGME)-Ale-Coated Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+ Nanoparticles as a Multimodal Contrast Agent for Down- and Upconversion Luminescence, Magnetic Resonance Imaging, and Computed Tomography. Nanomaterials. 2021; 11(1):230. https://doi.org/10.3390/nano11010230
Chicago/Turabian StyleShapoval, Oleksandr, Viktoriia Oleksa, Miroslav Šlouf, Volodymyr Lobaz, Olga Trhlíková, Marcela Filipová, Olga Janoušková, Hana Engstová, Jan Pankrác, Adam Modrý, and et al. 2021. "Colloidally Stable P(DMA-AGME)-Ale-Coated Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+ Nanoparticles as a Multimodal Contrast Agent for Down- and Upconversion Luminescence, Magnetic Resonance Imaging, and Computed Tomography" Nanomaterials 11, no. 1: 230. https://doi.org/10.3390/nano11010230
APA StyleShapoval, O., Oleksa, V., Šlouf, M., Lobaz, V., Trhlíková, O., Filipová, M., Janoušková, O., Engstová, H., Pankrác, J., Modrý, A., Herynek, V., Ježek, P., Šefc, L., & Horák, D. (2021). Colloidally Stable P(DMA-AGME)-Ale-Coated Gd(Tb)F3:Tb3+(Gd3+),Yb3+,Nd3+ Nanoparticles as a Multimodal Contrast Agent for Down- and Upconversion Luminescence, Magnetic Resonance Imaging, and Computed Tomography. Nanomaterials, 11(1), 230. https://doi.org/10.3390/nano11010230