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Abstract: In this study, zinc oxide nanoparticles (ZnO-NPs) were successfully fabricated through
the harnessing of metabolites present in the cell filtrate of a newly isolated and identified microalga
Arthrospira platensis (Class: Cyanophyceae). The formed ZnO-NPs were characterized by UV–Vis
spectroscopy, Fourier transform infrared (FT-IR), transmission electron microscopy (TEM), energy-
dispersive spectroscopy (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS).
Data showed the efficacy of cyanobacterial metabolites in fabricating spherical, crystallographic ZnO-
NPs with a size ≈30.0 to 55.0 nm at a wavelength of 370 nm. Moreover, FT-IR analysis showed varied
absorption peaks related to nanoparticle formation. XPS analysis confirms the presence of Zn(II)O
at different varied bending energies. Data analyses exhibit that the activities of biosynthesized
ZnO-NPs were dose-dependent. Their application as an antimicrobial agent was examined and
formed clear zones, 24.1 ± 0.3, 21.1 ± 0.06, 19.1 ± 0.3, 19.9 ± 0.1, and 21.6 ± 0.6 mm, at 200 ppm
against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Candida
albicans, respectively, and these activities were reduced as the NPs concentration decreased. The
minimum inhibitory concentration (MIC) values were determined as 50 ppm for S. aureus, 25 ppm
for P. aeruginosa, and 12.5 ppm for B. subtilis, E. coli, and C. albicans. More interestingly, ZnO-NPs
exhibit high in vitro cytotoxic efficacy against cancerous (Caco-2) (IC50 = 9.95 ppm) as compared
with normal (WI38) cell line (IC50 = 53.34 ppm).

Keywords: cyanobacteria; Arthrospira platensis; ZnO-NPs; antimicrobial; in vitro cytotoxicity

1. Introduction

Nanotechnology is a multidisciplinary science concerning producing novel materials
at the nano-scale size (1–100 nm), which can be integrated into various applications [1].
At the nanoscale, the materials acquired new features such as large surface area, thermal
conductivity, size, charge, shape, crystal structure, surface morphology, and zeta poten-
tial, which enables them to integrate into biomedical and biotechnological sectors [2–4].
Nanoparticles (NPs) can be fabricated by different methods including chemical, physical,
and biological methods. The former chemical and physical methods utilized hazardous
material, needed harsh conditions such as temperature, energy, and pressure, and they
can produce hazardous by-products [2,5]. Therefore, the interest increased in biological
methods or green nanotechnology.
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Green nanotechnology means a clean method utilized for the synthesis of nano-
materials by eliminating or decreasing hazardous materials used during the fabrication
process [6]. The green synthesis of NPs can be accomplished using various biological
entities such as bacteria, actinomycetes, fungi, cyanobacteria, macro-algae, and plants [7].
Green synthesis is preferred over chemical and physical methods because of its eco-friendly,
cost-effectiveness, easy handling, upscaling, and biocompatibility [6]. Recently, several
NPs are synthesized by green methods such as Ag, Au, Cu, CuO, ZnO, Se, and others
that are integrated into different biological activities [8–10]. Biogenic or green synthesized
nanoparticles offer a promising alternative antimicrobial and anticancer agent for more
safe, specific, and economic drugs or drug vehicle in drug delivery.

The biogenic synthesis of zinc oxide nanoparticles (ZnO-NPs) by biological entities
are attributed to the presence of different metabolites including proteins, enzymes, and
other biomolecules that act as reducing, capping, and stabilizing agents. The different
shape, size, dispersity of ZnO-NPs, and stability are related to the secreted metabolites [11].
The extracellular mechanisms of ZnO-NPs can be accomplished by the reductase enzyme
secreted by microbes in growth media. NADH (Nicotinamide Adenine Dinucleotide plus
hydrogen ion)-dependent reductase enzymes serve as electron carriers to reduce Zn2+ to
Zno, which subsequently forms ZnO-NPs [12]. The reductase enzymes obtained electrons
from NADH that oxidized after that to NAD+; at the same time, metal ions reduced
to nanoscales.

Zinc oxide nanoparticles (ZnO-NPs) are considered the most significant between
the metal oxides NPs due to their unique chemical and physical properties, which hence
increase their applicability aspects [13]. ZnO-NPs can be integrated into the rubber industry
because they furnish wearproof composites and increase the intensity and toughness of the
rubber [14]. In addition, ZnO-NPs interweave with sunscreen and cosmetic care products
due to their highly UV-adsorption properties [15]. Moreover, due to the unique properties
that arise at the nanoscale structure such as high electron mobility, wide bandgap, and
high visible transparency, ZnO-NPs are considered a good semiconductor. In the textile
industry, ZnO-NPs are added to finished fabrics to increase their resistance to ultraviolet
rays, antibacterial, and deodorant activities [16]. As a part of the applications, ZnO-NPs
can be used for antifungal, concrete production, solar cell, electronics, photocatalysis, and
electrotechnology industries [17,18]. Recently, ZnO-NPs have been validated as additives
to dietary products to improve the growth performance, enhance the antioxidant property
and immune response, and increase the quality of eggs and improve the production of
layer chickens [19].

Zinc is an essential trace present in all body tissues, in addition to being a con-
stant part of most enzyme systems, so it participates in the body’s metabolism process
and is assimilated during nucleic acid and protein synthesis, nervous cell synthesis, and
hematopoiesis [17]. At the nanoscale, ZnO-NPs can be adsorbed easily especially at a small
size. Interestingly, ZnO-NPs can be used in the food industry as additives, especially since
they are recommended as a safe substance by the FDA (Food and Drug Administration) [20],
meaning that they have safe applicability for human and animals.

Cyanophyceae are a group of prokaryotic structured cells that possess carbon dioxide-
dependent photosynthesis [21]. They are considered a good source for the extracellular
and intracellular synthesis of NPs due to their potential to produce a huge number of
metabolites [21]. Various NPs are fabricated through harnessing metabolites of cyanobac-
teria such as Ag, Au, Pt, and Pd-NPs [22,23]. The most common cyanobacterial species
used for the fabrication of NPs are Spirulina spp. and Nostoc spp. due to the high con-
tents of bioactive substances [24]. Amongst cyanobacterial species, Arthrospira platensis,
previously called Spirulina, is a planktonic multicellular filamentous cyanobacterium that
commonly grows in subtropical, alkaline fresh, and marine aquatic habitats. The edible
biomass of A. platensis is a rich source of nutraceutical and pharmaceutical biomolecules
such as proteins, vitamins, pigments, and polysaccharides as well as minerals [25], and it
frequently can be used for the ecofriendly biogenic synthesis of metallic and metal oxide
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nanoparticles by either extracellular or intracellular mechanisms. Moreover, the rapid
growth rates, avoidance of contaminations as no complicated nutrients were added to the
media, and low cost of biomass production make A. platensis a promising source for the
biosynthesis of nanoparticles. [26].

This study aims to investigate the fabrication of ZnO-NPs using a newly isolated and
characterized microalga, A. platensis. Characterizing the green biosynthesized NPs using
UV–Vis spectroscopy, Fourier transform infrared (FT-IR), XRD, TEM, energy-dispersive
spectroscopy (EDX), and XPS analyses is another major goal. In addition, evaluation of
the biological activities of green synthesized ZnO-NPs including antimicrobial activity
against pathogenic Gram-positive and Gram-negative bacteria as well as unicellular fungi
and investigating their in vitro cytotoxic effect against normal and cancerous cells were
investigated for possible application in the biomedical field.

2. Materials and Methods
2.1. Isolation, Purification, and Identification of Cyanobacterial Strain

The cyanobacterial strain was isolated from a water sample collected from EL-Kanater
El-Khairia, Dakahlia governorate, Egypt, and transferred directly to Algal Lab., Botany
and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt.
The isolation procedure was achieved by cultivated in Zarrouk’s media and incubated
at 30 ± 1 ◦C with a photoperiod 8/16 h of dark/light cycle using cool-white, fluorescent
lamps at 3000 Lux of light intensity. The appeared colony was checked for purity, and the
purified isolate was preserved for further study. The morphological characteristics were
examined using a light microscope, which was used to check the purity, shape, color, and
structure of cyanobacterial isolate. The microscopic taxonomy was achieved according to
Edlund [27].

On the other hand, the molecular identification based on 16S rRNA of cyanobacterial
strain was achieved as the following: genomic DNA of cyanobacteria sp. was extracted
according to the method recommended by Miller et al. [28]. Briefly, purified colonies
were resuspended in 50 µL of sterile deionized H2O. The cyanobacterial cell suspension
is heated in a water bath at 97 ◦C for 10 min; after that, it was centrifuged at 15,000 rpm
for 10 min, and the cyanobacterial cell lysate containing the DNA was obtained. Then,
16S rRNA was amplified in a polymerase chain reaction (PCR) using the genomic DNA
as a template and universal primers, 27f (5-AGAGTTTGATCCTGGCTCAG-3) and 1492r
(5-GGTTACCTTGTTACGACTT-3) [29]. The PCR mixture (50 µL) contained the following:
1× PCR buffer, 0.5 mM MgCl2, 2.5 U Taq DNA polymerase (QIAGEN), 0.25 mM dNTP,
0.5 µM of each primer, and 1 µL of extracted cyanobacterial genomic DNA.

The PCR was analyzed in a DNA Engine Thermal Cycler by Sigma Scientific Services
Company (Cairo, Egypt) with a hot starting at 94 ◦C for 3 min, followed by 30 cycles
of 94 ◦C for 30 s, 55 ◦C for 30 s, and 72 ◦C for 1 min, followed by a final extension at
72 ◦C for 10 min. Sequencing was conducted using ABI 3730x1 DNA sequencer at GATC
Company (Konstanz, Germany). The obtained sequences were compared against the Gene
Bank database using the NCBI BLAST (Basic Local Alignment Search) program. Then,
sequences were compared with 16S rRNA in the Gene Bank database using BLASTN, and
phylogenetic trees were conducted by bootstrap analysis.

2.2. Cyanobacterial Mediated Green Synthesis of ZnO-NPs
2.2.1. Biomass Preparation

The cyanobacterium strain, A. platensis (EF), was grown in Zarrouk’s medium supplied
with filtered air under the previously mentioned condition to prepare cyanobacterial biomass.

2.2.2. Cell Filtrate-Mediated Biosynthesis of ZnO-NPs

Microalga biomass was utilized in the logarithmic phase. The cultivated strain was
subjected to a centrifugation process to separate the microalga biomass and then washed
thrice with double-distilled deionized water to remove any medial components. After
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that, the washed biomass (15 g) was mixed with 100 mL of distilled water for 48 h and
underwent a centrifugation process to collect the biomass filtrate (supernatant without
any biomass). ZnO nanoparticles were synthesized as follows: 0.44 g of Zn(CH3COO)2·
2H2O was dissolved in two mL of distilled H2O; after that, 98 mL of biomass filtrated
was added to get a final concentration of 2 mM. The mixture was incubated for 24 h at
30 ◦C ± 2 ◦C and 150 rpm shaking condition. The resultant white precipitate was collected
and oven-dried at 200 ◦C for 24 h [30] to obtain ZnO-NPs as a powder, which was used
after that for further study.

2.3. Characterization of Green Synthesized ZnO-NPs
2.3.1. Ultraviolet-Visible (UV–Vis) Spectra

The formation of ZnO-NPs was investigated by mixture solutions color changes. The
green synthesized ZnO-NPs in a colloid solution was also monitored by UV–Vis spectra, as it
showed an intense absorption peak due to surface plasmon excitation. Color changes in the
mixture of cyanobacterial extract/Zn(CH3CO2)2 solutions were measured by Spectrophotom-
etry (JENWAY 6305 Spectrophotometer, 230 V/50 Hz, Staffordshire, UK), at wavelengths of
200–800 nm. The cyanobacterial extract without Zn(CH3CO2)2 was used as the blank.

2.3.2. Fourier Transform Infrared Spectroscopy (FT-IR)

The functional groups present in green synthesized ZnO-NPs were analyzed by FT-IR
analysis (JASCO FT-IR 4100 spectrometer, Hachioji, Tokyo, Japan). About 0.2 g of ZnO-NPs
powder was mixed with potassium bromide (KBr) and loaded onto a disc at high pressure.
The FT-IR spectra were scanned at a resolution of 4.0 cm−1 at a wavelength of 400–4000 cm−1.

2.3.3. Transmission Electron Microscopy (TEM) and Energy Dispersive Spectroscopy (EDX)

The morphological analysis including the shape and size of cyanobacterial mediated
biosynthesized of ZnO-NPs were examined by TEM (JEM-1230, JEOL, Tokyo, Japan).
The sample was prepared by adding a drop of colloidal ZnO-NPs solution on a copper
grid covered by an amorphous carbon film and desiccating the solvent under vacuum
overnight before loading onto a specimen holder. AMT software was calibrated for NPs
size measurements by a digital TEM camera. The average size of the fabricated ZnO-NPs
was calculated from measuring over 100 nanoparticles in at least 10 random locations on
the TEM grid in enlarged microphotographs.

The elemental structures of the green synthesized ZnO-NPs were measured by SEM
(JEOL JSM-6360LA, Tokyo, Japan), which was connected with an energy-dispersive spec-
troscope (EDX, Tokyo, Japan) to detect the surface shape and elemental compositions of
different the NPs [31].

2.3.4. X-ray Diffraction (XRD) Patterns

The crystalline nature of the ZnO-NPs synthesized by cyanobacterium species was
detected by X-ray diffraction (XRD, X’Pert Pro Philips, Dandong, China) at the following
operation system: CuKα radiation, the 2θ angle was in a range from 0◦ to 90◦, λ = 1.540 Å
(Eindhoven, Netherlands). The voltage and current were adjusted to 40 kV and 30 mA,
respectively. The average nanoparticle size was calculated using the following the Debye–
Scherrer Equation (1) [32], shown below:

D = 0.9λ/βCosθ (1)

where D is the average nanoparticle size and 0.9 is the Scherrer’s constant. λ, β, and θ are
the X-ray wavelength, Full-Width Half Maximum, and the Bragg’s angle, respectively.

2.3.5. X-ray Photoelectron Spectroscopy (XPS) Analysis

ESCALAB 250XI (Thermo Fischer Scientific Inc., Waltham, MA, USA) equipped with
a monochromatic X-ray Al Kα radiation (1486.6 eV) was used for the XPS analysis. For the



Nanomaterials 2021, 11, 95 5 of 18

analysis, the samples were prepared under the pressure of 10−8 mbar, and the energy was
calibrated with an Ag 3d5/2 signal (∆BE: 0.45 eV) and C 1s signal (∆BE: 0.82 eV). The size of
the spot was 500 µm and the full and narrow-spectrum pass energies were 50 and 20 eV,
respectively [33,34].

2.4. Biological Activities of Cyanobacterium-Mediated Green Synthesis of ZnO-NPs
2.4.1. Antimicrobial Activity

The antimicrobial efficacy of green synthesized ZnO-NPs formed through the harness-
ing of cyanobacterium metabolites was assessed by the agar well diffusion method against
prokaryotic and eukaryotic pathogenic species. The prokaryotic species are represented by
Gram-positive bacteria (Staphylococcus aureus ATCC6538 and Bacillus subtilis ATCC6633) and
Gram-negative bacteria (Escherichia coli ATCC8739 and Pseudomonas aeruginosa ATCC9022),
while eukaryotic pathogenic microbe represented by unicellular fungi Candida albicans
ATCC10231. Briefly, each bacterial and unicellular fungal strains (100 µL/1.0 O.D.) were
seeded on 100 mL of Mueller Hinton agar media under aseptic condition. After that, 100 µL
of stock ZnO-NPs solution (200 ppm) was put into well (0.7 mm) on Mueller–Hinton agar
plates. To detect the minimum inhibitory concentration of ZnO-NPs (MIC) for each tested
organism, different concentrations (150, 100, 50, 25, 12.5, and 6.25 ppm) were prepared. The
inoculated plates were kept in the refrigerator for about 2 h and transferred to the incubator
at 35 ◦C ± 2 ◦C for 24 h. The results were as the diameter of inhibition zones (mm) around
each well [35]. The experiment was done in triplicate.

2.4.2. In Vitro Cytotoxic Efficacy of ZnO-NPs Synthesized by Cyanobacterium Species

The human WI38 cell line (lung normal cell line) and Caco-2 cancer cell (human
colorectal adenocarcinoma cells) were obtained from the American Type Culture Collection
(ATCC, Manassas, VA, USA). The efficacy of cyanobacterium-mediated ZnO-NPs synthesis
as cytotoxic effects was assessed using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide) assay against the previous normal WI38 cells and Caco-2. Briefly,
the cells were inoculated in 96-well microtiter plates at 1 × 105 cells/well followed by
treatment with double-fold dilution (200–6.25 ppm) of the ZnO-NPs and incubated at 37 ◦C
for 48 h. After that, the MTT (5 mg mL−1 in phosphate-buffered saline) was added to each
inoculated well and incubated for 1–5 h at 37 ◦C and 5% CO2. At the end of the incubation
period, the purple formazan crystals were formed, which were further dissolved by adding
DMSO (10%). The plates were agitated using a plate shaker for 30 min in dark conditions.
Ultimately, the color intensity of samples was measured at 560 nm using a multi-well
ELISA plate reader [36]. The cell viability percentage was calculated as follows.

Cell viability (%) =
Absorbance of treated sample

Absorbance of control
× 100 (2)

2.5. Statistical Analysis

One-way analysis of variance (ANOVA) was used to investigate the efficacy of ZnO-NPs
as antimicrobial and in vitro cytotoxicity. A posteriori pairwise-multiple comparisons were
done using Tukey’s range tests at α = 0.05. All results are the means of three independent
replicates. Data were statistically analyzed using SPSS v17 (SPSS Inc., Chicago, IL, USA).

3. Results and Discussion
3.1. Identifications of Cyanophyceae Strain

The light microscope confirms the purity of the isolate, which appeared as a filamen-
tous structure, and the helix, which was open left-handed (Figure 1A). The gene sequence
analysis revealed that the cyanobacterial isolate was related to Arthrospira platensis (ac-
cession number: NR125711) with a similarity percent of 99.55%. The obtained sequence
retrieved from this study was a deposit in GeneBank under accession number MW115140.
Therefore, the selected cyanobacterial strain was identified as Arthrospira platensis strain
(EF) (Figure 1B).
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3.2. Arthrospira Platensis Mediated Biosynthesis of ZnO-NPs

The biosynthesis of ZnO-NPs was based on reducing, capping, and stabilizing of
precursor (Zn(CH3COO)2·2H2O) by metabolites involved in the cell filtrate of A. platensis
which contains polysaccharide, proteins, and enzymes (Figure 2). The function of capping
agents was preventing the biosynthesis of hydrated ZnO. In this study, the green synthesis
of ZnO-NPs was achieved by mixing 2 mM of the precursor with 100 mL of A. platensis cell
filtrate and incubated at 150 rpm shaking state at room temperature. The as-formed white
precipitate was collected and calcinated at 200 ◦C for 24 h.

Zn(CH3COO)2·2H2O
A. platensis cell filtrate−−−−−−−−−−−−→ Zn(II)O (3)
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3.3. Characterization of Green Synthesized ZnO-NPs
3.3.1. UV–Vis Spectroscopic Analysis

The first indicator for ZnO-NPs formation is visual observation followed by measuring
this change by UV at various wavelengths (200 to 800 nm) to detect the surface plasmon
resonance (SPR). In this study, the color of the cyanobacterial extract was changed to turbid
white after adding zinc acetate as a precursor for ZnO-NPs. Figure 3A showed that the
UV–Vis spectra of green synthesized ZnO-NPs demonstrated a significant peak of 370 nm,
which is mostly distinguished by ZnO-NPs. The obtained results are completely consistent
with Singh et al. [37], who reported the efficacy of Anabaena strain L3 to fabricate ZnO-NPs
and exhibit intense SPR at 370 nm. These findings are incompatible with our previous
study of biosynthesized ZnO-NPs using fungal strains Fusarium keratoplasticum A1-3 and
Aspergillus niger G3-1, which exhibit SPR at 390 nm [38]. Vennila and Jesurani [39] reported
that the SPR of green synthesized ZnO-NPs was mostly in the wavelength range between
370 and 400 nm.
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3.3.2. Fourier Transform Infrared Spectroscopy (FT-IR) Analysis

The functional groups, as well as the chemical structures of A. platensis-mediated
ZnO-NPs synthesis was determined by FT-IR analysis (Figure 3B). The FT-IR spectra
exhibit seven intense peaks at 3415, 1600, 1410, 1341, 1025, 676, and 503 cm−1. The
broad absorption peak at 3415 cm−1 is related to N–H overlapped with a stretching O–H
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band [33]. The breadth of this broad peak could be attributed to the formation of intra-
and intermolecular hydrogen bonds [40]. The low-intensity peak observed at 3000 cm−1

is related to the stretching CH2 of asymmetric and symmetric carbohydrates and/or
lipids [41], whereas the band at 1600 cm−1 is corresponding to the stretching C=O vibration
of proteins [42] or remaining acetate. The absorption wave of CH2 or CH3 of proteins is
responsible for the vibration bending of the C–H at wavenumber 1341 cm−1 [40]. The
observed band at 1410 cm−1 has corresponded to the C–N stretching bond of amino
acid, whereas the band observed at wavelength 1025 cm−1 can be attributed to C–O–C
ether of polysaccharides [33,43]. The successful formation of Zn–O was confirmed by
the absorption band observed at 503 cm−1. Consistent with our data, the FT-IR analysis
of green synthesized ZnO-NPs showed the Zn–O absorption band has been observed at
wavelength 485 cm−1 [44], 442 cm−1 [45], in range 400 to 500 cm−1 [46], or at wavelength
782 cm−1 [47], 450 cm−1, and 600 cm−1 [48]. The data of FT-IR analysis exhibit the role of
organic substances in A. platensis extract in the reduction, capping, and stabilizations of
biosynthesized ZnO-NPs. Azizi et al. [49] suggested that the formation of ZnO-NPs was
accomplished as a result of the interaction between oxygen in functional groups involved
in cell extract of Sargassum muticum and zinc molecules in salt precursors.

3.3.3. Transmission Electron Microscopy (TEM) and Energy-Dispersive Spectroscopy
(EDX) Analysis

Figure 4A,B showed the shape, size, as well as size distribution of ZnO-NPs fabri-
cated by A. platensis. The TEM image exhibits a good distribution of spherical ZnO-NPs
without any aggregation. Moreover, image analysis demonstrated that the size of fabri-
cated ZnO-NPs was in the range of 30.0 to 55.0 nm. Recently, spherical ZnO-NPs were
fabricated by Chlorella cell extract with the size range of 20.0–50.0 nm [40]. The efficacy of
metabolites involved in algal cell extract to fabricate spherical ZnO-NPs was previously
investigated [50].

The quantitative elemental structure of green synthesized ZnO-NPs was investigated
by EDX analysis (Figure 4C). Data analysis revealed that the fabricated ZnO-NPs contain Zn,
O, Na, C, and Al with weight percentages 56.6, 20.4, 15.3, 4.5, and 3.2%, respectively. The
EDX result confirms the successful fabrication of ZnO through harnessing the metabolites
involved in A. platensis filtrate; moreover, EDX analysis affirms that Zn and O occupied
the major elements in the nanostructure. The presence of other peaks such as C, Na, and
Al may be related to the breakdown of capping agents such as polysaccharides, proteins,
amino acids, and sugars as a result of X-ray emissions [30]. A recent study confirmed the
presence of Zn and O as a major component of ZnO-NPs synthesized by cyanobacterium
Nostoc sp. EA03 [50]. In addition, Djearamane et al. [51] reported that the main components
of ZnO-NPs synthesized by Spirulina platensis were Zn and O.

3.3.4. X-ray Diffraction (XRD) Analysis

The crystallographic structure of cyanobacterium-mediated biosynthesis of ZnO-NPs
was assessed by XRD analysis. As depicted in Figure 5, the formed ZnO-NPs showed
seven distinguished peaks at 2 theta degree 31.7◦, 34.5◦, 36.1◦, 47.4◦, 56.3◦, 63.1◦, and
67.9◦, which matched to (100), (002), (101), (102), (110), (103), and (112) planes, respectively.
All outstanding diffraction peaks in XRD spectra are compatible with those recorded in
the Joint Committee on Powder Diffraction Standards (JCPDS, card No. 89-7102), which
confirm the crystallographic Wurtzite structure [16,50]. The average crystal size has been
calculated from XRD analysis using the Debye–Scherrer equation, which in this study was
approximately equal to ≈45 nm. The data from XRD are compatible with those obtained
by TEM analysis. The presence of slight peaks in XRD spectra may be related to the
crystallization of organic substances that coated the surface of ZnO-NPs [8].
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3.3.5. X-ray Photoelectron Spectroscopy (XPS) Analysis

Figure 6A shows the XPS survey spectra of the product. It confirms the composition of
the substance by the presence of C, O, and N as C 1s, O (1s, KL1), and N 1s. In addition, the
survey analysis revealed the presence of Na as Na (2s, 2p, KL1), while Zn was confirmed by
Zn (3p, 3d, 3s, LM1, LM2, LM5, 2p1, and 2p3).Nanomaterials 2021, 10, x FOR PEER REVIEW 11 of 19 
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C 1s (Figure 6B) was split into five peaks at 284.48, 285.75, 287.9, 287.05, and 288.9 eV
for C(H, C), C–N, C–O, C=O, and C–O–C, respectively [52,53], verifying the hydrocarbon
composition produced in the medium. N 1s was deconvoluting into two peaks with low
intensities at 398.2 and 399.37 eV for N (C, H) and Ntert, respectively [53,54].

O 1s (Figure 6C) has more peaks, verifying the structure of the materials; ZnO was
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overlapped with NaO at 529.4 eV, which confirms the presence of Zn as oxides. In ad-
dition, the excess amount of Na in the materials that appeared on the overall spectra is
reflected in the O 1s that have other peaks for Na KL1 at 536.75 (Figure 6D) [55], while
the hydrocarbons peaks have appeared at 531, 532.2, and 535.3 eV for O(C, H), O=C, and
C–O–C, respectively [33,52,55]. These results were elucidated also by FT-IR with the broad
bands of NH overlapped with OH, C=O, NH, and C–O (see the FT-IR analysis). Zn 2p
(Figure 6E) have several peaks: two for ZnO 2P3/2 at 1021.4 eV and 1023.25 eV, another two
peaks for ZnO 2p1/2 at 1044.2 eV and 1045.55 eV, while satellite peaks verifying the oxide
species appeared at 1036.25, 1037.3, 1039, 1040.05, and 1041.65 eV. These spectra indicate
the presence of Zn as Zn (II) oxide [56].

3.4. Biological Activities of ZnO-NPs Synthesized by A. platensis
3.4.1. Antimicrobial Activity

Figure 7 shows the antimicrobial activity of ZnO-NPs synthesized by cyanobacterium
A. platensis against pathogenic Gram-positive and Gram-negative bacteria as well as uni-
cellular fungi. The obtained data indicated that the antimicrobial activities of NPs are
increased with respect to concentration. This phenomenon was completely consistent
with previous studies where the activity of Ag, ZnO nanoparticles was dose- and shape-
dependent [38,57]. The cyanobacterium cell extract (as control) used to fabricate ZnO-NPs
was tested as an antimicrobial agent against bacterial and unicellular fungal used and did
not exhibit any activities. At stock colloidal solution (200 ppm), ZnO-NPs exhibit varied ac-
tivities against Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli,
and Candida albicans with clear zones of 24.1 ± 0.3, 21.1 ± 0.06, 19.1 ± 0.3, 19.9 ± 0.1, and
21.6 ± 0.6 mm, respectively. As the NPs concentration decreased (50 ppm), the inhibition
zone was decreased as well to 12.2± 1.9, 9.4± 0.4, 10.9± 0.3, 13.1± 0.1, and 13.2 ± 0.3 mm
for B. subtilis, S. aureus, P. aeruginosa, E. coli, and C. albicans, respectively. The published
literature clarifies the antibacterial activity of green synthesized ZnO-NPs against a wide
range of pathogenic bacteria such as Streptococcus pyogenes, S. aureus, P. aeruginosa, E. coli, B.
subtilis, Klebsiella aerogenes, Mycobacterium tuberculosis, and Proteus mirabilis [58]. Consistent
with our study, spherical ZnO-NPs synthesized by the aqueous extract of Tabernaemontana
divaricate with a size range of 20 to 50 nm have antibacterial activities against S. aureus,
E. coli, and Salmonella paratyphi [59]. Recently, our study showed that the stock colloidal
solution (2000 ppm) of spherical ZnO-NPs synthesized by Aspergillus terreus strain AF-1
with a size range of 10 to 45 nm have antibacterial activity against B. subtilis, S. aureus,
E. coli, and P. aeruginosa with diameter inhibition zone ranging between 14.1 ± 0.2 and
20.2 ± 0.2 nm [16].

The minimum inhibitory concentration (MIC) is defined as the lowest NPs concentra-
tion that inhibits microbial growth [60], and it should be detected for each organism. In this
study, the MIC values were 50 ppm for S. aureus (9.4 ± 0.4 mm), 25 ppm for P. aeruginosa
(9.5± 0.3 mm), and 12.5 ppm for B. subtilis, E. coli, and C. albicans recording inhibition zones
8.8 ± 0.7, 8.8 ± 0.3, and 9.6 ± 0.4 mm, respectively. The ZnO-NPs size and their concentra-
tions have critical roles in antimicrobial activities. Several studies have also confirmed that
the antibacterial activity of ZnO-NPs is size and concentration-dependent [61]. The smaller
NPs size means a large surface area; they penetrate the microbial cell easily through the
cell membrane and then enhance antimicrobial efficacy with their high concentration [62].
This phenomenon encourages our finding that correlates between antimicrobial activity
and smaller ZnO-NPs size, which in this study was 30.0 to 55.0 nm.

The toxicity of ZnO-NPs can be attributed to the generation of reactive oxygen species
(ROS), the release of Zn (Zn2+) ions inside the microbes, and the change in cell wall perme-
ability [63]. The generation of ROS is considered the major reason for nanotoxicity which
involved the damage of cellular components (proteins, lipid, nucleic acid, phospholipid,
amino acids) [61]. On the other hand, the release of zinc ions (Zn2+) has a negative impact
on the active transport system, enzymatic reactions, amino acid metabolism, binding to
macromolecules, and hence all fundamental microbial functions are inhibited from con-
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tinuing [60]. The zinc oxides are amphoteric and can react with alkali and/or acids and
release Zn2+ as shown in the following Equations (4)–(6) [60].

ZnO + 2HCl Acidic medium−−−−−−−−−→ ZnCl2 + H2O (4)

ZnO + 2NaOH Alkaline medium−−−−−−−−−→ Na2ZnO2 + H2O (5)

ZnCl2
Aquous medium−−−−−−−−−→ Zn2+ + 2Cl− (6)
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Pseudomonas aeruginosa, Escherichia coli, and Candida albicans. Data are statistically different at p ≤ 0.05 by Tukey’s test,
(n = 3); error bars are means ± SE. The different letters, a–e, are signified the significance. Bars with the same letter for each
concentration did not differ significantly.

The accumulation of ZnO-NPs in the microbial cell membrane is considered another
mechanism for nanotoxicity, which correlated with the destruction of the proton motive
force and hence changes the plasma membrane permeability. This change causes the rapid
discharge of cellular components out of the microbial cell, and then cell viability was
reduced [7,61].

3.4.2. In Vitro Cytotoxicity Assay

Cancer is a life-threatening disease, and finding therapeutic drugs for the treatment of
various types of cancer is a challenge. In this study, the cytotoxic efficacy of cyanobacterium-
mediated green synthesized ZnO-NPs was evaluated against two cell lines, WI 38 and
Caco-2 by using the MTT assay method (Figure 8). The MTT method is a highly accurate
and sensitive colorimetric method to investigate the cell viability after exposure to external
substances [64]. MTT assay is dependent on the ability of succinate dehydrogenase mi-
tochondrial enzyme to change the tetrazolium yellow dye to formazan crystals, which is
directly proportional to cell viability and assayed as optical density [65]. The efficacy of
ZnO-NPs in the treatment of cancer cells is interesting, because it is more effective toward
proliferative cells as compared to non-proliferative ones [66]. The toxicological efficacy
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of ZnO-NPs has been investigated against different cell lines [67,68]. Some investigators
reported that the ZnO-NPs are toxic to cancerous cell lines only and do not have any
cytotoxic effect against normal cells [69,70]. However, the recently little cytotoxic effect of
ZnO-NPs was shown toward normal cells as compared to cancerous cells. The ZnO-NPs
fabricated by the methanolic extract of Sargassum muticum algal species showed toxic
effect against cancerous cell lines MCF-7 and MDA-MB-231 and do not exhibit any activity
against normal Vero cell; this could be attributed to an activated signal pathway through
ligand/receptor interaction [71].
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Data analysis revealed that the viability of treated cell lines was dose-dependent; as
the NPs concentration increased, the viability was decreased. This finding is constant
with Rajakumar et al. [72], who reported that apoptosis is correlated with high ZnO-NPs
concentration. In this study, the cell viability of WI 83 (normal cell line) and Caco-2
(cancerous cell line) was measured after 48 h and exhibited that the IC50 were 53.34 and
9.95 ppm, respectively. According to these results, we can have concluded that the low
ZnO-NPs concentration was more effective on cancerous cells as compared to the normal
cell line. Ngoepe et al. [73] and Agarwal et al. [74] showed that the cell viability due to
ZnO-NPs treatment was assessed after 48 h. With our findings, previous studies proved
the efficacy of NPs on cancerous cell viability such as MCF-7 as breast cancerous cell [75],
MGC803 as gastric cancerous cell [75], Caco-2 as adenocarcinoma cell [76], and MG-63 as
osteosarcoma cell [77]. Data recorded by Malaikozhundan et al. [78] were incompatible
with our study, which showed that spherical ZnO-NPs with size 30–40 nm synthesized by
seed extracts of Pongamia pinnata can reduce the cell viability of cancerous cell MCF-7 at a
concentration higher than 50 ppm. On the other hand, ZnO-NPs (with size range 20–50 nm)
synthesized by the aqueous extract of algal species Gracilaria edulis have dose-dependent
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cytotoxic efficacy against SiHa (Human cervical cancer) cell line with an IC50 value of
35 ± 0.03 ppm [67].

Interestingly, ZnO-NPs are utilized widely in cancer therapy and can reduce the
proliferation of cancer cells. Some of the published literature reported that ZnO-NPs
are nontoxic and biocompatible [79], while others have reported both the in vivo and
in vitro toxicity of the ZnO-NPs, particularly on mammalian cells [80]. According to
data obtained in this study and others recently published, it can be clarified that the
toxicity of ZnO-NPs is concentration-dependent. On the other hand, the treatment of
leukemic T cells, cancerous cells, and inhibited pathogenic growth can be correlated with
the toxicity of ZnO-NPs [81,82]. Other advantages correlated with ZnO-NPs include
overcoming the drug-resistant problems within the pharmaceutical industry because of the
non-selectivity of ZnO-NPs [83]. The biological activities of ZnO-NPs are correlated with
their physicochemical properties as well as the dispersion characteristics of NPs. In some
cases, the NPs agglomerate or aggregate when reacting with physiological fluids; therefore,
the study of the dispersion efficacy of NPs is a critical factor to detect in vitro and in vivo
cytotoxicity [84]. The addition of dispersant is an important factor to modify the physical
and thermal properties of the NPs such as conductivity and viscosity [85]. The addition of
dispersants was helpful in heat resistance in heat transfer applications and helped in foam
formation during the heat and coal process [86].

4. Conclusions

The green synthesis of ZnO-NPs using microalga Arthrospira platensis has received
prodigious interest because of their rapid growth, high biomass production, environmen-
tally safe nature, and low-cost protocol. In this study, the microalgae A. platensis was
isolated from the water sample and subjected to microscopic as well as molecular identifi-
cation. The biosynthesized ZnO-NPs were characterized by UV-Visible spectroscopy, FT-IR,
TEM, EDX, XRD, and XPS analyses. The obtained data showed the successful fabrication
of spherical ZnO-NPs with a size range of 30.0 to 55.0 nm at a maximum wavelength of
370 nm. The functional groups present in biomass filtrate have critical roles in the fabrica-
tion process as shown in FT-IR. Moreover, the crystallographic structure was confirmed
by XRD. The XPS spectra indicated the presence of Zn as Zn (II) oxide. The biological
activities including antimicrobial and in vitro cytotoxicity were also the main goals. Data
showed that the activities of biosynthesized ZnO-NPs were dose- and time-dependent. The
biosynthesized ZnO-NPs exhibit varied activities against B. subtilis, S. aureus, P. aeruginosa,
E. coli, and C. albicans with clear zones ranging between 19.1 ± 0.3 and 24.1 ± 0.3 mm.
Moreover, the in vitro cytotoxic effect of ZnO-NPs against normal (WI 38) and cancer
(Caco-2) cell lines was investigated. Data exhibit that the IC50 values were 53.34 and
9.95 ppm for normal and cancer cell lines, respectively. The obtained data confirm the high
efficacy of cyanobacterium A. platensis as a biocatalyst for the green synthesis of ZnO-NPs
for integration into different biomedical applications.
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