Low Resistance Asymmetric III-Nitride Tunnel Junctions Designed by Machine Learning
Abstract
:1. Introduction
2. TCAD Calculations of p-AlGaN/i-InGaN/n-AlGaN TJ
3. Machine Learning Model for TJ Resistance Prediction
4. TJ Resistance Prediction Results
5. Asymmetric TJ with Different Al Compositions in p-AlGaN and n-AlGaN
6. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, W.; Sharmin, S.; Ilatikhameneh, H.; Rahman, R.; Lu, Y.; Wang, J.; Yan, X.; Seabaugh, A.; Klimeck, G.; Jena, D. Polarization-Engineered III-Nitride Heterojunction Tunnel Field-Effect Transistors. IEEE J. Explor. Solid-State Comput. Devices Circuits 2015, 1, 28–34. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, G.; Yu, Y.; Wang, Y.; Zhao, D.; Shi, Z.; Zhang, B.; Li, X. Demonstration of N-Polar III-Nitride Tunnel Junction LED. ACS Photonics 2020, 7, 1723–1728. [Google Scholar] [CrossRef]
- Reichertz, L.A.; Gherasoiu, I.; Yu, K.M.; Kao, V.M.; Walukiewicz, W.; Ager, J.W., III. Demonstration of a III-Nitride/Silicon Tandem Solar Cell. Appl. Phys. Express 2009, 2, 122202. [Google Scholar] [CrossRef]
- Akyol, F.; Krishnamoorthy, S.; Rajan, S. Tunneling-based Carrier Regeneration in Cascaded GaN Light Emitting Diodes to Overcome Efficiency Droop. Appl. Phys. Lett. 2013, 103, 081107. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Jamal-Eddine, X.; Rajan, S. Recent Progress of Tunnel Junction-based Ultra-violet Light Emitting Diodes. Jpn. J. Appl. Phys. 2019, 58, SC0805. [Google Scholar] [CrossRef]
- Simon, J.; Zhang, Z.; Goodman, K.; Xing, H.; Kosel, T.; Fay, P.; Jena, D. Polarization-Induced Zener Tunnel Junctions in Wide-Band-Gap Heterostructures. Phys. Rev. Lett. 2009, 103, 026801. [Google Scholar] [CrossRef]
- Schubert, M.F. Interband Tunnel Junctions for Wurtzite III-nitride Semiconductors Based on Heterointerface Polarization Charges. Phys. Rev. B 2010, 81, 035303. [Google Scholar] [CrossRef]
- Zhang, Y.; Krishnamoorthy, S.; Akyol, F.; Johnson, J.M.; Allerman, A.A.; Moseley, M.W.; Armstrong, A.M.; Hwang, J.; Rajan, S. Reflective Metal/semiconductor Tunnel Junctions for Hole Injection in AlGaN UV LEDs. Appl. Phys. Lett. 2017, 111, 051104. [Google Scholar] [CrossRef] [Green Version]
- Yan, X.; Li, W.; Islam, S.M.; Pourang, K.; Xing, H.; Fay, P.; Jena, D. Polarization-induced Zener Tunnel Diodes in GaN/InGaN/GaN Heterojunctions. Appl. Phys. Lett. 2015, 107, 163504. [Google Scholar] [CrossRef]
- Krishnamoorthy, S.; Akyol, F.; Park, P.S.; Rajan, S. Low Resistance GaN/InGaN/GaN Tunnel Junctions. Appl. Phys. Lett. 2013, 102, 113503. [Google Scholar] [CrossRef]
- Zhang, Y.; Krishnamoorthy, S.; Akyol, F.; Allerman, A.A.; Moseley, M.W.; Armstrong, A.M.; Rajan, S. Design and Demonstration of Ultra-wide Bandgap AlGaN Tunnel Junctions. Appl. Phys. Lett. 2016, 109, 121102. [Google Scholar] [CrossRef]
- Gelinas, R. A Novel Approach to Modeling Tunnel Junction Diodes Using Silvaco Atlas Software. Master’s Thesis, Naval Postgraduate School, Monterey, CA, USA, 2005. [Google Scholar]
- Zhang, Z.; Tan, S.; Kyaw, Z.; Ji, Y.; Liu, W.; Ju, Z.; Hasanov, N.; Sun, X.; Demir, H. InGaN/GaN Light-Emitting Diode with a Polarization Tunnel Junction. Appl. Phys. Lett. 2013, 102, 193508. [Google Scholar] [CrossRef] [Green Version]
- Sadaf, S.M.; Ra, Y.H.; Nguyen, H.P.T.; Djavid, M.; Mi, Z. Alternating-Current InGaN/GaN Tunnel Junction Nanowire White-Light Emitting Diodes. Nano Lett. 2015, 15, 6696–6701. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Alnakhli, Z.; Li, X. Engineering of Multiple Bound States in the Continuum by Latent Representation of Freeform Structures. Photonics Res. 2021, 9, B96–B103. [Google Scholar] [CrossRef]
- Lin, R.; Zhai, Y.; Xiong, C.; Li, X. Inverse Design of Plasmonic Metasurfaces by Convolutional Neural Network. Opt. Lett. 2020, 45, 1362–1365. [Google Scholar] [CrossRef]
- Rouet-Leduc, B.; Barros, K.; Lookman, T.; Humphreys, C.J. Optimisation of GaN LEDs and the Reduction of Efficiency Droop Using Active Machine Learning. Sci. Rep. 2016, 6, 24862. [Google Scholar] [CrossRef] [PubMed]
- Rouet-Leduc, B.; Hulbert, C.; Barros, K.; Lookman, T.; Humphreys, C.J. Automatized Convergence of Optoelectronic Simulations Using Active Machine Learning. Appl. Phys. Lett. 2017, 111, 043506. [Google Scholar] [CrossRef]
- Pandey, A.; Shin, W.J.; Gim, J.; Hovden, R.; Mi, Z. High-efficiency AlGaN/GaN/AlGaN Tunnel Junction Ultraviolet Light-Emitting Diodes. Photon. Res. 2020, 8, 331–337. [Google Scholar] [CrossRef]
- Sadaf, S.M.; Zhao, S.; Wu, Y.; Ra, Y.H.; Liu, X.; Vanka, S.; Mi, Z. An AlGaN Core–Shell Tunnel Junction Nanowire Light-Emitting Diode Operating in the Ultraviolet-C Band. Nano Lett. 2017, 17, 1212–1218. [Google Scholar] [CrossRef] [PubMed]
- Hwang, D.; Mughal, A.J.; Wong, M.S.; Alhassan, A.I.; Nakamura, S.; DenBaars, S.P. Micro-light-emitting Diodes with III-Nitride Tunnel Junction Contacts Grown by Metalorganic Chemical Vapor Deposition. Appl. Phys. Express 2017, 11, 012102. [Google Scholar] [CrossRef]
- Takasuka, D.; Akatsuka, Y.; Ino, M.; Koide, N.; Takeuchi, T.; Iwaya, M.; Kamiyama, S.; Akasaki, I. GaInN-based Tunnel Junctions with Graded Layers. Appl. Phys. Express 2016, 9, 081005. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Lund, C.; Romanczyk, B.; Catalano, M.; Wang, Q.; Li, W.; DiGiovanni, D.; Kim, M.J.; Fay, P.; Nakamura, S.; DenBaars, S.P.; et al. Metal-organic Chemical Vapor Deposition of High Quality, High Indium Composition N-polar InGaN Layers for Tunnel Devices. J. Appl. Phys. 2017, 121, 185707. [Google Scholar] [CrossRef]
- Nam, K.B.; Nakarmi, M.L.; Li, J.; Lin, J.Y.; Jiang, H.X. Mg Acceptor Level in AlN Probed by Deep Ultraviolet Photoluminescence. Appl. Phys. Lett. 2003, 83, 878–880. [Google Scholar] [CrossRef]
- Borisov, B.; Kuryatkov, V.; Kudryavtsev, Y.; Asomoza, R.; Nikishin, S.; Song, D.Y.; Holtz, M.; Temkin, H. Si-doped AlxGa1-xN (0.56 ≤ x ≤ 1) Layers Grown by Molecular Beam Epitaxy with Ammonia. Appl. Phys. Lett. 2005, 87, 132106. [Google Scholar] [CrossRef] [Green Version]
- Akyol, F.; Zhang, Y.; Krishnamoorthy, S.; Rajan, S. Ultralow-Voltage-Drop GaM/InGaN/GaN Tunnel Junctions with 12% Indium Content. Appl. Phys. Express 2017, 10, 121003. [Google Scholar] [CrossRef]
- Silvaco, I. ATLAS User’s Manual. 2016. Available online: http://www.silvaco.com/ (accessed on 9 September 2021).
- Zhang, D.; Qian, L.; Mao, B.; Huang, C.; Huang, B.; Si, Y. A Data-Driven Design for Fault Detection of Wind Turbines Using Random Forests and Xgboost. IEEE Access 2018, 6, 21020–21031. [Google Scholar] [CrossRef]
- Tsai, M.C.; Leung, B.; Hsu, T.C.; Kuo, Y.K. Low Resistivity GaN-based Polarization-induced Tunnel Junction. J. Lightwave Technol. 2013, 31, 3575–3581. [Google Scholar] [CrossRef]
- Krishnamoorthy, S.; Nath, D.N.; Akyol, F.; Park, P.S.; Esposto, M.; Rajan, S. Polarization-engineered GaN/InGaN/GaN Tunnel Diodes. Appl. Phys. Lett. 2010, 97, 203502. [Google Scholar] [CrossRef] [Green Version]
- Jamal-Eddine, Z.; Zhang, Y.; Rajan, S. Recent Progress in III-nitride Tunnel Junction-based Optoelectronics. J. High Speed Electron. Syst. 2019, 28, 233–249. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, C.; Oliveira, V.P.D.; Liu, Z.; Li, X. UV Light-emitting Diode with Buried Polarization-induced N-AlGaN/InGaN/p-AlGaN Tunneling Junction. IEEE Photon. Technol. Lett. 2021, 33, 808–811. [Google Scholar] [CrossRef]
- Liu, K.; Li, X. Polarization Properties of Wurtzite III-Nitride Indicate the Principle of Polarization Engineering. arXiv 2018, arXiv:1808.07211. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, R.; Han, P.; Wang, Y.; Lin, R.; Lu, Y.; Liu, Z.; Zhang, X.; Li, X. Low Resistance Asymmetric III-Nitride Tunnel Junctions Designed by Machine Learning. Nanomaterials 2021, 11, 2466. https://doi.org/10.3390/nano11102466
Lin R, Han P, Wang Y, Lin R, Lu Y, Liu Z, Zhang X, Li X. Low Resistance Asymmetric III-Nitride Tunnel Junctions Designed by Machine Learning. Nanomaterials. 2021; 11(10):2466. https://doi.org/10.3390/nano11102466
Chicago/Turabian StyleLin, Rongyu, Peng Han, Yue Wang, Ronghui Lin, Yi Lu, Zhiyuan Liu, Xiangliang Zhang, and Xiaohang Li. 2021. "Low Resistance Asymmetric III-Nitride Tunnel Junctions Designed by Machine Learning" Nanomaterials 11, no. 10: 2466. https://doi.org/10.3390/nano11102466
APA StyleLin, R., Han, P., Wang, Y., Lin, R., Lu, Y., Liu, Z., Zhang, X., & Li, X. (2021). Low Resistance Asymmetric III-Nitride Tunnel Junctions Designed by Machine Learning. Nanomaterials, 11(10), 2466. https://doi.org/10.3390/nano11102466