Recent Advances of Upconversion Nanomaterials in the Biological Field
Abstract
:1. Introduction
2. Mechanism of Upconversion
2.1. Excited State Absorption (ESA)
2.2. Energy Transfer Upconversion (ETU)
2.3. Cooperative Sensitization Upconversion (CSU)
2.4. Cross-Relaxation (CR)
2.5. Photon Avalanche (PA)
3. Synthesis Strategy and Surface Modification of UCNPs
3.1. Thermal Decomposition Method
3.2. Hydrothermal Method
3.3. Co-Precipitation Method
3.4. Sol–Gel Method
3.5. Combustion Method
4. Surface Modification of UCNPs
4.1. Silica Coating
4.2. Ligand Exchange
4.3. Ligand Oxidation
4.4. Ligand Attraction
4.5. Layer-by-Layer Assembly
5. Biological Applications of UCNPs
6. Summary and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ouyang, J.; Ripmeester, J.A.; Wu, X.; Kingston, D.; Yu, K.; Joly, A.G.; Chen, W. Upconversion luminescence of colloidal CdS and ZnCdS semiconductor quantum dots. J. Phys. Chem. C 2007, 111, 16261–16266. [Google Scholar] [CrossRef]
- Porter, J.F., Jr. Fluorescence excitation by the absorption of two consecutive photons. Phys. Rev. Lett. 1961, 7, 414. [Google Scholar] [CrossRef]
- Yao, J.; Huang, C.; Liu, C.; Yang, M. Upconversion luminescence nanomaterials: A versatile platform for imaging, sensing, and therapy. Talanta 2020, 208, 120157. [Google Scholar] [CrossRef] [PubMed]
- Ansari, A.A.; Parchur, A.K.; Thorat, N.D.; Chen, G. New advances in pre-clinical diagnostic imaging perspectives of functionalized upconversion nanoparticle-based nanomedicine. Coord. Chem. Rev. 2021, 440, 213971. [Google Scholar] [CrossRef]
- Xin, N.; Wei, D.; Zhu, Y.; Yang, M.; Ramakrishna, S.; Lee, O.; Luo, H.; Fan, H. Upconversion nanomaterials: A platform for biosensing, theranostic and photoregulation. Mater. Today Chem. 2020, 17, 100329. [Google Scholar] [CrossRef]
- Wang, J.; Sheng, T.; Zhu, X.; Li, Q.; Wu, Y.; Zhang, J.; Liu, J.; Zhang, Y. Spectral engineering of lanthanide-doped upconversion nanoparticles and their biosensing applications. Mater. Chem. Front. 2021, 5, 1743–1770. [Google Scholar] [CrossRef]
- Peltomaa, R.; Benito-Peña, E.; Gorris, H.H.; Moreno-Bondi, M.C. Biosensing based on upconversion nanoparticles for food quality and safety applications. Analyst 2021, 146, 13–32. [Google Scholar] [CrossRef]
- Freeman, A.J.; Watson, R.E. Theoretical investigation of some magnetic and spectroscopic properties of rare-earth ions. Phys. Rev. 1962, 127, 2058. [Google Scholar] [CrossRef]
- Yan, C.; Jia, J.; Liao, C.; Wu, S.; Xu, G. Rare earth separation in China. Tsinghua Sci. Technol. 2006, 11, 241–247. [Google Scholar] [CrossRef]
- Bünzli, J.C.G. Benefiting from the unique properties of lanthanide ions. Acc. Chem. Res. 2006, 39, 53–61. [Google Scholar] [CrossRef]
- Sun, L.D.; Dong, H.; Zhang, P.Z.; Yan, C.H. Upconversion of rare earth nanomaterials. Annu. Rev. Phys. Chem. 2015, 66, 619–642. [Google Scholar] [CrossRef]
- Tian, B.; Bravo, A.F.; Najafiaghdam, H.; Torquato, N.A.; Altoe, M.V.P.; Teitelboim, A.; Tajon, C.A.; Tian, Y.; Borys, N.J.; Barnard, E.S.; et al. Low irradiance multiphoton imaging with alloyed lanthanide nanocrystals. Nat. Commun. 2018, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Q.; Liu, H.; Wang, B.; Wu, Q.; Pu, R.; Zhou, C.; Huang, B.; Peng, X.; Agren, H.; He, S. Achieving high-efficiency emission depletion nanoscopy by employing cross relaxation in upconversion nanoparticles. Nat. Commun. 2017, 8, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, Z.; Shu, J.; Tang, D. Near-infrared-to-ultraviolet light-mediated photoelectrochemical aptasensing platform for cancer biomarker based on core–shell NaYF4: Yb, Tm@ TiO2 upconversion microrods. Anal. Chem. 2018, 90, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Song, S.; Huang, S.; Yang, L.; Min, Q.; Wu, X.; Lu, F.; Zhu, J.J. Lighting Up MicroRNA in Living Cells by the Disassembly of Lock-Like DNA-Programmed UCNPs-AuNPs through the Target Cycling Amplification Strategy. Small 2018, 14, 1802292. [Google Scholar] [CrossRef]
- Yao, C.; Wang, P.; Li, X.; Hu, X.; Hou, J.; Wang, L.; Zhang, F. Near-infrared-triggered azobenzene-liposome/upconversion nanoparticle hybrid vesicles for remotely controlled drug delivery to overcome cancer multidrug resistance. Adv. Mater. 2016, 28, 9341–9348. [Google Scholar] [CrossRef]
- Chen, X.; Tang, Y.; Liu, A.; Zhu, Y.; Gao, D.; Yang, Y.; Sun, J.; Fan, H.; Zhang, X. NIR-to-red upconversion nanoparticles with minimized heating effect for synchronous multidrug resistance tumor imaging and therapy. ACS Appl. Mater. Interfaces 2018, 10, 14378–14388. [Google Scholar] [CrossRef]
- Chen, X.; Sun, J.; Zhao, H.; Yang, K.; Zhu, Y.; Luo, H.; Yu, K.; Fan, K.; Zhang, X. Theranostic system based on NaY(Mn)F4: Yb/Er upconversion nanoparticles with multi-drug resistance reversing ability. J. Mater. Chem. B 2018, 6, 3586–3599. [Google Scholar] [CrossRef]
- Yao, J.; Yang, M.; Duan, Y. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: New insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem. Rev. 2014, 114, 6130–6178. [Google Scholar] [CrossRef]
- Chen, W.; Joly, A.G.; McCready, D.E. Upconversion luminescence from CdSe nanoparticles. J. Chem. Phys. 2005, 122, 224708. [Google Scholar] [CrossRef]
- Joly, A.G.; Chen, W.; McCready, D.E.; Malm, J.O.; Bovin, J.O. Upconversion luminescence of CdTe nanoparticles. Phys. Rev. B 2005, 71, 165304. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Sun, L.D.; Yan, C.H. Luminescent rare earth nanomaterials for bioprobe applications. Dalton Trans. 2008, 5687–5697. [Google Scholar] [CrossRef]
- Wang, F.; Banerjee, D.; Liu, Y.; Chen, X.; Liu, X. Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst 2010, 135, 1839–1854. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Liu, Z.; Li, F. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 2012, 41, 1323–1349. [Google Scholar] [CrossRef] [PubMed]
- Hampl, J.; Hall, M.; Mufti, N.A.; Yung-mae, M.Y.; MacQueen, D.B.; Wright, W.H.; Cooper, D.E. Upconverting phosphor reporters in immunochromatographic assays. Anal. Biochem. 2001, 288, 176–187. [Google Scholar] [CrossRef] [PubMed]
- Van De Rijke, F.; Zijlmans, H.; Li, S.; Vail, T.; Raap, A.K.; Niedbala, R.S.; Tanke, H.J. Up-converting phosphor reporters for nucleic acid microarrays. Nat. Biotechnol. 2001, 19, 273–276. [Google Scholar] [CrossRef]
- Zhang, P.; Rogelj, S.; Nguyen, K.; Wheeler, D. Design of a highly sensitive and specific nucleotide sensor based on photon upconverting particles. J. Am. Chem. Soc. 2006, 128, 12410–12411. [Google Scholar] [CrossRef]
- Chatterjee, D.K.; Gnanasammandhan, M.K.; Zhang, Y. Small upconverting fluorescent nanoparticles for biomedical applications. Small 2010, 6, 2781–2795. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, C.; Liu, Z. Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale 2013, 5, 23–37. [Google Scholar] [CrossRef]
- Gu, Z.; Yan, L.; Tian, G.; Li, S.; Chai, Z.; Zhao, Y. Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications. Adv. Mater. 2013, 25, 3758–3779. [Google Scholar] [CrossRef]
- Wilson, B.C.; Patterson, M.S. The physics, biophysics and technology of photodynamic therapy. Phys. Med. Biol. 2008, 53, R61. [Google Scholar] [CrossRef]
- Li, S.; Cui, S.; Yin, D.; Zhu, Q.; Ma, Y.; Qian, Z.; Gu, Y. Dual antibacterial activities of a chitosan-modified upconversion photodynamic therapy system against drug-resistant bacteria in deep tissue. Nanoscale 2017, 9, 3912–3924. [Google Scholar] [CrossRef] [PubMed]
- Lucky, S.S.; Idris, N.M.; Huang, K.; Kim, J.; Li, Z.; Thong, P.S.P.; Xu, R.; Soo, K.C.; Zhang, Y. In vivo biocompatibility, biodistribution and therapeutic efficiency of titania coated upconversion nanoparticles for photodynamic therapy of solid oral cancers. Theranostics 2016, 6, 1844–1865. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Liu, B.; Quan, Z.; Li, C.; Hou, Z.; Xing, B.; Lin, J. New advances on the marrying of UCNPs and photothermal agents for imaging-guided diagnosis and the therapy of tumors. J. Mater. Chem. B 2017, 5, 2209–2230. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Joly, A.G.; Malm, J.O.; Bovin, J.O. Upconversion luminescence of Eu3+ and Mn2+ in ZnS: Mn2+, Eu3+ codoped nanoparticles. J. Appl. Phys. 2004, 95, 667–672. [Google Scholar] [CrossRef]
- Chen, W.; Joly, A.G.; Zhang, J.Z. Up-conversion luminescence of Mn2+ in ZnS:Mn2+ nanoparticles. Phys. Rev. B 2001, 64, 041202. [Google Scholar] [CrossRef]
- Bruschini, C.; Homulle, H.; Antolovic, I.M.; Burri, S.; Charbon, E. Single-photon avalanche diode imagers in biophotonics: Review and outlook. Light Sci. Appl. 2019, 8, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ding, X.; Cong, H.; Wang, S.; Yu, B.; Shen, Y. Recent advances on inorganic lanthanide-doped NIR-II fluorescence nanoprobes for bioapplication. J. Lumin. 2020, 228, 117627. [Google Scholar] [CrossRef]
- Auzel, F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 2004, 104, 139–174. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, Y.; Tian, L.; Yu, Y.; Kong, X.; Zhao, J.; Zhang, H. Controlled synthesis and morphology dependent upconversion luminescence of NaYF4: Yb, Er nanocrystals. Nanotechnology 2007, 18, 275609. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y. Green upconversion nanocrystals for DNA detection. Chem. Commun. 2006, 131, 2557–2559. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Li, Y. Na(Y1.5Na0.5)F6 single-crystal nanorods as multicolor luminescent materials. Nano Lett. 2006, 6, 1645–1649. [Google Scholar] [CrossRef] [PubMed]
- De la Rosa, E.; Salas, P.; Desirena, H.; Angeles, C.; Rodriguez, R.A. Strong green upconversion emission in ZrO2: Yb3+-Ho3+ nanocrystals. Appl. Phys. Lett. 2005, 87, 241912. [Google Scholar] [CrossRef]
- Wang, G.; Peng, Q.; Li, Y. Upconversion luminescence of monodisperse CaF2: Yb3+/Er3+ nanocrystals. J. Am. Chem. Soc. 2009, 131, 14200–14201. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Liu, X. Upconversion multicolor fine-tuning: Visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 2008, 130, 5642–5643. [Google Scholar] [CrossRef]
- Chen, G.; Ohulchanskyy, T.Y.; Kachynski, A.; Ågren, H.; Prasad, P.N. Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF4: Er3+ nanocrystals under excitation at 1490 nm. ACS Nano 2011, 5, 4981–4986. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Lei, L.; Yang, A.; Wang, Z.; Wang, Y. Ultra-broadband near-infrared excitable upconversion core/shell nanocrystals. Chem. Commun. 2012, 48, 5898–5900. [Google Scholar] [CrossRef]
- Chen, G.; Ohulchanskyy, T.Y.; Liu, S.; Law, W.C.; Wu, F.; Swihart, M.T.; Ågren, H.; Prasad, P.N. Core/shell NaGdF4: Nd3+/NaGdF4 nanocrystals with efficient near-infrared to near-infrared downconversion photoluminescence for bioimaging applications. ACS Nano 2012, 6, 2969–2977. [Google Scholar] [CrossRef] [Green Version]
- Rui-Rong, W.; Guo, J.; Zhi-Heng, F.; Wei, W.; Xiang-Fu, M.; Zhi-Yong, X.; Fan, Z. Broadband time-resolved elliptical crystal spectrometer for X-ray spectroscopic measurements in laser-produced plasmas. Chin. Phys. B 2014, 23, 113201. [Google Scholar]
- Rakov, N.; Maciel, G.S.; Sundheimer, M.L.; de S. Menezes, L.; Gomes, A.S.L.; Messaddeq, Y.; Cassanjes, F.C.; Poirier, G.; Ribeiro, S.J.L. Blue upconversion enhancement by a factor of 200 in Tm3+-doped tellurite glass by codoping with Nd3+ ions. J. Appl. Phys. 2002, 92, 6337–6339. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Qin, W.; Liu, Z.; Zhao, D.; Qin, G.; Di, W.; He, C. Improved 800 nm emission of Tm3+ sensitized by Yb3+ and Ho3+ in β-NaYF4 nanocrystals under 980 nm excitation. Opt. Express 2012, 20, 7602–7607. [Google Scholar] [CrossRef]
- Liang, H.; Chen, G.; Li, L.; Liu, Y.; Qin, F.; Zhang, Z. Upconversion luminescence in Yb3+/Tb3+-codoped monodisperse NaYF4 nanocrystals. Opt. Commun. 2009, 282, 3028–3031. [Google Scholar] [CrossRef]
- Dwivedi, Y.; Thakur, S.N.; Rai, S.B. Study of frequency upconversion in Yb3+/Eu3+ by cooperative energy transfer in oxyfluoroborate glass matrix. Appl. Phys. B 2007, 89, 45–51. [Google Scholar] [CrossRef]
- Uvarova, T.V.; Kiiko, V.V. Up-conversion multiwave (White) luminescence in the visible spectral range under excitation by IR laser diodes in the active BaY2F8: Yb3+, Pr3+ medium. Opt. Spectrosc. 2011, 111, 273–276. [Google Scholar]
- Xu, B.; Song, C.; Huang, R.; Song, J.; Lin, Z.; Song, J.; Liu, J. Luminescence properties related to energy transfer process and cross relaxation process of Y2O3: Yb3+/Er3+ thin films doped with K+ ion. Opt. Mater. 2021, 118, 111290. [Google Scholar] [CrossRef]
- Ouertani, G.; Ferhi, M.; Horchani-Naifer, K.; Ferid, M. Effect of Sm3+ concentration and excitation wavelength on spectroscopic properties of GdPO4: Sm3+ phosphor. J. Alloys Compd. 2021, 885, 161178. [Google Scholar] [CrossRef]
- Zheng, B.; Hong, J.; Chen, B.; Chen, Y.; Lin, R.; Huang, C.; Zhang, C.; Wang, J.; Lin, L.; Zheng, Z. Quantum cutting properties in KYF4: Tb3+, Yb3+ phosphors: Judd-Ofelt analysis, rate equation models and dynamic processes. Results Phys. 2021, 28, 104595. [Google Scholar] [CrossRef]
- Kumar, A.; Bahadur, A. Intense green upconversion emission by photon avalanche process from Er3+/Yb3+co-doped NaBi(WO4)2 phosphor. J. Alloys Compd. 2021, 857, 158196. [Google Scholar] [CrossRef]
- Liu, T.; Song, Y.; Wang, S.; Li, Y.; Yin, Z.; Qiu, J.; Yang, Z.; Song, Z. Two distinct simultaneous NIR looping behaviours of Er3+ singly doped BiOBr: The underlying nature of the Er3+ ion photon avalanche emission induced by a layered structure. J. Alloys Compd. 2019, 779, 440–449. [Google Scholar] [CrossRef]
- Wang, F.; Liu, X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 2009, 38, 976–989. [Google Scholar] [CrossRef]
- Chen, G.; Qiu, H.; Prasad, P.N.; Chen, X. Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chem. Rev. 2014, 114, 5161–5214. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tu, D.; Zhu, H.; Chen, X. Lanthanide-doped luminescent nanoprobes: Controlled synthesis, optical spectroscopy, and bioapplications. Chem. Soc. Rev. 2013, 42, 6924–6958. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.; Han, C.; Li, F. Upconversion-nanophosphor-based functional nanocomposites. Adv. Mater. 2013, 25, 5287–5303. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Sun, X.; Si, R.; You, L.P.; Yan, C.H. Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor. J. Am. Chem. Soc. 2005, 127, 3260–3261. [Google Scholar] [CrossRef] [PubMed]
- Mai, H.X.; Zhang, Y.W.; Si, R.; Yan, Z.G.; Sun, L.D.; You, L.P.; Yan, C.H. High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties. J. Am. Chem. Soc. 2006, 128, 6426–6436. [Google Scholar] [CrossRef]
- Du, Y.P.; Sun, X.; Zhang, Y.W.; Yan, Z.G.; Sun, L.D.; Yan, C.H. Uniform alkaline earth fluoride nanocrystals with diverse shapes grown from thermolysis of metal trifluoroacetates in hot surfactant solutions. Cryst. Growth Des. 2009, 9, 2013–2019. [Google Scholar] [CrossRef]
- Mahalingam, V.; Vetrone, F.; Naccache, R.; Speghini, A.; Capobianco, J.A. Colloidal Tm3+/Yb3+-doped LiYF4 nanocrystals: Multiple luminescence spanning the UV to NIR regions via low-energy excitation. Adv. Mater. 2009, 21, 4025–4028. [Google Scholar] [CrossRef]
- Vetrone, F.; Naccache, R.; Mahalingam, V.; Morgan, C.G.; Capobianco, J.A. The active-core/active-shell approach: A strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles. Adv. Funct. Mater. 2009, 19, 2924–2929. [Google Scholar] [CrossRef]
- Yang, D.; Li, C.; Li, G.; Shang, M.; Kang, X.; Lin, J. Colloidal synthesis and remarkable enhancement of the upconversion luminescence of BaGdF5: Yb3+/Er3+ nanoparticles by active-shell modification. J. Mater. Chem. 2011, 21, 5923–5927. [Google Scholar] [CrossRef]
- Mahalingam, V.; Vetrone, F.; Naccache, R.; Speghini, A.; Capobianco, J.A. Structural and optical investigation of colloidal Ln3+/Yb3+ co-doped KY3F10 nanocrystals. J. Mater. Chem. 2009, 19, 3149–3152. [Google Scholar] [CrossRef]
- Wang, H.; Nakamura, H.; Uehara, M.; Yamaguchi, Y.; Miyazaki, M.; Maeda, H. Highly luminescent CdSe/ZnS nanocrystals synthesized using a single-molecular ZnS source in a microfluidic reactor. Adv. Funct. Mater. 2005, 15, 603–608. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Y.W.; Du, Y.P.; Yan, Z.G.; Si, R.; You, L.P.; Yan, C.H. From trifluoroacetate complex precursors to monodisperse rare-earth fluoride and oxyfluoride nanocrystals with diverse shapes through controlled fluorination in solution phase. Chem. A Eur. J. 2007, 13, 2320–2332. [Google Scholar] [CrossRef]
- Chen, D.; Huang, P.; Yu, Y.; Huang, F.; Yang, A.; Wang, Y. Dopant-induced phase transition: A new strategy of synthesizing hexagonal upconversion NaYF4 at low temperature. Chem. Commun. 2011, 47, 5801–5803. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Yu, Y.; Huang, F.; Huang, P.; Yang, A.; Wang, Y. Modifying the size and shape of monodisperse bifunctional alkaline-earth fluoride nanocrystals through lanthanide doping. J. Am. Chem. Soc. 2010, 132, 9976–9978. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Chatterjee, D.K.; Li, Z.; Zhang, Y.; Fan, X.; Wang, M. Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence. Nanotechnology 2006, 17, 5786. [Google Scholar] [CrossRef]
- Wang, L.; Li, P.; Li, Y. Down-and up-conversion luminescent nanorods. Adv. Mater. 2007, 19, 3304–3307. [Google Scholar] [CrossRef]
- Zeng, S.; Xiao, J.; Yang, Q.; Hao, J. Bi-functional NaLuF4: Gd3+/Yb3+/Tm3+ nanocrystals: Structure controlled synthesis, near-infrared upconversion emission and tunable magnetic properties. J. Mater. Chem. 2012, 22, 9870–9874. [Google Scholar] [CrossRef]
- Zeng, J.H.; Xie, T.; Li, Z.H.; Li, Y. Monodispersed nanocrystalline fluoroperovskite up-conversion phosphors. Cryst. Growth Des. 2007, 7, 2774–2777. [Google Scholar] [CrossRef]
- Zeng, S.; Tsang, M.K.; Chan, C.F.; Wong, K.L.; Hao, J. PEG modified BaGdF5: Yb/Er nanoprobes for multi-modal upconversion fluorescent, in vivo X-ray computed tomography and biomagnetic imaging. Biomaterials 2012, 33, 9232–9238. [Google Scholar] [CrossRef]
- Vetrone, F.; Boyer, J.C.; Capobianco, J.A.; Speghini, A.; Bettinelli, M. Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3: Er3+, Yb3+ nanocrystals. J. Appl. Phys. 2004, 96, 661–667. [Google Scholar] [CrossRef]
- Shang, M.; Li, G.; Kang, X.; Yang, D.; Geng, D.; Peng, C.; Cheng, Z.; Lian, H.; Lin, J. LaOF: Eu3+ nanocrystals: Hydrothermal synthesis, white and color-tuning emission properties. Dalton Trans. 2012, 41, 5571–5580. [Google Scholar] [CrossRef] [PubMed]
- Heer, S.; Lehmann, O.; Haase, M.; Guedel, H.U. Blue, green, and red upconversion emission from lanthanide-doped LuPO4 and YbPO4 nanocrystals in a transparent colloidal solution. Angew. Chem. Int. Ed. 2003, 42, 3179–3182. [Google Scholar] [CrossRef]
- Schäfer, H.; Ptacek, P.; Eickmeier, H.; Haase, M. Synthesis of Hexagonal Yb3+, Er3+-Doped NaYF4 Nanocrystals at Low Temperature. Adv. Funct. Mater. 2009, 19, 3091–3097. [Google Scholar] [CrossRef]
- Ptacek, P.; Schäfer, H.; Kömpe, K.; Haase, M. Crystal Phase Control of Luminescing α-NaGdF4: Eu3+ and β-NaGdF4: Eu3+ Nanocrystals. Adv. Funct. Mater. 2007, 17, 3843–3848. [Google Scholar] [CrossRef]
- Gai, S.; Yang, G.; Li, X.; Li, C.; Dai, Y.; He, F.; Yang, P. Facile synthesis and up-conversion properties of monodisperse rare earth fluoride nanocrystals. Dalton Trans. 2012, 41, 11716–11724. [Google Scholar] [CrossRef]
- Yang, T.; Sun, Y.; Liu, Q.; Feng, W.; Yang, P.; Li, F. Cubic sub-20 nm NaLuF4-based upconversion nanophosphors for high-contrast bioimaging in different animal species. Biomaterials 2012, 33, 3733–3742. [Google Scholar] [CrossRef] [PubMed]
- Wong, H.T.; Vetrone, F.; Naccache, R.; Chan, H.L.W.; Hao, J.; Capobianco, J.A. Water dispersible ultra-small multifunctional KGdF4: Tm3+, Yb3+ nanoparticles with near-infrared to near-infrared upconversion. J. Mater. Chem. 2011, 21, 16589–16596. [Google Scholar] [CrossRef]
- Dai, Y.; Zhang, C.; Cheng, Z.; Li, C.; Kang, X.; Yang, D.; Lin, J. pH-responsive drug delivery system based on luminescent CaF2: Ce3+/Tb3+-poly (acrylic acid) hybrid microspheres. Biomaterials 2012, 33, 2583–2592. [Google Scholar] [CrossRef] [PubMed]
- Yi, G.S.; Chow, G.M. Colloidal LaF3: Yb, Er, LaF3: Yb, Ho and LaF3: Yb, Tm nanocrystals with multicolor upconversion fluorescence. J. Mater. Chem. 2005, 15, 4460–4464. [Google Scholar] [CrossRef]
- Teng, X.; Zhu, Y.; Wei, W.; Wang, S.; Huang, J.; Naccache, R.; Hu, W.; Tok, A.; Han, Y.; Zhang, Q.; et al. Lanthanide-doped NaxScF3+x nanocrystals: Crystal structure evolution and multicolor tuning. J. Am. Chem. Soc. 2012, 134, 8340–8343. [Google Scholar] [CrossRef]
- Liu, H.; Liu, M.; Wang, K.; Wang, B.; Jian, X.; Bai, G.; Zhang, Y. Efficient upconversion emission and high-sensitivity thermometry of BaIn2O4: Yb3+/Tm3+/RE3+(RE = Er3+, Ho3+) phosphor. Dalton Trans. 2021, 50, 12107–12117. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.S.; Aleksandrovsky, A.S.; Atuchin, V.V.; Molokeev, M.S.; Oreshonkov, A.S. Microwave sol-gel synthesis, microstructural and spectroscopic properties of scheelite-type ternary molybdate upconversion phosphor NaPbLa (MoO4)3: Er3+/Yb3+. J. Alloys Compd. 2020, 826, 152095. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Jia, G.; Wang, J.; Kong, H.; Lu, Y.; Zhang, C. Novel rare earth activator ions-doped perovskite-type La4Ti3O12 phosphors: Facile synthesis, structure, multicolor emissions, and potential applications. J. Alloys Compd. 2021, 877, 160217. [Google Scholar] [CrossRef]
- Zhang, Y.; Jia, H.; He, X.; Zheng, Y.; Bai, R.; Liu, H. Investigation of enhancing upconversion and temperature sensing performance of Er3+, Yb3+, Bi3+ codoped Gd2O3 phosphor. J. Lumin. 2021, 236, 118111. [Google Scholar] [CrossRef]
- Singh, P.; Jain, N.; Tiwari, A.K.; Shukla, S.; Baranwal, V.; Singh, J.; Pandey, A.C. Near-infrared light-mediated Er3+ and Yb3+ co-doped CaTi4O9 for optical temperature sensing behavior. J. Lumin. 2021, 233, 117737. [Google Scholar] [CrossRef]
- Mokoena, P.P.; Oluwole, D.O.; Nyokong, T.; Swart, H.C.; Ntwaeaborwa, O.M. Enhanced upconversion emission of Er3+-Yb3+ co-doped Ba5(PO4)3OH powder phosphor for application in photodynamic therapy. Sens. Actuators A Phys. 2021, 331, 113014. [Google Scholar] [CrossRef]
- Khajuria, P.; Bedyal, A.K.; Manhas, M.; Swart, H.C.; Durani, F.; Kumar, V. Spectral, surface and thermometric investigations of upconverting Er3+/Yb3+ co-doped Na3Y(PO4)2 phosphor. J. Alloys Compd. 2021, 877, 160327. [Google Scholar] [CrossRef]
- Oliva, J.; Chávez, D.; González-Galván, A.; Viesca-Villanueva, E.; Díaz-Torres, L.A.; Fraga, J.; García, C.R. Tunable green/yellow upconversion emission and enhancement of the NIR luminescence in BaLaAlO4: Er3+ phosphors by codoping with Yb3+ ions. Optik 2021, 241, 167011. [Google Scholar] [CrossRef]
- Li, M.; Xie, T.; Tu, X.; Xu, J.; Lei, R.; Zhao, S.; Xu, S. Effects of doping concentration and excitation density on optical thermometric behaviors in Ho3+/Yb3+ co-doped ZrO2 upconversion nanocrystals. Opt. Mater. 2019, 97, 109478. [Google Scholar] [CrossRef]
- Siai, A.; Ajili, L.; Horchani-Naifer, K.; Ferid, M. Tm3+ Modifying Er3+ Red Emission and Dielectric Properties of Tm3+-Doped LaErO3 Perovskite. J. Electron. Mater. 2020, 49, 3096–3105. [Google Scholar] [CrossRef]
- Boyer, J.C.; Vetrone, F.; Cuccia, L.A.; Capobianco, J.A. Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J. Am. Chem. Soc. 2006, 128, 7444–7445. [Google Scholar] [CrossRef]
- Boyer, J.C.; Cuccia, L.A.; Capobianco, J.A. Synthesis of colloidal upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals. Nano Lett. 2007, 7, 847–852. [Google Scholar] [CrossRef]
- Ye, X.; Collins, J.E.; Kang, Y.; Chen, J.; Chen, D.T.; Yodh, A.G.; Murray, C.B. Morphologically controlled synthesis of colloidal upconversion nanophosphors and their shape-directed self-assembly. Proc. Natl. Acad. Sci. USA 2010, 107, 22430–22435. [Google Scholar] [CrossRef] [Green Version]
- Maurya, S.K.; da Silva, J.E.; Mohan, M.; Poddar, R.; Kumar, K. Assessment of colloidal NaGdF4: Er3+/Yb3+ upconversion phosphor as contrast enhancer for optical coherence tomography. J. Alloys Compd. 2021, 865, 158737. [Google Scholar] [CrossRef]
- Pu, Y.; Lin, L.; Wang, D.; Wang, J.X.; Qian, J.; Chen, J.F. Green synthesis of highly dispersed ytterbium and thulium co-doped sodium yttrium fluoride microphosphors for in situ light upconversion from near-infrared to blue in animals. J. Colloid Interface Sci. 2018, 511, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.J.; Dai, Y.L.; Ma, P.A.; Yang, D.M.; Li, C.X.; Hou, Z.Y.; Cheng, Z.Y.; Lin, J. Poly (acrylic acid)-modified Fe3O4 microspheres for magnetic-targeted and ph-triggered anticancer drug delivery. Chem. A Eur. J. 2012, 18, 15676–15682. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.H.; Su, J.; Li, Z.H.; Yan, R.X.; Li, Y.D. Synthesis and upconversion luminescence of hexagonal-phase NaYF4: Yb, Er3+ phosphors of controlled size and morphology. Adv. Mater. 2005, 17, 2119–2123. [Google Scholar]
- Qiu, H.; Chen, G.; Sun, L.; Hao, S.; Han, G.; Yang, C. Ethylenediaminetetraacetic acid (EDTA)-controlled synthesis of multicolor lanthanide doped BaYF5 upconversion nanocrystals. J. Mater. Chem. 2011, 21, 17202–17208. [Google Scholar] [CrossRef]
- Yang, X.; Xiao, Q.; Niu, C.; Jin, N.; Ouyang, J.; Xiao, X.; He, D. Multifunctional core–shell upconversion nanoparticles for targeted tumor cells induced by near-infrared light. J. Mater. Chem. B 2013, 1, 2757–2763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, F.; Wan, Y.; Yu, T.; Zhang, F.; Shi, Y.; Xie, S.; Li, Y.; Xu, L.; Tu, B.; Zhao, D. Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence. Angew. Chem. 2007, 119, 8122–8125. [Google Scholar] [CrossRef]
- Wang, F.; Han, Y.; Lim, C.S.; Lu, Y.; Wang, J.; Xu, J.; Chen, H.; Zhang, C.; Hong, M.; Liu, X. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061–1065. [Google Scholar] [CrossRef]
- Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124. [Google Scholar] [CrossRef]
- Stouwdam, J.W.; van Veggel, F.C.J.M. Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles. Nano Lett. 2002, 2, 733–737. [Google Scholar] [CrossRef]
- Yi, G.; Lu, H.; Zhao, S.; Ge, Y.; Yang, W.; Chen, D.; Guo, L.H. Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4: Yb, Er infrared-to-visible up-conversion phosphors. Nano Lett. 2004, 4, 2191–2196. [Google Scholar] [CrossRef]
- Patra, A.; Friend, C.S.; Kapoor, R.; Prasad, P.N. Upconversion in Er3+: ZrO2 nanocrystals. J. Phys. Chem. B 2002, 106, 1909–1912. [Google Scholar] [CrossRef]
- Venkatramu, V.; Falcomer, D.; Speghini, A.; Bettinelli, M.; Jayasankar, C.K. Synthesis and luminescence properties of Er3+-doped Lu3Ga5O12 nanocrystals. J. Lumin. 2008, 128, 811–813. [Google Scholar] [CrossRef]
- Shang, H.; Zhang, X.; Xu, J.; Han, Y. Effects of preparation methods on the activity of CuO/CeO2 catalysts for CO oxidation. Front. Chem. Sci. Eng. 2017, 11, 603–612. [Google Scholar] [CrossRef]
- Park, H.; Yoo, G.Y.; Kim, M.S.; Kim, K.; Lee, C.; Park, S.; Kim, W. Thin film fabrication of upconversion lanthanide-doped NaYF4 by a sol-gel method and soft lithographical nanopatterning. J. Alloys Compd. 2017, 728, 927–935. [Google Scholar] [CrossRef]
- Liang, Z.; Wang, X.; Zhu, W.; Zhang, P.; Yang, Y.; Sun, C.; Zhang, J.; Wang, X.; Xu, Z.; Zhao, Y.; et al. Upconversion nanocrystals mediated lateral-flow nanoplatform for in vitro detection. ACS Appl. Mater. Interfaces 2017, 9, 3497–3504. [Google Scholar] [CrossRef] [PubMed]
- Mahalingam, V.; Mangiarini, F.; Vetrone, F.; Venkatramu, V.; Bettinelli, M.; Speghini, A.; Capobianco, J.A. Bright white upconversion emission from Tm3+/Yb3+/Er3+-doped Lu3Ga5O12 nanocrystals. J. Phys. Chem. C 2008, 112, 17745–17749. [Google Scholar] [CrossRef]
- Wen, T.; Zhou, Y.; Guo, Y.; Zhao, C.; Yang, B.; Wang, Y. Color-tunable and single-band red upconversion luminescence from rare-earth doped Vernier phase ytterbium oxyfluoride nanoparticles. J. Mater. Chem. C 2016, 4, 684–690. [Google Scholar] [CrossRef]
- Xu, L.; Yu, Y.; Li, X.; Somesfalean, G.; Zhang, Y.; Gao, H.; Zhang, Z. Synthesis and upconversion properties of monoclinic Gd2O3: Er3+ nanocrystals. Opt. Mater. 2008, 30, 1284–1288. [Google Scholar] [CrossRef]
- Qin, X.; Yokomori, T.; Ju, Y. Flame synthesis and characterization of rare-earth (Er3+, Ho3+, and Tm3+) doped upconversion nanophosphors. Appl. Phys. Lett. 2007, 90, 073104. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Bu, W.; Pan, L.; Shi, J. NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azoben-zene-modified mesoporous silica. Angew. Chem. 2013, 125, 4471–4475. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, W.; Sun, H.; Cui, C.; Zhang, L.; Jiang, Y.; Wu, Y.; Wang, Y.; Li, J.; Sumerlin, B.S.; et al. Thiol-ene click chemistry: A biocompatible way for orthogonal bioconjugation of colloidal nanoparticles. Chem. Sci. 2017, 8, 6182–6187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, W.; Sun, T.; Chen, B.; Chen, X.; Ai, F.; Zhu, X.; Li, M.; Zhang, W.; Zhu, G.; Wang, F. A general strategy for ligand exchange on upconversion nanoparticles. Inorg. Chem. 2017, 56, 872–877. [Google Scholar] [CrossRef] [PubMed]
- Bao, G.; Wen, S.; Lin, G.; Yuan, J.; Lin, J.; Wong, K.L.; Bünzli, J.C.G.; Jin, D. Learning from lanthanide complexes: The development of dye-lanthanide nanoparticles and their biomedical applications. Coord. Chem. Rev. 2020, 429, 213642. [Google Scholar] [CrossRef]
- Das, G.K.; Stark, D.T.; Kennedy, I.M. Potential toxicity of up-converting nanoparticles encapsulated with a bilayer formed by ligand attraction. Langmuir 2014, 30, 8167–8176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Shen, D.; Yang, J.; Yao, C.; Che, R.; Zhang, F.; Zhao, D. Successive layer-by-layer strategy for multi-shell epitaxial growth: Shell thickness and doping position dependence in upconverting optical properties. Chem. Mater. 2013, 25, 106–112. [Google Scholar] [CrossRef]
- Shen, J.; Li, K.; Cheng, L.; Liu, Z.; Lee, S.T.; Liu, J. Specific detection and simultaneously localized photothermal treatment of cancer cells using layer-by-layer assembled multifunctional nanoparticles. ACS Appl. Mater. Interfaces 2014, 6, 6443–6452. [Google Scholar] [CrossRef]
- Escudero, A.; Carrillo-Carrión, C.; Zyuzin, M.V.; Parak, W.J. Luminescent rare-earth-based nanoparticles: A summarized overview of their synthesis, functionalization, and applications. Top. Curr. Chem. 2016, 374, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Lai, W.F.; Rogach, A.L.; Wong, W.T. Molecular design of upconversion nanoparticles for gene delivery. Chem. Sci. 2017, 8, 7339–7358. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.T.; Zhan, Q.; Liu, H.; Somesfalean, G.; Qian, J.; He, S.; Andersson-Engels, S. Upconverting nanoparticles for pre-clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges. Laser Photonics Rev. 2013, 7, 663–697. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, H.; Hu, H.; Yu, M.; Li, F.; Zhang, Q.; Zhou, Z.; Yi, T.; Huang, C. Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. J. Am. Chem. Soc. 2008, 130, 3023–3029. [Google Scholar] [CrossRef] [PubMed]
- Sivakumar, S.; Diamente, P.R.; van Veggel, F.C.J.M. Silica-coated Ln3+-doped LaF3 nanoparticles as robust down-and upconverting biolabels. Chem. Eur. J. 2006, 12, 5878–5884. [Google Scholar] [CrossRef]
- Yi, G.S.; Chow, G.M. Synthesis of hexagonal-phase NaYF4: Yb, Er and NaYF4: Yb, Tm nanocrystals with efficient up-conversion fluorescence. Adv. Funct. Mater. 2006, 16, 2324–2329. [Google Scholar] [CrossRef]
- Dong, A.; Ye, X.; Chen, J.; Kang, Y.; Gordon, T.; Kikkawa, J.M.; Murray, C.B. A generalized ligand-exchange strategy enabling sequential surface functionalization of colloidal nanocrystals. J. Am. Chem. Soc. 2011, 133, 998–1006. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.P.; Xu, C.H.; Sun, W.; Yan, C.H. Clean and flexible modification strategy for carboxyl/aldehyde-functionalized upconversion nanoparticles and their optical applications. Adv. Funct. Mater. 2009, 19, 3892–3900. [Google Scholar] [CrossRef]
- Bao, Y.; Luu, Q.A.N.; Lin, C.; Schloss, J.M.; May, P.S.; Jiang, C. Layer-by-layer assembly of freestanding thin films with homogeneously distributed upconversion nanocrystals. J. Mater. Chem. 2010, 20, 8356–8361. [Google Scholar] [CrossRef]
- Yi, G.S.; Chow, G.M. Water-soluble NaYF4: Yb, Er (Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem. Mater. 2007, 19, 341–343. [Google Scholar] [CrossRef]
- Sharipov, M.; Tawfik, S.M.; Gerelkhuu, Z.; Huy, B.T.; Lee, Y.I. Phospholipase A2-responsive phosphate micelle-loaded UCNPs for bioimaging of prostate cancer cells. Sci. Rep. 2017, 7, 1–9. [Google Scholar]
- Wang, D.; Zhu, L.; Pu, Y.; Wang, J.X.; Chen, J.F.; Dai, L. Transferrin-coated magnetic upconversion nanoparticles for efficient photodynamic therapy with near-infrared irradiation and luminescence bioimaging. Nanoscale 2017, 9, 11214–11221. [Google Scholar] [CrossRef] [PubMed]
- Teh, D.B.L.; Bansal, A.; Chai, C.; Toh, T.B.; Tucker, R.A.J.; Gammad, G.G.L.; Yeo, Y.; Lei, Z.; Zheng, X.; Yang, F.; et al. A Flexi-PEGDA Upconversion Implant for Wireless Brain Photodynamic Therapy. Adv. Mater. 2020, 32, 2001459. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, P.; Yang, G.; Chen, X.; Jiang, Y.; Jiang, X.; Wu, Y.; Liu, Y.; Zhang, W.; Bu, W. Reconstructing the intracellular pH microenvironment for enhancing photodynamic therapy. Mater. Horiz. 2020, 7, 1180–1185. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Zhang, Y.; Zhang, Y.; He, Y.; Liu, Y.; Ju, H. Activatable photodynamic therapy with therapeutic effect prediction based on a self-correction upconversion nanoprobe. ACS Appl. Mater. Interfaces 2020, 12, 19313–19323. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, W.; Zhang, Y.; Zhang, X.; Liu, Y.; Ju, H. A Near-Infrared Photo-Switched MicroRNA Amplifier for Precise Photodynamic Therapy of Early-Stage Cancers. Angew. Chem. 2020, 132, 21638–21643. [Google Scholar] [CrossRef]
- Lin, B.; Liu, J.; Wang, Y.; Yang, F.; Huang, L.; Lv, R. Enhanced upconversion luminescence-guided synergistic antitumor therapy based on photody-namic therapy and immune checkpoint blockade. Chem. Mater. 2020, 32, 4627–4640. [Google Scholar] [CrossRef]
- Li, Z.; Qiao, X.; He, G.; Sun, X.; Feng, D.; Hu, L.; Xu, H.; Xu, H.B.; Ma, S.; Tian, J. Core-satellite metal-organic framework@ upconversion nanoparticle superstructures via electrostatic self-assembly for efficient photodynamic theranostics. Nano Res. 2020, 13, 3377–3386. [Google Scholar] [CrossRef]
- Sun, X.; Sun, J.; Dong, B.; Huang, G.; Zhang, L.; Zhou, W.; Lv, J.; Zhang, X.; Liu, M.; Xu, L.; et al. Noninvasive temperature monitoring for dual-modal tumor therapy based on lanthanide-doped up-conversion nanocomposites. Biomaterials 2019, 201, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Xiong, L.; Ouyang, G.; Ma, L.; Sahi, S.; Wang, K.; Lin, L.; Huang, H.; Miao, X.; Chen, W.; et al. The Investigation of Copper Cysteamine Nanoparticles as a new type of radiosenstizers for Colorectal Carcinoma. Sci. Rep. 2017, 7, 9290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Zhang, J. Using Nanoparticles to Enable Simultaneous Radiation and Photodynamic Therapies for Cancer Treatment. J. Nanosci. Nanotechnol. 2006, 6, 1159–1166. [Google Scholar] [CrossRef]
- Chen, W. Nanoparticle Self-Lighting Photodynamic Therapy for Cancer Treatment. J. Biomed. Nanotechnol. 2008, 4, 369–376. [Google Scholar] [CrossRef]
- Ma, L.; Chen, W.; Schatte, G.; Wang, W.; Joly, A.G.; Huang, Y.; Sammynaiken, R.; Hossu, M. A new Cu–cysteamine complex: Structure and optical properties. J. Mater. Chem. C 2014, 2, 4239–4246. [Google Scholar] [CrossRef]
- Ma, L.; Zou, X.; Chen, W. A New X-ray Induced Nanoparticle Photosensitizers for Cancer Treatment. J. Biomed. Nanotechnol. 2014, 10, 1501–1508. [Google Scholar] [CrossRef]
- Shrestha, S.; Wu, J.; Sah, B.; Vanasse, A.; Cooper, L.N.; Ma, L.; Li, G.; Zheng, H.; Chen, W.; Antosh, M.P. X-ray induced photodynamic therapy with copper-cysteamine nanoparticles in mice tumors. Proc. Natl. Acad. Sci. USA 2019, 116, 16823–16828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, L.; Liu, P.; Wu, J.; Ma, L.; Zheng, H.; Antosh, M.P.; Zhang, H.; Wang, B.; Chen, W.; Wang, X. The effectiveness and safety of copper-cysteamine nanoparticle mediated X-PDT for cutaneous squamous cell carcinoma and melanom. Nanomedicine 2019, 14, 2027–2043. [Google Scholar] [CrossRef]
- Zhang, Q.; Guo, X.; Cheng, Y.; Chudal, L.; Pandey, N.K.; Zhang, J.; Ma, L.; Xi, Q.; Yang, G.; Chen, Y.; et al. Use of copper-cysteamine nanoparticles to simultaneously enable radiotherapy oxidative therapy and immunotherapy for melanoma treatment. Signal Transduct. Target. Ther. 2020, 5, 58. [Google Scholar] [CrossRef]
- Sah, B.; Wu, J.; Vanasse, A.; Pandey, N.K.; Chudal, L.; Huang, Z.; Song, W.; Yu, H.; Ma, L.; Chen, W.; et al. Effects of Nanoparticle Size and Radiation Energy on Copper-Cysteamine Nanoparticles for X-ray Induced Photodynamic Therapy. Nanomaterials 2020, 10, 1087. [Google Scholar] [CrossRef]
- Chen, X.; Liu, J.; Li, Y.; Pandey, N.K.; Chen, T.; Wang, L.; Amador, E.H.; Chen, W.; Liu, F.; Xiao, E.; et al. Study of copper-cysteamine based X-ray induced photodynamic therapy and its effects on cancer cell proliferation and migration in a clinical mimic setting. Bioact. Mater. 2021, 7, 504–514. [Google Scholar] [CrossRef]
- Wang, Y.; Alkhaldi, N.D.; Pandey, N.K.; Chudal, L.; Wang, L.Y.; Lin, L.W.; Zhang, M.B.; Yong, Y.X.; Amador, E.H.; Huda, M.N.; et al. A new type of cuprous-cysteamine sensitizers: Synthesis, optical properties and potential applications. Mater. Today Phys. 2021, 19, 100435. [Google Scholar] [CrossRef]
- Liu, F.; Chen, W.; Wang, S.P.; Joly, A.G. Investigation of Water-Soluble X-ray Luminescence Nanoparticles For Photodynamic Activation. Appl. Phys. Lett. 2008, 92, 43901. [Google Scholar] [CrossRef]
- Liu, Z.; Xiong, L.; Ouyang, G.; Ma, L.; Sahi, S.; Wang, K.; Lin, L.; Huang, H.; Miao, X.; Chen, W.; et al. Investigation of copper-cysteamine nanoparticles as a new photosensitizer for an-ti-hepatocellular carcinoma. Cancer Biol. Ther. 2019, 20, 812–825. [Google Scholar]
- Pandey, N.K.; Chudal, L.; Phan, J.; Lin, L.; Johnson, O.; Xing, M.; Liu, J.P.; Li, H.; Huang, X.; Shu, Y.; et al. A facile method for synthesis of copper-cysteamine nanoparticles and study of ROS production for cancer treatment. J. Mater. Chem. B 2019, 7, 6630–6642. [Google Scholar] [CrossRef] [PubMed]
Method | Advantages | Disadvantages | Examples |
---|---|---|---|
Thermal Decomposition | Large product volume; small size distribution | The equipment is expensive; the precursor is sensitive to air; toxic by-products | ReF3 (Re = Y,La) [64] NaLuF4 [65] NaYbF4 [65] MF2 (M = Ca,Sr,Ba) [66] LiYF4 [67] NaGdF4 [68] BaREF5 (RE = Y,Gd) [69] KY3F10 [70] RE2O3 (RE = Y,La,Gd) [71] REOF (RE = Y,La,Gd) [72] |
Hydrothermal Decomposition | Inexpensive precursors; no need for post-processing; precise size and shape control | Need an autoclave; the reaction process is unobservable and uncontrollable | REF3 (RE = Y,La,Ce,Gd) [73] MF2 (M = Ca,Sr,Ba) [74] NaYF4 [75] NaLaF4 [76] NaLuF4 [77] KMnF4 [78] BaGdF5 [79] RE2O3 (RE = Y,Gd,Er) [80] LaOF [81] REPO4 (RE = Ga,Yb,Lu) [82] |
Co-precipitation | Fast synthesis speed; inexpensive equipment and safe precursors | Need post-processing | NaYF4 [83] NaGdF4 [84] NaTbF4 [85] NaLuF4 [86] KGdF4 [87] CaF2 [88] LaF3 [89] NaScF4 [90] |
Sol-gel Method | Inexpensive precursors; small product size | The precursor preparation process is complicated; product is easy to reunite | BaIn2O4:Yb3+/Tm3+/RE3+ (RE = Er3+, Ho3+) [91] NaPbLa (MoO4)3: Er3+/Yb3+ [92] La4Ti3O12 [93] Gd2O3: Er3+/Yb3+/Bi3+ [94] CaTi4O9: Er3+/Yb3+ [95] |
Combustion Method | Fast synthesis speed; energy saving; controllable product quantity | Expensive equipment; high temperature; the particle size of the material is large and easy to agglomerate | Ba5 (PO4)3OH: Er3+/Yb3+ [96] Na3Y (PO4)2: Er3+/Yb3+ [97] BaLaAlO4:Er3+/Yb3+ [98] ZrO2: Ho3+/Yb3+ [99] LaO3: Er3+/Tm3+ [100] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, C.; Zheng, P.; Liu, Q.; Han, S.; Li, D.; Luo, S.; Temple, H.; Xing, C.; Wang, J.; Wei, Y.; et al. Recent Advances of Upconversion Nanomaterials in the Biological Field. Nanomaterials 2021, 11, 2474. https://doi.org/10.3390/nano11102474
Gao C, Zheng P, Liu Q, Han S, Li D, Luo S, Temple H, Xing C, Wang J, Wei Y, et al. Recent Advances of Upconversion Nanomaterials in the Biological Field. Nanomaterials. 2021; 11(10):2474. https://doi.org/10.3390/nano11102474
Chicago/Turabian StyleGao, Cunjin, Pengrui Zheng, Quanxiao Liu, Shuang Han, Dongli Li, Shiyong Luo, Hunter Temple, Christina Xing, Jigang Wang, Yanling Wei, and et al. 2021. "Recent Advances of Upconversion Nanomaterials in the Biological Field" Nanomaterials 11, no. 10: 2474. https://doi.org/10.3390/nano11102474
APA StyleGao, C., Zheng, P., Liu, Q., Han, S., Li, D., Luo, S., Temple, H., Xing, C., Wang, J., Wei, Y., Jiang, T., & Chen, W. (2021). Recent Advances of Upconversion Nanomaterials in the Biological Field. Nanomaterials, 11(10), 2474. https://doi.org/10.3390/nano11102474