Essential Electronic Properties of Silicon Nanotubes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Geometric Structures
3.2. Energy Bands
3.3. Band Gap Variation with Tube Radius
3.4. Spatial Charge Density Distribution
3.5. The Projected Density of States
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58. [Google Scholar] [CrossRef]
- Journet, C.; Maser, W.K.; Bernier, P.; Loiseau, A.; de la Chapelle, M.L.; Lefrant, S.; Deniard, P.; Lee, R.; Fischer, J.E. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 1997, 388, 756–758. [Google Scholar] [CrossRef]
- Thess, A.; Lee, R.; Nikolaev, P.; Dai, H.; Petit, P.; Robert, J.; Xu, C.; Lee, Y.H.; Kim, S.G.; Rinzler, A.G.; et al. Crystalline Ropes of Metallic Carbon Nanotubes. Science 1996, 273, 483–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yudasaka, M.; Komatsu, T.; Ichihashi, T.; Iijima, S. Single-wall carbon nanotube formation by laser ablation using double-targets of carbon and metal. Chem. Phys. Lett. 1997, 278, 102–106. [Google Scholar] [CrossRef]
- Ebbesen, T.W.; Ajayan, P.M. Large-scale synthesis of carbon nanotubes. Nature 1992, 358, 220–222. [Google Scholar] [CrossRef]
- Ebbesen, T.W.; Hiura, H.; Fujita, J.; Ochiai, Y.; Matsui, S.; Tanigaki, K. Patterns in the bulk growth of carbon nanotubes. Chem. Phys. Lett. 1993, 209, 83–90. [Google Scholar] [CrossRef]
- Seraphin, S.; Zhou, D.; Jiao, J.; Withers, J.C.; Loutfy, R. Effect of processing conditions on the morphology and yield of carbon nanotubes. Carbon 1993, 31, 685–689. [Google Scholar] [CrossRef]
- Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605. [Google Scholar] [CrossRef]
- Lan, A.; Iqbal, Z.; Aitouchen, A.; Libera, M.; Grebel, H. Growth of single-wall carbon nanotubes within an ordered array of nanosize silica spheres. Appl. Phys. Lett. 2002, 81, 433–435. [Google Scholar] [CrossRef]
- Altan, H.; Huang, F.; Federici, J.F.; Lan, A.; Grebel, H. Optical and electronic characteristics of single walled carbon nanotubes and silicon nanoclusters by tetrahertz spectroscopy. J. Appl. Phys. 2004, 96, 6685–6689. [Google Scholar] [CrossRef] [Green Version]
- Schnorr, J.M.; Swager, T.M. A Emerging Applications of Carbon Nanotubes. Chem. Mater. 2011, 23, 646–657. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.W.; Zhao, Y.B.; Goodenough, J.B.; Lu, Y.H.; Chen, C.H.; Wang, L.; Liu, J.W. A Exfoliation from carbon nanotubes versus tube size on lithium insertion. Electrochem. Commun. 2011, 13, 125–128. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, G.P.; Yang, Y.S. A Carbon nanotube arrays and their composites for electrochemical capacitors and lithium-ion batteries. Energy Environ. Sci. 2009, 2, 932–943. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, M.; Jiao, Z.; Lee, J.Y. Sn@CNT and Sn@C@CNT nanostructures for superior reversible lithium ion storage. Chem. Mater. 2009, 21, 3210–3215. [Google Scholar] [CrossRef]
- Han, Y.; Wang, Y.J.; Wang, Y.P.; Jiao, L.F.; Yuan, H.T.; Liu, S.X. A Hydrothermal synthesis and electrochemical properties of cobalt-carbon nanotubes nanocomposite. Electrochim. Acta. 2011, 56, 3258–3263. [Google Scholar] [CrossRef]
- Welna, D.T.; Qu, L.T.; Taylor, B.E.; Dai, L.M.; Durstock, M.F. Vertically aligned carbon nanotube electrodes for lithium-ion batteries. J. Power Sources 2011, 196, 1455–1460. [Google Scholar] [CrossRef]
- Wang, Y.; Lee, J.Y. One-step, confined growth of bimetallic tin-antimony nanorods in carbon nanotubes grown in situ for reversible Li+ ion storage. Angew. Chem. Int. Ed. 2006, 45, 7039–7042. [Google Scholar] [CrossRef]
- Benvidi, A.; Kakoolaki, P.; Zare, H.R.; Vafazadeh, R. Electrocatalytic oxidation of hydrazine at a Co(II) complex multi-wall carbon nanotube modified carbon paste electrode. Electrochim. Acta. 2011, 56, 2045–2050. [Google Scholar] [CrossRef]
- Su, Q.; Liang, Y.; Feng, X.; Mullen, K. Towards free-standing graphene/carbon nanotube composite films via acetylene-assisted thermolysis of organocobalt functionalized graphene sheets. Chem. Commun. 2010, 46, 8279–8281. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, J.; Mastai, Y.; Felner, I.; Gedanken, A. Preparation and characteristics of carbon nanotubes filled with cobalt. Chem. Mater. 2000, 12, 2205–2211. [Google Scholar] [CrossRef]
- Duran-Valdeiglesias, E.; Zhang, W.; Alonso-Ramos, C.; Serna, S.; Le Roux, X.; Maris-Morini, D.; Caselli, N.; Biccari, F.; Gurioli, M.; Filoramo, A.; et al. Tailoring carbon nanotubes optical properties through chirality-wise silicon ring resonators. Sci. Rep. 2018, 8, 11252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fagan, S.B.; Baierle, R.J.; Mota, R.; da Silva, A.J.R.; Fazzio, A. Ab initio calculations for a hypothetical material: Silicon nanotubes. Phys. Rev. B 2000, 61, 9994–9996. [Google Scholar] [CrossRef]
- Chegel, R.; Behzad, S. Bandstructure modulation for Si-h and Si-g nanotubes in a transverse electric field: Tight binding approach. Superlattices Microstruct. 2013, 63, 79–90. [Google Scholar] [CrossRef]
- Kiricsi, I.; Fudala, A.; Konya, Z.; Hernadi, K.; Lentz, P.; Nagy, J.B. The advantages of ozone treatment in the preparation of tubular silica structures. Appl. Catal. A Gen. 2000, 203, L1. [Google Scholar] [CrossRef]
- Schmidt, O.G.; Eberl, K. Nanotechnology—Thin solid films roll up into nanotubes. Nature 2001, 410, 168. [Google Scholar] [CrossRef]
- Sha, J.; Niu, J.; Ma, X.; Xu, J.; Zhang, X.; Yang, Q.; Yang, D. Silicon Nanotubes. Adv. Mater. 2002, 14, 1219–1221. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Kim, J.Y.; Yang, H.D.; Yoon, B.N.; Choi, S.H.; Kang, H.K.; Yang, C.W.; Lee, Y.H. Synthesis of Silicon Nanotubes on Porous Alumina Using Molecular Beam Epitaxy. Adv. Mater. 2003, 15, 1172–1176. [Google Scholar] [CrossRef]
- Chen, Y.W.; Tang, Y.H.; Pei, L.Z.; Guo, C. Self-Assembled Silicon Nanotubes Grown from Silicon Monoxide. Adv. Mater. 2005, 17, 564–567. [Google Scholar] [CrossRef]
- Tang, Y.H.; Pei, L.Z.; Chen, Y.M.; Guo, C. Self-assembled silicon nanotubes under supercritically hydrothermal conditions. Phys. Rev. Lett. 2005, 95, 116102. [Google Scholar] [CrossRef]
- De Crescenzi, M.; Castrucci, P.; Scarcelli, M.; Diociauti, M.; Chaudhari, P.S.; Balasubramanian, C.; Bhave, T.M.; Bhoraskar, S.V. Experimental imaging of silicon nanotubes. Appl. Phys. Lett. 2005, 86, 231901. [Google Scholar] [CrossRef]
- Xie, M.; Wang, J.S.; Fan, Z.Y.; Lu, J.G.; Yap, Y.K. Growth of p-type Si nanotubes by catalytic plasma treatments. Nanotechnology 2008, 19, 365609. [Google Scholar] [CrossRef] [Green Version]
- Taghinejad, M.; Taghinejad, H.; Abdolahad, M.; Mohajerzadeh, S. A Nickel-Gold Bilayer Catalyst Engineering Technique for Self-Assembled Growth of Highly Ordered Silicon Nanotubes (SiNT). Nano Lett. 2013, 13, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Morata, A.; Pacios, M.; Gadea, G.; Flox, C.; Cadavid, D.; Cabot, A.; Tarancon, A. Large-area and adaptable electrospun silicon-based thermoelectric nanomaterials with high energy conversion efficiencies. Nat. Commun. 2018, 9, 4759. [Google Scholar] [CrossRef] [PubMed]
- Castrucci, P.; Scarselli, M.; De Crescenzi, M.; Diociaiuti, M.; Chaudhari, P.S.; Balasubramanian, C.; Bhave, T.M.; Bhoraskar, S.V. Silicon nanotubes: Synthesis and characterization. Thin Solid Films 2006, 508, 226–230. [Google Scholar] [CrossRef]
- Ishai, M.B.; Patolsk, F. Shape- and Dimension-Controlled Single-Crystalline Silicon and SiGe Nanotubes: Toward Nanofluidic FET Devices. J. Am. Chem. Soc. 2009, 131, 3679–3689. [Google Scholar] [CrossRef] [PubMed]
- Yoo, H.; Park, E.; Bae, J.; Lee, J.; Chung, D.J.; Jo, Y.N.; Park, M.S.; Kim, J.H.; Dou, S.X.; Kim, Y.J.; et al. Si Nanocrystal-Embedded SiOx nanofoils: Two-Dimensional Nanotechnology-Enabled High Performance Li Storage Materials. Sci. Rep. 2018, 8, 6904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasavajjula, U.; Wang, C.S.; Appleby, A.J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 2007, 163, 1003–1039. [Google Scholar] [CrossRef]
- Chan, C.K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X.F.; Huggins, R.A.; Cui, Y. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 2008, 3, 31–35. [Google Scholar] [CrossRef]
- Zhu, J.; Yu, Z.; Burkhard, G.F.; Hsu, C.M.; Connor, S.T.; Xu, Y.; Wang, Q.; McGehee, M.; Fan, S.; Cui, Y. Optical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays. Nano lett. 2009, 9, 279–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadi, N.; Shokri, A.A.; Elahi, S.M. Optical Transition of Zigzag Silicon Nanotubes Under Intrinsic Curvature Effect. SILICON 2016, 8, 217–224. [Google Scholar] [CrossRef]
- Behzad, S.; Chegel, R. Magnetic Field-Induced Splitting of Optical Spectra in Silicon Nanotubes: Tight Binding Calculations. SILICON 2016, 8, 43–55. [Google Scholar] [CrossRef]
- Chegel, R.; Behzad, S. Electronic Properties of SiNTs Under External Electric and Magnetic Fields Using the Tight-Binding Method. J. Electron. Mater. 2014, 43, 329–340. [Google Scholar] [CrossRef]
- Zhang, R.Q.; Lee, H.L.; Li, W.K.; Teo, B.K. Investigation of Possible Structures of Silicon Nanotubes via Density-Functional Tight-Binding Molecular Dynamics Simulations and ab Initio Calculations. J. Phys. Chem. B 2005, 109, 8605–8612. [Google Scholar] [CrossRef] [PubMed]
- Seifert, G.; Koehler, T.; Urbassek, H.M.; Hernandez, E.; Frauenheim, T. Tubular structures of silicon. Phys. Rev. B 2001, 63, 193409. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Ni, J. Electronic properties of single-walled silicon nanotubes compared to carbon nanotubes. Phys. Rev. B 2005, 72, 195426. [Google Scholar] [CrossRef]
- Barnard, A.S.; Russo, S.P. Structure and Energetics of Single-Walled Armchair and Zigzag Silicon Nanotubes. J. Phys. Chem. B 2003, 107, 7577–7581. [Google Scholar] [CrossRef]
- Matheus, P.L. Double-walled silicon nanotubes: An ab initio investigation. Nanotechnology 2018, 29, 075703. [Google Scholar]
- Wang, C.; Fu, X.; Guo, Y.; Guo, Z.; Xia, C.; Jia, Y. Band gap scaling laws in group IV nanotubes. Nanotechnology 2017, 28, 115202. [Google Scholar] [CrossRef] [Green Version]
- Kresse, G.; Furthmueller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Guelseren, O.; Yildirim, T.; Ciraci, S. Systematic ab initio study of curvature effects in carbon nanotubes. Phys. Rev. B 2002, 65, 153405. [Google Scholar] [CrossRef] [Green Version]
- Saito, R.; Fujita, M.; Dresselhaus, G.; Dresselhaus, U.M. Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 1992, 60, 2204–2206. [Google Scholar] [CrossRef]
- Hamada, N.; Sawada, S.; Oshiyama, A. New One-Dimensional Conductors-Graphitic Microtubules. Phys. Rev. Lett. 1992, 68, 1579–1581. [Google Scholar] [CrossRef] [PubMed]
- Mintmire, J.W.; White, C.T. Universal density of states for carbon nanotubes. Phys. Rev. Lett. 1998, 81, 2506–2509. [Google Scholar] [CrossRef] [Green Version]
- Saito, R.; Dresselhaus, G.; Dresselhaus, M.S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, UK, 1998; p. 272. [Google Scholar]
- Ouyang, M.; Huang, J.L.; Cheung, C.L.; Liebe, C.M. Energy gaps in “metallic” single-walled carbon nanotubes. Science 2001, 292, 702–705. [Google Scholar] [CrossRef] [Green Version]
- Kane, C.L.; Mele, E.J. Size, shape and low energy electronic structure of carbon nanotubes. Phys. Rev. Lett. 1997, 78, 1932–1935. [Google Scholar] [CrossRef] [Green Version]
- Blase, X.; Benedict, L.X.; Shirley, E.L.; Louie, S.G. Hybridization effects and metallicity in small radius carbon nanotubes. Phys. Rev. Lett. 1994, 72, 1878–1881. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.Y.; Lin, Y.T.; Thuy Tran, N.T.; Su, W.P.; Lin, M.F. Feature-rich electronic properties of aluminum-adsorbed graphenes. Carbon 2017, 120, 209–218. [Google Scholar] [CrossRef]
- Lin, S.Y.; Chang, S.L.; Thuy Tran, N.T.; Yang, P.H.; Lin, M.F. H-Si bonding-induced unusual electronic properties of silicene: A method to identify hydrogen concentration. Phys. Chem. Chem. Phys. 2015, 17, 26443–26450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umeno, Y.; Kitamura, T.; Kushima, A. Metallic-semiconducting transition of single-walled carbon nanotubes under high axial strain. Comput. Mater. Sci. 2004, 31, 33–41. [Google Scholar] [CrossRef]
- Jacobsen, H. Chemical Bonding in View of Electron Charge Density and Kinetic Energy Density Descriptors. J. Comput. Chem. 2009, 30, 1093–1102. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Lin, S.Y.; Wu, J. Stacking-configuration-enriched essential properties of bilayer graphenes and silicenes. J. Chem. Phys. 2020, 153, 154707. [Google Scholar] [CrossRef] [PubMed]
aSiNTs | Lattice con. (Å) | (eV/atom) | / | / | (Å) | (Å) | z (Å) | (eV) |
---|---|---|---|---|---|---|---|---|
Si(2,2) | 3.54 | −4.746 | 1.003 | 1.043 | 1.731 | 2.688 | 0.957 | 0.350 |
Si(3,3) | 3.722 | −4.786 | 1.001 | 1.015 | 2.500 | 3.181 | 0.681 | 0.785 |
Si(4,4) | 3.751 | −4.812 | 1.000 | 1.009 | 3.967 | 4.569 | 0.602 | 0.360 |
Si(5,5) | 3.764 | −4.828 | 0.999 | 1.005 | 4.796 | 5.325 | 0.529 | 0.485 |
Si(6,6) | 3.766 | −4.837 | 0.999 | 1.003 | 6.118 | 6.648 | 0.530 | 0.382 |
Si(7,7) | 3.772 | −4.843 | 0.998 | 1.002 | 7.001 | 7.501 | 0.500 | 0.316 |
Si(9,9) | 3.775 | −4.850 | 0.997 | 1.004 | 9.149 | 9.649 | 0.500 | 0.237 |
Si(10,10) | 3.779 | −4.851 | 0.997 | 1.004 | 10.362 | 10.851 | 0.489 | 0.208 |
Si(12,12) | 3.780 | −4.854 | 0.999 | 1.000 | 12.488 | 12.970 | 0.481 | 0.168 |
Si(15,15) | 3.777 | −4.856 | 0.997 | 0.999 | 15.595 | 15.909 | 0.314 | 0.131 |
Si(20,20) | 3.782 | −4.858 | 0.996 | 0.999 | 20.943 | 21.151 | 0.208 | 0.099 |
Si(25,25) | 3.782 | −4.859 | 0.995 | 0.998 | 26.428 | 26.617 | 0.189 | 0.078 |
zSiNTs | Lattice con. (Å) | (eV/atom) | / | / | (Å) | (Å) | z (Å) | (eV) |
Si(4,0) | 3.806 | −4.703 | 1.132 | 1.033 | 1.826 | 2.881 | 1.055 | 0 |
Si(5,0) | 3.814 | −4.694 | 1.022 | 1.025 | 2.282 | 3.163 | 0.881 | 0 |
Si(6,0) | 3.757 | −4.708 | 1.008 | 1.011 | 3.407 | 4.075 | 0.668 | 0 |
Si(7,0) | 3.760 | −4.720 | 1.006 | 1.008 | 3.929 | 4.505 | 0.576 | 0 |
Si(8,0) | 3.770 | −4.731 | 1.004 | 1.007 | 4.661 | 5.222 | 0.561 | 0 |
Si(9,0) | 3.773 | −4.740 | 1.004 | 1.006 | 5.199 | 5.733 | 0.534 | 0 |
Si(10,0) | 3.773 | −4.747 | 1.004 | 1.005 | 5.906 | 6.434 | 0.528 | 0.186 |
Si(11,0) | 3.773 | −4.751 | 1.003 | 1.004 | 6.463 | 6.973 | 0.510 | 0.190 |
Si(12,0) | 3.776 | −4.755 | 1.003 | 1.004 | 7.145 | 7.653 | 0.508 | 0.202 |
Si(13,0) | 3.779 | −4.758 | 1.003 | 1.003 | 7.711 | 8.206 | 0.495 | 0.320 |
Si(14,0) | 3.776 | −4.760 | 1.002 | 1.002 | 8.391 | 8.883 | 0.492 | 0.325 |
Si(15,0) | 3.780 | −4.762 | 1.001 | 1.002 | 8.945 | 9.428 | 0.483 | 0.248 |
Si(16,0) | 3.777 | −4.764 | 1.001 | 1.001 | 9.621 | 10.104 | 0.483 | 0.237 |
Si(17,0) | 3.779 | −4.765 | 1.001 | 1.001 | 10.191 | 10.669 | 0.478 | 0.299 |
Si(18,0) | 3.782 | −4.766 | 1.001 | 1.002 | 10.845 | 11.323 | 0.478 | 0.202 |
Si(19,0) | 3.781 | −4.767 | 1.001 | 1.001 | 11.426 | 11.899 | 0.473 | 0.282 |
Si(20,0) | 3.780 | −4.768 | 1.001 | 1.001 | 12.088 | 12.564 | 0.476 | 0.254 |
Si(21,0) | 3.781 | −4.769 | 1.001 | 1.001 | 12.659 | 13.129 | 0.470 | 0.170 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.-Y.; Lin, M.-F.; Wu, J.-Y. Essential Electronic Properties of Silicon Nanotubes. Nanomaterials 2021, 11, 2475. https://doi.org/10.3390/nano11102475
Liu H-Y, Lin M-F, Wu J-Y. Essential Electronic Properties of Silicon Nanotubes. Nanomaterials. 2021; 11(10):2475. https://doi.org/10.3390/nano11102475
Chicago/Turabian StyleLiu, Hsin-Yi, Ming-Fa Lin, and Jhao-Ying Wu. 2021. "Essential Electronic Properties of Silicon Nanotubes" Nanomaterials 11, no. 10: 2475. https://doi.org/10.3390/nano11102475
APA StyleLiu, H. -Y., Lin, M. -F., & Wu, J. -Y. (2021). Essential Electronic Properties of Silicon Nanotubes. Nanomaterials, 11(10), 2475. https://doi.org/10.3390/nano11102475