ZIF-8@ZIF-67-Derived Co Embedded into Nitrogen-Doped Carbon Nanotube Hollow Porous Carbon Supported Pt as an Efficient Electrocatalyst for Methanol Oxidation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis of ZIF-8@ZIF-67
2.3. Synthesis of Pt/Co-NCNT-HPC
2.4. Characterization
2.5. Electrochemical Measurements
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jiao, Y.; Zheng, Y.; Jaroniecb, M.; Qiao, S.Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086. [Google Scholar] [CrossRef]
- Tiwari, J.N.; Tiwari, R.N.; Singh, G.; Kim, K.S. Recent progress in the development of anode and cathode catalysts for direct methanol fuel cells. Nano Energy 2013, 2, 553–578. [Google Scholar] [CrossRef]
- Xie, Y.; Li, Z.; Liu, Y.; Ye, Y.; Zou, X.; Lin, S. Plasmon enhanced bifunctional electro-photo catalytic properties of Pt-Au/graphene composites for methanol oxidation and oxygen reduction reaction. Appl. Surf. Sci. 2020, 508, 145161. [Google Scholar] [CrossRef]
- Zhan, G.; Fu, Z.; Sun, D.; Pan, Z.; Xiao, C.; Wu, S.; Chen, C.; Hu, G.; Wei, Z. Platinum nanoparticles decorated robust binary transition metal nitride–carbon nanotubes hybrid as an efficient electrocatalyst for the methanol oxidation reaction. J. Power Sources 2016, 326, 84–92. [Google Scholar] [CrossRef]
- Gopalakrishnan, A.; Badhulika, S. Hierarchical architectured dahlia flower-like NiCo2O4/NiCoSe2 as a bifunctional electrode for high-energy supercapacitor and methanol fuel cell application. Energy Fuels 2021, 35, 9646–9659. [Google Scholar] [CrossRef]
- Lu, J.; Zang, J.; Wang, Y.; Xu, Y.; Xu, X. Preparation and characterization of zirconia-coated nanodiamonds as a Pt catalyst support for methanol electro-oxidation. Nanomaterials 2016, 6, 234. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-J.; Sun, Y.-D.; Yin, X.; Jia, C.; Ma, M.; Chen, Y. Enhanced methanol electrooxidation over defect-rich Pt-M (M = Fe, Co, Ni) ultrathin nanowires. Energy Fuels 2020, 34, 10078–10086. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, X.; Wang, X.; Hu, J.; Liu, Y.; Fu, G.; Tang, Y. Concave PtCo nanocrosses for methanol oxidation reaction. Appl. Catal. B-Environ. 2020, 277, 119135. [Google Scholar] [CrossRef]
- Yang, Y.; Cao, Y.; Yang, L.; Huang, Z.; Long, N.V. Synthesis of Pt-Pd bimetallic porous nanostructures as electrocatalysts for the methanol oxidation reaction. Nanomaterials 2018, 8, 208. [Google Scholar] [CrossRef] [Green Version]
- Tate, G.L.; Mehrabadi, B.A.T.; Xiong, W.; Kenvin, A.; Monnier, J.R. Synthesis of highly active Pd@Cu-Pt/C methanol oxidation electrocatalysts via continuous, co-electroless deposition. Nanomaterials 2021, 11, 793. [Google Scholar] [CrossRef]
- Shi, H.; Wang, R.; Lou, M.; Jia, D.; Guo, Y.; Wang, X.; Huang, Y.; Sun, Z.; Wang, T.; Wang, L. A novel Pt/pyridine ionic liquid polyoxometalate/rGO tri-component hybrid and its enhanced activities for methanol electrooxidation. Electrochim. Acta 2019, 294, 93–101. [Google Scholar] [CrossRef]
- Lou, M.; Wang, R.; Zhang, J.; Tang, X.; Wang, L.; Guo, Y.; Jia, D.; Shi, H.; Yang, L.; Wang, X.; et al. Optimized synthesis of nitrogen and phosphorus dual-doped coal-based carbon fiber supported Pd catalyst with enhanced activities for formic acid electrooxidation. ACS Appl. Mater. Inter. 2019, 11, 6431–6441. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, R.; Hu, X.; Sun, Z.; Wang, X.; Guo, Y.; Yang, L.; Lou, M.; Wen, P. MOF-derived Co embedded into N-doped nanotube decorated mesoporous carbon as a robust support of Pt catalyst for methanol electrooxidation. Appl. Surf. Sci. 2020, 533, 147319. [Google Scholar] [CrossRef]
- He, Y.; Hwang, S.; Cullen, D.A.; Uddin, M.A.; Langhorst, L.; Li, B.; Karakalos, S.; Kropf, A.J.; Wegener, E.C.; Sokolowski, J.; et al. Highly active atomically dispersed CoN4 fuel cell cathode catalysts derived from surfactant-assisted MOFs: Carbon-shell confinement strategy. Energy Environ. Sci. 2019, 12, 250. [Google Scholar] [CrossRef]
- Raja, D.S.; Huang, C.-L.; Chen, Y.-A.; Choi, Y.; Lu, S.-Y. Composition-balanced trimetallic MOFs as ultra-efficient electrocatalysts for oxygen evolution reaction at high current densities. Appl. Catal. B-Environ. 2020, 279, 119375. [Google Scholar] [CrossRef]
- Noor, T.; Pervaiz, S.; Iqbal, N.; Nasir, H.; Zaman, N.; Sharif, M.; Pervaiz, E. Nanocomposites of NiO/CuO based MOF with rGO: An efficient and robust electrocatalyst for methanol oxidation reaction in DMFC. Nanomaterials 2020, 10, 1601. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, J.; Xiao, Z.; Fu, H.; Fan, W.; Xu, B.; Dong, B.; Liu, D.; Dai, F.; Sun, D. A MOF-derived coral-like NiSe@NC nanohybrid: An efficient electrocatalyst for the hydrogen evolution reaction at all pH values. Nanoscale 2018, 10, 22758–22765. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ke, F.; Zhu, J. MOF-derived ultrathin cobalt phosphide nanosheets as efficient bifunctional hydrogen evolution reaction and oxygen evolution reaction electrocatalysts. Nanomaterials 2018, 8, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatt, M.D.; Lee, J.Y. Advancement of platinum (Pt)-free (non-Pt precious metals) and/or metal-free (non-precious-metals) electrocatalysts in energy applications: A review and perspectives. Energy Fuels 2020, 34, 6634–6695. [Google Scholar] [CrossRef]
- Li, B.; Igawa, K.; Chai, J.; Chen, Y.; Wang, Y.; Fam, D.W.; Tham, N.N.; An, T.; Konno, T.; Sng, A.; et al. String of pyrolyzed ZIF-67 particles on carbon fibers for high-performance electrocatalysis. Energy Stor. Mater. 2020, 25, 137–144. [Google Scholar] [CrossRef]
- Cheng, N.; Ren, L.; Xu, X.; Du, Y.; Dou, S.X. Recent development of zeolitic imidazolate frameworks (ZIFs) derived porous carbon based materials as electrocatalysts. Adv. Energy Mater. 2018, 8, 1801257. [Google Scholar] [CrossRef]
- Zhou, L.; Deng, X.; Lu, Q.; Yang, G.; Zhou, W.; Shao, Z. Zeolitic imidazolate framework-derived ordered Pt–Fe intermetallic electrocatalysts for high-performance Zn-air batteries. Energy Fuels 2020, 34, 11527–11535. [Google Scholar] [CrossRef]
- Jiang, B.; Sun, H.; Yuan, T.; He, W.; Zheng, C.; Zhang, H.-J.; Yang, J.; Zheng, S. Framework-derived tungsten single-atom catalyst for oxygen reduction reaction. Energy Fuels 2021, 35, 8173–8180. [Google Scholar] [CrossRef]
- Wu, S.C.; Chang, P.H.; Chou, S.H.; Huang, C.Y.; Liu, T.C.; Peng, C.H. Waffle-like carbons combined with enriched mesopores and highly heteroatom-doped derived from sandwiched MOF/LDH/MOF for high-rate supercapacitor. Nanomaterials 2020, 10, 2388. [Google Scholar] [CrossRef]
- Lai, Q.; Zhao, Y.; Liang, Y.; He, J.; Chen, J. In situ confinement pyrolysis transformation of zif-8 to nitrogen-enriched meso-microporous carbon frameworks for oxygen reduction. Adv. Funct. Mater. 2016, 26, 8334–8344. [Google Scholar] [CrossRef]
- Chen, C.; Wu, A.; Yan, H.; Xiao, Y.; Tian, C.; Fu, H. Trapping [PMo12O40]3− clusters into pre-synthesized ZIF-67 toward MoxCoxC particles confined in uniform carbon polyhedrons for efficient overall water splitting. Chem. Sci. 2018, 9, 4746–4755. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Wang, M.; Gong, X.; Guo, Z.; Wang, Z.; Jiao, S. Self-supporting porous CoP-based films with phase-separation structure for ultrastable overall water electrolysis at large current density. Adv. Energy Mater. 2018, 8, 1802445. [Google Scholar] [CrossRef]
- Zhu, F.; Liu, W.; Liu, Y.; Shi, W. Construction of porous interface on CNTs@NiCo-LDH core-shell nanotube arrays for supercapacitor applications. Chem. Eng. J. 2019, 383, 123150. [Google Scholar] [CrossRef]
- Ren, D.; Ying, J.; Xiao, M.; Deng, Y.-P.; Ou, J.; Zhu, J.; Liu, G.; Pei, Y.; Li, S.; Jauhar, A.M.; et al. Hierarchically porous multimetal-based carbon nanorod hybrid as an efficient oxygen catalyst for rechargeable zinc-air batteries. Adv. Funct. Mater. 2019, 30, 1908167. [Google Scholar] [CrossRef]
- Zhang, W.; Yao, X.; Zhou, S.; Li, X.; Li, L.; Yu, Z.; Gu, L. ZIF-8/ZIF-67-derived Co-Nx-embedded 1D porous carbon nanofibers with graphitic carbon-encased Co nanoparticles as an efficient bifunctional electrocatalyst. Small 2018, 14, 180c0423. [Google Scholar] [CrossRef] [PubMed]
- Xia, B.Y.; Yan, Y.; Li, N.; Wu, H.B.; Lou, X.W.; Wang, X. A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006. [Google Scholar] [CrossRef]
- Hu, L.; Huang, Y.; Zhang, F.; Chen, Q. CuO/Cu2O composite hollow polyhedrons fabricated from metal-organic framework templates for lithium-ion battery anodes with a long cycling life. Nanoscale 2013, 5, 4186–4190. [Google Scholar] [CrossRef]
- Pan, Y.; Sun, K.; Liu, S.; Cao, X.; Wu, K.; Cheong, W.C.; Chen, Z.; Wang, Y.; Li, Y.; Liu, Y.; et al. Core-shell ZIF-8@ZIF-67-derived CoP nanoparticle-embedded N-doped carbon nanotube hollow polyhedron for efficient overall water splitting. J. Am. Chem. Soc. 2018, 140, 2610–2618. [Google Scholar] [CrossRef]
- Yin, P.; Yao, T.; Wu, Y.; Zheng, L.; Lin, Y.; Liu, W.; Ju, H.; Zhu, J.; Hong, X.; Deng, Z.; et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 2016, 55, 10800–10805. [Google Scholar] [CrossRef]
- Liu, Z.-Q.; Cheng, H.; Li, N.; Ma, T.Y.; Su, Y.-Z. ZnCo2O4 quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/ evolution electrocatalysts. Adv. Mater. 2016, 28, 3777–3784. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wen, X.; Chen, X.; Chu, P.K.; Tang, T.; Mijowska, E. Nitrogen-doped porous carbon embedded with cobalt nanoparticles for excellent oxygen reduction reaction. J. Colloid Interface Sci. 2019, 546, 344–350. [Google Scholar] [CrossRef]
- Xiong, P.; Zhao, X.; Xu, Y. Nitrogen-doped carbon nanotubes derived from metal-organic frameworks for potassium-ion battery anodes. Chemsuschem 2018, 11, 202–208. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.-J.; Fan, Y.-J.; Wang, R.-X.; Xiang, S.; Tang, H.-G.; Sun, S.-G. A novel strategy for the synthesis of sulfur-doped carbon nanotubes as a highly efficient Pt catalyst support toward the methanol oxidation reaction. J. Mater. Chem. A. 2017, 5, 19467–19475. [Google Scholar] [CrossRef]
- Xu, G.; Xu, G.C.; Ban, J.J.; Zhang, L.; Lin, H.; Qi, C.L.; Sun, Z.P.; Jia, D.Z. Cobalt and cobalt oxides N-codoped porous carbon derived from metal-organic framework as bifunctional catalyst for oxygen reduction and oxygen evolution reactions. J. Colloid Interface Sci. 2018, 521, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Yuan, Y.; Li, Y.; Sun, X.; Wang, S.; Liang, L.; Ning, Y.; Li, J.; Yin, W.; Che, R.; et al. Dramatically enhanced electromagnetic wave absorption of hierarchical CNT/Co/C fiber derived from cotton and metal-organic-framework. Carbon 2020, 161, 517–527. [Google Scholar] [CrossRef]
- Belin, T.; Epron, F. Characterization methods of carbon nanotubes: A review. Mater. Sci. Eng. B. 2005, 119, 105–118. [Google Scholar] [CrossRef]
- Torad, N.L.; Hu, M.; Ishihara, S.; Sukegawa, H.; Belik, A.A.; Imura, M.; Ariga, K.; Sakka, Y.; Yamauchi, Y. Direct synthesis of mof-derived nanoporous carbon with magnetic Co nanoparticles toward efficient water treatment. Small 2014, 10, 2096–2107. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, Z.; Zhang, W.; Wang, Y. Facile synthesis of graphene nanoplate-supported porous Pt–Cu alloys with high electrocatalytic properties for methanol oxidation. J. Mater. Chem. A. 2016, 4, 3316–3323. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, H.; Wang, L.; Wang, H.; Du, X.; Wang, F.; Qi, T.; Lee, J.-M.; Wang, X. Pd catalyst supported on a chitosan-functionalized large-area 3D reduced graphene oxide for formic acid electrooxidation reaction. J. Mater. Chem. A. 2013, 1, 6839–6848. [Google Scholar] [CrossRef]
- Bai, Q.; Shen, F.C.; Li, S.L.; Liu, J.; Dong, L.Z.; Wang, Z.M.; Lan, Y.Q. Cobalt@nitrogen-doped porous carbon fiber derived from the electrospun fiber of bimetal–organic framework for highly active oxygen reduction. Small Methods 2018, 2, 1800049. [Google Scholar] [CrossRef]
- Imran Jafri, R.; Rajalakshmi, N.; Ramaprabhu, S. Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J. Mater. Chem. 2010, 20, 7114–7117. [Google Scholar] [CrossRef]
- Zhang, J.-J.; Wang, Z.-B.; Li, C.; Zhao, L.; Liu, J.; Zhang, L.-M.; Gu, D.-M. Multiwall-carbon nanotube modified by N-doped carbon quantum dots as Pt catalyst support for methanol electrooxidation. J. Power Sources 2015, 289, 63–70. [Google Scholar] [CrossRef]
- Ren, G.; Lu, X.; Li, Y.; Zhu, Y.; Dai, L.; Jiang, L. Porous core-shell Fe3C embedded N-doped carbon nanofibers as an effective electrocatalysts for oxygen reduction reaction. ACS Appl. Mater. Inter. 2016, 8, 4118–4125. [Google Scholar] [CrossRef]
- Lou, M.; Wang, R.; Yang, L.; Jia, D.; Sun, Z.; Wang, L.; Guo, Y.; Wang, X.; Zhang, J.; Shi, H. Ionic liquid polyoxometalate-enhanced Pd/N,P-codoped coal-based carbon fiber catalysts for formic acid electrooxidation. Appl. Surf. Sci. 2020, 516, 146137. [Google Scholar] [CrossRef]
- Mu, X.; Xu, Z.; Ma, Y.; Xie, Y.; Mi, H.; Ma, J. Graphene-carbon nanofiber hybrid supported Pt nanoparticles with enhanced catalytic performance for methanol oxidation and oxygen reduction. Electrochim. Acta 2017, 253, 171–177. [Google Scholar] [CrossRef]
- Hofstead-Duffy, A.M.; Chen, D.-J.; Sun, S.-G.; Tong, Y.J. Origin of the current peak of negative scan in the cyclic voltammetry of methanol electro-oxidation on Pt-based electrocatalysts: A revisit to the current ratio criterion. J. Mater. Chem. 2012, 22, 5205–5208. [Google Scholar] [CrossRef]
- Wang, R.; Yang, L.; Wang, X.; Sun, Z.; Guo, Y.; Lou, M.; Shi, H.; Wen, P.; Hu, X. Dicyanamide anion-based ionic liquid-functionalized graphene-supported Pt catalysts for boosting methanol electrooxidation. Inorg. Chem. 2021, 60, 13736–13747. [Google Scholar] [CrossRef] [PubMed]
Sample | SBET (m2 g−1) | Smeso (m2 g−1) | Smicro (m2 g−1) | Vmeso (cm3 g−1) | Vmicro (cm3 g−1) | Dap (nm) |
---|---|---|---|---|---|---|
Co-PC800 | 308.89 | 217.00 | 91.88 | 0.30 | 0.12 | 3.92 |
Co-NCNT-HPC800 | 323.98 | 235.26 | 88.72 | 0.51 | 0.10 | 6.26 |
Sample | N (wt%) | Pt (wt%) | JMOR (mA mg−1Pt) | ECSA (m2 g−1) | Eonset (CO Oxidation) (V) |
---|---|---|---|---|---|
Pt/C | - | 20.00 | 153.6 | 27.0 | 0.64 |
Pt/Co-PC800 | 3.05 | 20.53 | 295.4 | 38.5 | 0.60 |
Pt/Co-NCNT-HPC600 | 2.42 | 19.95 | 162.9 | 41.0 | 0.58 |
Pt/Co-NCNT-HPC700 | 3.16 | 20.18 | 249.8 | 43.0 | 0.57 |
Pt/Co-NCNT-HPC800 | 3.10 | 19.20 | 416.2 | 49.7 | 0.51 |
Pt/Co-NCNT-HPC900 | 2.15 | 18.78 | 334.8 | 45.8 | 0.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Lou, M.; Zhang, J.; Sun, Z.; Li, Z.; Wen, P. ZIF-8@ZIF-67-Derived Co Embedded into Nitrogen-Doped Carbon Nanotube Hollow Porous Carbon Supported Pt as an Efficient Electrocatalyst for Methanol Oxidation. Nanomaterials 2021, 11, 2491. https://doi.org/10.3390/nano11102491
Wang R, Lou M, Zhang J, Sun Z, Li Z, Wen P. ZIF-8@ZIF-67-Derived Co Embedded into Nitrogen-Doped Carbon Nanotube Hollow Porous Carbon Supported Pt as an Efficient Electrocatalyst for Methanol Oxidation. Nanomaterials. 2021; 11(10):2491. https://doi.org/10.3390/nano11102491
Chicago/Turabian StyleWang, Ruiying, Mengran Lou, Jie Zhang, Zhipeng Sun, Zhiqian Li, and Pengtao Wen. 2021. "ZIF-8@ZIF-67-Derived Co Embedded into Nitrogen-Doped Carbon Nanotube Hollow Porous Carbon Supported Pt as an Efficient Electrocatalyst for Methanol Oxidation" Nanomaterials 11, no. 10: 2491. https://doi.org/10.3390/nano11102491
APA StyleWang, R., Lou, M., Zhang, J., Sun, Z., Li, Z., & Wen, P. (2021). ZIF-8@ZIF-67-Derived Co Embedded into Nitrogen-Doped Carbon Nanotube Hollow Porous Carbon Supported Pt as an Efficient Electrocatalyst for Methanol Oxidation. Nanomaterials, 11(10), 2491. https://doi.org/10.3390/nano11102491