Sucrose-Responsive Intercommunicated Janus Nanoparticles Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Equipment
2.3. Preparation of Janus Au-MS Nanoparticles (J)
2.4. Preparation of Janus Au-MS Nanoparticles 1 (J1b)
2.5. Preparation of Janus Au-MS Nanoparticles 2 (J2b)
2.6. Preparation of J1c and J2c
2.7. Communication Experiments
3. Results and Discussion
3.1. Characterization
3.2. Kinetic Release Assays
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hiyama, S.; Moritani, Y. Molecular communication: Harnessing biochemical materials to engineer biomimetic communication systems. Nano Commun. Netw. 2010, 1, 2030. [Google Scholar] [CrossRef]
- Galal, A.; Hesselbach, X. Nano-networks communication architecture: Modeling and functions. Nano Commun. Netw. 2018, 17, 45–62. [Google Scholar] [CrossRef]
- Nanomachines: Fundamentals and Applications Wiley. Available online: https://www.wiley.com/en-us/Nanomachines%3A+Fundamentals+and+Applications-p-9783527651474 (accessed on 27 May 2021).
- Montemagno, C.D. Nanomachines: A roadmap for realizing the vision. J. Nanopart. Res. 2001, 3, 1. [Google Scholar] [CrossRef]
- Canovas-Carrasco, S.; Garcia-Sanchez, A.J.; Garcia-Haro, J. A nanoscale communication network scheme and energy model for a human hand scenario. Nano Commun. Netw. 2018, 15, 17–27. [Google Scholar] [CrossRef]
- Leeson, M.S.; Higgins, M.D. Forward error correction for molecular communications. Nano Commun. Netw. 2012, 3, 161–167. [Google Scholar] [CrossRef]
- Llopis-Lorente, A.; Díez, P.; Sánchez, A.; Marcos, M.D.; Sancenón, F.; Martínez-Ruiz, P.; Villalonga, R.; Martínez-Máñez, R. Toward chemical communication between nanodevices. Nano Today 2018, 18, 8–11. [Google Scholar] [CrossRef]
- Tomasi, R.; Noël, J.M.; Zenati, A.; Ristori, S.; Rossi, F.; Cabuil, V.; Kanoufi, F.; Abou-Hassan, A. Chemical communication between liposomes encapsulating a chemical oscillatory reaction. Chem. Sci. 2014, 5, 1854–1859. [Google Scholar] [CrossRef]
- Giménez, C.; Climent, E.; Aznar, E.; Martánez-Máñez, R.; Sancenón, F.; Marcos, M.D.; Amorós, P.; Rurack, K. Towards chemical communication between gated nanoparticles. Angew. Chem.-Int. Ed. 2014, 53, 12629–12633. [Google Scholar] [CrossRef]
- Llopis-Lorente, A.; DÍez, P.; Sánchez, A.; Marcos, M.D.; Sancenón, F.; Martínez-Ruiz, P.; Villalonga, R.; Martínez-Máñez, R. Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nat. Commun. 2017, 8, 1–7. [Google Scholar] [CrossRef] [Green Version]
- De Luis, B.; Llopis-Lorente, A.; Rincón, P.; Gadea, J.; Sancenón, F.; Aznar, E.; Villalonga, R.; Murguía, J.R.; Martínez-Máñez, R. An Interactive Model of Communication between Abiotic Nanodevices and Microorganisms. Angew. Chem.-Int. Ed. 2019, 58, 14986–14990. [Google Scholar] [CrossRef] [PubMed]
- De Luis, B.; Morellá-Aucejo, Á.; Llopis-Lorente, A.; Godoy-Reyes, T.M.; Villalonga, R.; Aznar, E.; Sancenón, F.; Martínez-Máñez, R. A chemical circular communication network at the nanoscale. Chem. Sci. 2021, 12, 1551–1559. [Google Scholar] [CrossRef]
- Llopis-Lorente, A.; Lozano-Torres, B.; Bernardos, A.; Martínez-Máñez, R.; Sancenón, F. Mesoporous silica materials for controlled delivery based on enzymes. J. Mater. Chem. B 2017, 5, 3069–3083. [Google Scholar] [CrossRef] [Green Version]
- Godoy-Reyes, T.M.; Llopis-Lorente, A.; García-Fernández, A.; Gaviña, P.; Costero, A.M.; Villalonga, R.; Sancenón, F.; Martínez-Máñez, R. A l-glutamate-responsive delivery system based on enzyme-controlled self-immolative arylboronate-gated nanoparticles. Org. Chem. Front. 2019, 6, 1058–1063. [Google Scholar] [CrossRef]
- Díez, P.; Sánchez, A.; Gamella, M.; Martínez-Ruíz, P.; Aznar, E.; De La Torre, C.; Murguía, J.R.; Martínez-Máñez, R.; Villalonga, R.; Pingarrón, J.M. Toward the design of smart delivery systems controlled by integrated enzyme-based biocomputing ensembles. J. Am. Chem. Soc. 2014, 136, 9116–9123. [Google Scholar] [CrossRef] [PubMed]
- FRENS, G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nat. Phys. Sci. 1973, 241, 20–22. [Google Scholar] [CrossRef]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
- Villalonga, R.; Díez, P.; Sánchez, A.; Aznar, E.; Martínez-Máñez, R.; Pingarrón, J.M. Enzyme-Controlled Sensing-Actuating Nanomachine Based on Janus Au-Mesoporous Silica Nanoparticles. Chem. Eur. J. 2013, 19, 7889–7894. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Rachmawati, H.; Edityaningrum, C.A.; Mauludin, R. Molecular inclusion complex of curcumin-β-cyclodextrin nanoparticle to enhance Curcumin skin permeability from hydrophilic matrix gel. AAPS PharmSciTech 2013, 14, 1303–1312. [Google Scholar] [CrossRef] [Green Version]
- Sanaeishoar, H.; Sabbaghan, M.; Mohave, F. Synthesis and characterization of micro-mesoporous MCM-41 using various ionic liquids as co-templates. Microporous Mesoporous Mater. 2015, 217, 219–224. [Google Scholar] [CrossRef]
- Nakamura, M.; Ishimura, K. Synthesis and characterization of organosilica nanoparticles prepared from 3-mercaptopropyltrimethoxysilane as the single silica source. J. Phys. Chem. C 2007, 111, 18892–18898. [Google Scholar] [CrossRef]
- Shambetova, N.; Chen, Y.; Xu, H.; Li, L.; Solandt, J.; Zhou, Y.; Wang, J.; Su, H.; Brismar, H.; Fu, Y. Acid Dissociation of 3-Mercaptopropionic Acid Coated CdSe-CdS/Cd0.5Zn0.5S/ZnS Core-Multishell Quantum Dot and Strong Ionic Interaction with Ca2+ Ion. J. Phys. Chem. C 2016, 120, 3519–3529. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jimenez-Falcao, S.; Torres, D.; Martínez-Ruiz, P.; Vilela, D.; Martínez-Máñez, R.; Villalonga, R. Sucrose-Responsive Intercommunicated Janus Nanoparticles Network. Nanomaterials 2021, 11, 2492. https://doi.org/10.3390/nano11102492
Jimenez-Falcao S, Torres D, Martínez-Ruiz P, Vilela D, Martínez-Máñez R, Villalonga R. Sucrose-Responsive Intercommunicated Janus Nanoparticles Network. Nanomaterials. 2021; 11(10):2492. https://doi.org/10.3390/nano11102492
Chicago/Turabian StyleJimenez-Falcao, Sandra, Daniel Torres, Paloma Martínez-Ruiz, Diana Vilela, Ramón Martínez-Máñez, and Reynaldo Villalonga. 2021. "Sucrose-Responsive Intercommunicated Janus Nanoparticles Network" Nanomaterials 11, no. 10: 2492. https://doi.org/10.3390/nano11102492
APA StyleJimenez-Falcao, S., Torres, D., Martínez-Ruiz, P., Vilela, D., Martínez-Máñez, R., & Villalonga, R. (2021). Sucrose-Responsive Intercommunicated Janus Nanoparticles Network. Nanomaterials, 11(10), 2492. https://doi.org/10.3390/nano11102492