Ultraflexible Liposome Nanocargo as a Dermal and Transdermal Drug Delivery System
Abstract
:1. Introduction
2. History of Lipid Carriers and Vesicles
3. Ultraflexible Vesicles and Ethanolic Vesicles
- Interaction of the substance with the stratum corneum;
- Diffusion of the substance through the stratum corneum;
- Crossing from the lipophilic stratum corneum to the more aqueous viable epidermis;
- Continuing movement from the avascular epidermis to the highly perfused dermal tissue;
- Uptake through the microcirculation to the systemic circulation.
4. Liposome Vesicle Generation
4.1. Transfersomes
4.2. Ethosomes
4.3. Transethosomes
Characters | Liposomes | Transfersomes | Ethosomes | Transethosomes | References |
---|---|---|---|---|---|
Vesicles | Bilayer lipid vesicle | 2nd generation elastic lipid vesicle carriers | 3rd generation elastic lipid vesicle carriers | 3rd generation | [2,24,32] |
Lamellarity | Uni/bilayer lipid vesicle | Double bilayer lipid vesicle | Multiple bilayer lipid vesicle | Multiple bilayer lipid vesicle | |
Composition | Phospholipids and cholesterol | Phospholipids and edge activator surfactant | Phospholipids and ethanol | Phospholipids, edge activator surfactant, and ethanol | [2,24,32,42,53,54,56,76] |
Surfactant role | Phospholipid (lecithin) | Sodium deoxycholate | Phospholipid (lecithin) and ethanol | Sodium deoxycholate, oleic acid | |
Characteristics | Microscopic spheres (vesicles) | Ultraflexible liposome | Elastic liposome | Ultraflexible elastic liposome | [2,24,32,42,53,54,56,76] |
Flexibility | Rigid in nature | High deformability due to the surfactant | High deformability and elasticity due to the ethanol | Ultra-deformability due to the surfactant and ethanol | [2,53,54,56,76] |
Permeation mechanism | Diffusion/fusion/lipolysis | Deformation of vesicle | Lipid perturbation | Lipid perturbation due to the ethanol and deformation of vesicles by surfactant | [2,24,32,56,76] |
ζ potential | Neutral | Positive or negative | Negative | Positive or negative | |
Extent of skin penetration | The penetration rate is significantly lower, as the stiff shape and size do not allow it to pass through the stratum corneum | Can easily penetrate through paracellular space due to the flexible structure | Can easily penetrate through paracellular space via ethanol effect | Can easily penetrate through paracellular space via flexible structure and ethanol effect | [2,24,32,42,53,54,56,76] |
Route of administration | Oral, parenteral, topical, and transdermal | Topical and transdermal | Topical and transdermal | Topical and transdermal | [2,24,32,42,53,54,56,76] |
Limitations | It cannot penetrate into deeper skin | Due to the surfactant, it may cause skin irritation and stable in gel form only | All drugs are non-soluble in ethanol | Due to the surfactant, it may cause skin irritation, and drug loss during the process of formulation | [2,24,32,42,53,54,56,76] |
Marketed products | AmBisome, DaunoXome Doxil, Abelcet | Transfersomes® (Idea AG) Flexiseq | Nanominox, Cellutight EF, Noicellex, Decorin Cream | Nil | [2,24,32,42,53,54,56,76] |
5. Application of Ultraflexible and Elastic Vesicles
5.1. Applications of Ultraflexible and Elastic Vesicles in Cancer
5.2. Fungal Infection
5.3. Inflammation
5.4. Analgesic
5.5. Viral Infection
5.6. Bacterial Infection
5.7. Other Disease
6. Future Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
API | Active pharmaceutical ingredient |
RES | Reticuloendothelial system |
NLCs | Nanostructured lipid carriers |
GRAS | Generally recognized as safe |
TEs | Transethosomes |
SC | Stratum corneum |
HA | Novel hyaluronic acid |
5-FU | 5-Fluorouracil |
HA-GMS-T | Hyaluronic acid–glycerol monostearate–transfersome |
MTO | Mitoxantrone |
PEG | Polyethylene glycol |
MIC | Minimum inhibitory concentration |
ECN | Econazole nitrate |
EVs | Elastic vesicles |
VICCO | Vishnu Industrial Chemical Company |
GIT | Gastrointestinal tract |
SH | Sinomenine hydrochloride |
NE | Non-ethosomal |
HIV | Human immunodeficiency virus |
HA–PG–ES | Hyaluronic-acid-coupled propylene-glycol-based ethosome |
SLN | Solid lipid nanoparticles |
PDT | Photodynamic therapy |
SCC | Squamous-cell carcinoma |
References
- Wilbur, R.L. The Difference between Topical and Transdermal Medications. Available online: https://genscopharma.com/difference-topical-transdermal-medications/ (accessed on 13 March 2021).
- Sudhakar, C.K.; Upadhyay, N.; Jain, S.; Charyulu, R.N. Ethosomes as Non-invasive Loom for Transdermal Drug Delivery. In Nanomedicine and Drug Delivery; Sebastian, M., Ninan, N., Haghi, A.K., Eds.; Apple Academic Press: San Diego, CA, USA, 2012; Volume 1, pp. 1–16. [Google Scholar]
- Ogunsola, O.A.; Kraeling, M.E.; Zhong, S.; Pochan, D.J.; Bronaugh, R.L.; Raghavan, S.R. Structural analysis of “flexible” liposome formulations: New insights into the skin-penetrating ability of soft nanostructures. Soft Matter. 2012, 8, 10226–10232. [Google Scholar] [CrossRef]
- Singh, S.; Vardhan, H.; Kotla, N.G.; Maddiboyina, B.; Sharma, D.; Webster, T.J. The role of surfactants in the formulation of elastic liposomal gels containing a synthetic opioid analgesic. Int. J. Nanomed. 2016, 11, 1475–1482. [Google Scholar]
- Puglia, C.; Tirendi, G.G.; Bonina, F. Emerging role of colloidal drug delivery systems (CDDS) in NSAID topical administration. Curr. Med. Chem. 2013, 20, 1847–1857. [Google Scholar] [CrossRef]
- Touitou, E. Drug delivery across the skin. Expert Opin. Biol. Ther. 2002, 2, 723–733. [Google Scholar] [CrossRef]
- Abd El-Alim, S.H.; Kassem, A.A.; Basha, M.; Salama, A. Comparative study of liposomes, ethosomes and transfersomes as carriers for enhancing the transdermal delivery of diflunisal: In vitro and in vivo evaluation. Int. J. Pharm. 2019, 563, 293–303. [Google Scholar] [CrossRef]
- Albash, R.; Abdelbary, A.A.; Refai, H.; El-Nabarawi, M.A. Use of transethosomes for enhancing the transdermal delivery of olmesartan medoxomil: In vitro, ex vivo, and in vivo evaluation. Int. J. Nanomed. 2019, 14, 1953–1968. [Google Scholar] [CrossRef] [Green Version]
- Omar, M.M.; Hasan, O.A.; El Sisi, A.M. Preparation and optimization of lidocaine transferosomal gel containing permeation enhancers: A promising approach for enhancement of skin permeation. Int. J. Nanomed. 2019, 14, 1551–1562. [Google Scholar] [CrossRef] [Green Version]
- Ramadon, D.; McCrudden, M.T.C.; Courtenay, A.J.; Donnelly, R.F. Enhancement strategies for transdermal drug delivery systems: Current trends and applications. Drug Deliv. Transl. Res. 2021. [Google Scholar] [CrossRef]
- Trucillo, P.; Campardelli, R.; Reverchon, E. Liposomes: From Bangham to Supercritical Fluidss. Processes 2020, 8, 1022. [Google Scholar] [CrossRef]
- Maja, L.; Željko, K.; Mateja, P. Sustainable technologies for liposome preparation. J. Supercrit. Fluids 2020, 165, 104984. [Google Scholar] [CrossRef]
- Arora, D.; Nanda, S. Quality by design driven development of resveratrol loaded ethosomal hydrogel for improved dermatological benefits via enhanced skin permeation and retention. Int. J. Pharm. 2019, 567, 118448. [Google Scholar] [CrossRef]
- Taglietti, M.; Hawkins, C.N.; Rao, J. Novel Topical Drug Delivery Systems and Their Potential Use in Acne Vulgaris. Skin Ther. Lett. 2008, 13, 2. [Google Scholar]
- Weissig, V. Liposomes Came First: The Early History of Liposomology. Methods Mol. Biol. 2017, 1522, 1–15. [Google Scholar]
- Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 1965, 13, 238-IN27. [Google Scholar] [CrossRef]
- Perrie, Y. Gregory Gregoriadis: Introducing liposomes to drug delivery. J. Drug Target. 2008, 16, 518–519. [Google Scholar] [CrossRef]
- Duzgüneş, N.; Gregoriadis, G. Introduction: The Origins of Liposomes: Alec Bangham at Babraham. Methods Enzymol. Liposomes 2005, 391, 1–3. [Google Scholar]
- Allen, T.M.; Cullis, P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013, 65, 36–48. [Google Scholar] [CrossRef]
- Lian, T.; Ho, R.J. Trends and developments in liposome drug delivery systems. J. Pharm. Sci. 2001, 90, 667–680. [Google Scholar] [CrossRef]
- Gregoriadis, G.; Florence, A.T. Liposomes in drug delivery. Clinical, diagnostic and ophthalmic potential. Drugs 1993, 45, 15–28. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef] [Green Version]
- Rai, S.; Pandey, V.; Rai, G. Transfersomes as versatile and flexible nano-vesicular carriers in skin cancer therapy: The state of the art. Nano Rev. Exp. 2017, 8, 1325708. [Google Scholar] [CrossRef]
- Mishra, V.; Bansal, K.K.; Verma, A.; Yadav, N.; Thakur, S.; Sudhakar, K.; Rosenholm, J.M. Solid Lipid Nanoparticles: Emerging Colloidal Nano Drug Delivery Systems. Pharmaceutics 2018, 10, 191. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, S.; Ray, S.; Thakur, R.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system. Indian J. Pharm. Sci. 2009, 71, 349–358. [Google Scholar] [CrossRef] [Green Version]
- Muller, R.H.; Radtke, M.; Wissing, S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Deliv. Rev. 2002, 54 (Suppl. 1), S131–S155. [Google Scholar] [CrossRef]
- Czajkowska-Kosnik, A.; Szekalska, M.; Winnicka, K. Nanostructured lipid carriers: A potential use for skin drug delivery systems. Pharm. Rep. 2019, 71, 156–166. [Google Scholar] [CrossRef]
- Fujii, S.; Yamada, S.; Matsumoto, S.; Kubo, G.; Yoshida, K.; Tabata, E.; Miyake, R.; Sanada, Y.; Akiba, I.; Okobira, T.; et al. Platonic Micelles: Monodisperse Micelles with Discrete Aggregation Numbers Corresponding to Regular Polyhedra. Sci. Rep. 2017, 7, 44494. [Google Scholar] [CrossRef] [Green Version]
- Lombardo, D.; Calandra, P.; Barreca, D.; Magazu, S.; Kiselev, M.A. Soft Interaction in Liposome Nanocarriers for Therapeutic Drug Delivery. Nanomaterials 2016, 6, 125. [Google Scholar] [CrossRef] [PubMed]
- Pelizzetti, E.; Pramauro, E. Analytical applications of organized molecular assemblies. Anal. Chim. Acta 1985, 169, 1–29. [Google Scholar] [CrossRef]
- Alavi, M.; Karimi, N.; Safaei, M. Application of Various Types of Liposomes in Drug Delivery Systems. Adv. Pharm Bull. 2017, 7, 3–9. [Google Scholar] [CrossRef]
- Paliwal, S.; Tilak, A.; Sharma, J.; Dave, V.; Sharma, S.; Verma, K.; Tak, K.; Reddy, K.R.; Sadhu, V. Flurbiprofen-loaded ethanolic liposome particles for biomedical applications. J. Microbiol. Methods 2019, 161, 18–27. [Google Scholar] [CrossRef]
- Garg, B.J.; Garg, N.K.; Beg, S.; Singh, B.; Katare, O.P. Nanosized ethosomes-based hydrogel formulations of methoxsalen for enhanced topical delivery against vitiligo: Formulation optimization, in vitro evaluation and preclinical assessment. J. Drug Target. 2016, 24, 233–246. [Google Scholar] [CrossRef]
- Moolakkadath, T.; Aqil, M.; Ahad, A.; Imam, S.S.; Praveen, A.; Sultana, Y.; Mujeeb, M.; Iqbal, Z. Fisetin loaded binary ethosomes for management of skin cancer by dermal application on UV exposed mice. Int. J. Pharm. 2019, 560, 78–91. [Google Scholar] [CrossRef]
- Ibrahim, T.M.; Abdallah, M.H.; El-Megrab, N.A.; El-Nahas, H.M. Transdermal ethosomal gel nanocarriers; a promising strategy for enhancement of anti-hypertensive effect of carvedilol. J. Liposome Res. 2019, 29, 215–228. [Google Scholar] [CrossRef]
- Ma, L.; Wang, X.; Wu, J.; Zhang, D.; Zhang, L.; Song, X.; Hong, H.; He, C.; Mo, X.; Wu, S.; et al. Polyethylenimine and sodium cholate-modified ethosomes complex as multidrug carriers for the treatment of melanoma through transdermal delivery. Nanomedicine 2019, 14, 2395–2408. [Google Scholar] [CrossRef]
- Nasr, S.; Rady, M.; Gomaa, I.; Syrovets, T.; Simmet, T.; Fayad, W.; Abdel-Kader, M. Ethosomes and lipid-coated chitosan nanocarriers for skin delivery of a chlorophyll derivative: A potential treatment of squamous cell carcinoma by photodynamic therapy. Int. J. Pharm. 2019, 568, 118528. [Google Scholar] [CrossRef]
- Jiang, G.B.; Quan, D.; Liao, K.; Wang, H. Novel polymer micelles prepared from chitosan grafted hydrophobic palmitoyl groups for drug delivery. Mol. Pharm. 2006, 3, 152–160. [Google Scholar] [CrossRef]
- Yucel, C.; Seker Karatoprak, G.; Degim, I.T. Anti-aging formulation of rosmarinic acid-loaded ethosomes and liposomes. J. Microencapsul. 2019, 36, 180–191. [Google Scholar] [CrossRef]
- Cui, Y.; Mo, Y.; Zhang, Q.; Tian, W.; Xue, Y.; Bai, J.; Du, S. Microneedle-Assisted Percutaneous Delivery of Paeoniflorin-Loaded Ethosomes. Molecules 2018, 23, 3371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qushawy, M.; Nasr, A.; Abd-Alhaseeb, M.; Swidan, S. Design, Optimization and Characterization of a Transfersomal Gel Using Miconazole Nitrate for the Treatment of Candida Skin Infections. Pharmaceutics 2018, 10, 26. [Google Scholar] [CrossRef] [Green Version]
- Raj, R.; Raj, P.M.; Ram, A. Nanosized ethanol based malleable liposomes of cytarabine to accentuate transdermal delivery: Formulation optimization, in vitro skin permeation and in vivo bioavailability. Artif. Cells Nanomed. Biotechnol. 2018, 46 (Suppl. 2), 951–963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zorec, B.; Zupancic, S.; Kristl, J.; Pavselj, N. Combinations of nanovesicles and physical methods for enhanced transdermal delivery of a model hydrophilic drug. Eur. J. Pharm. Biopharm. 2018, 127, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Sulaiman, T.N.S.; Larasati, D.; Nugroho, A.K.; Choiri, S. Assessment of the Effect of PLGA Co-polymers and PEG on the Formation and Characteristics of PLGA-PEG-PLGA Co-block Polymer Using Statistical Approach. Adv. Pharm Bull. 2019, 9, 382–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Z.; Lin, Y.; Zhang, X.; Feng, C.; Lu, Y.; Gao, Y.; Dong, C. Cyclic RGD peptide-modified liposomal drug delivery system for targeted oral apatinib administration: Enhanced cellular uptake and improved therapeutic effects. Int. J. Nanomed. 2017, 12, 1941–1958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sudhakar, C.K.; Charyulu, R.N. Influence of Permeation enhancer on Ethosomes bearing Lamivudine for Transdermal Drug Delivery. Res. J. Recent. Sci. 2014, 3, 55–160. [Google Scholar]
- Sudhakar, C.K.; Jain, S.; Charyulu, R.N. A Comparison Study of Liposomes, Transfersomes and Ethosomes Bearing Lamivudine. Int. J. Pharm. Sci. Res. 2016, 7, 4214–4221. [Google Scholar]
- Sudhakar, C.K.; Upadhyay, N.; Jain, S.; Charyulu, R.N. Nanostructure Deformable Elastic Vesicles as Nanocarriers for the Delivery of Drugs into the Skin. In Nanotechnology-Driven Engineered Materials; Thomas, S., Grohens, Y., Kalarikkal, N., Oluwafemi, O., Eds.; Apple Academic Press: New York, NY, USA, 2017; pp. 1–20. [Google Scholar]
- Jain, S.; Tiwary, A.K.; Sapra, B.; Jain, N.K. Formulation and evaluation of ethosomes for transdermal delivery of lamivudine. AAPS PharmSciTech 2007, 8, E111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, M.M.; Nair, A.B.; Aldhubiab, B.E.; Shehata, T.M. Hydrogels and Their Combination with Liposomes, Niosomes, or Transfersomes for Dermal and Transdermal Drug Delivery. In Liposomes; Catala, A., Ed.; IntechOpen: London, UK, 2017. [Google Scholar]
- Cevc, G.; Blume, G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim. Biophys. Acta BBA Biomembr. 1992, 1104, 226–232. [Google Scholar] [CrossRef]
- Warner, R.R.; Myers, M.C.; Taylor, D.A. Electron probe analysis of human skin: Determination of the water concentration profile. J. Investig. Dermatol. 1988, 90, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Gamal, M.M.M.; Williams, A.C.; Barry, B.W. Skin Delivery of Oestradiol from Deformable and Traditional Liposomes: Mechanistic Studies. J. Pharm. Pharm. 1999, 51, 1123–1134. [Google Scholar]
- Abdulbaqi, I.M.; Darwis, Y.; Khan, N.A.; Assi, R.A.; Khan, A.A. Ethosomal nanocarriers: The impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. Int. J. Nanomed. 2016, 11, 2279–2304. [Google Scholar] [CrossRef] [Green Version]
- Song, C.K.; Balakrishnan, P.; Shim, C.K.; Chung, S.J.; Chong, S.; Kim, D.D. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: Characterization and in vitro/in vivo evaluation. Colloids Surf. B Biointerfaces 2012, 92, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Verma, P.; Pathak, K. Therapeutic and cosmeceutical potential of ethosomes: An overview. J. Adv. Pharm. Technol. Res. 2010, 1, 274–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Touitou, E.; Dayan, N.; Bergelson, L.; Godin, B.; Eliaz, M. Ethosomes—novel vesicular carriers for enhanced delivery: Characterization and skin penetration properties. J. Control Release 2000, 65, 403–418. [Google Scholar] [CrossRef]
- Ramsey, R.J.L.; Stephenson, G.R.; Hall, J.C. A review of the effects of humidity, humectants, and surfactant composition on the absorption and efficacy of highly water-soluble herbicides. Pestic. Biochem. Physiol. 2005, 82, 162–175. [Google Scholar] [CrossRef]
- Kuswahyuning, R.; Grice, J.E.; Moghimi, H.R.; Roberts, M.S. Formulation Effects in Percutaneous Absorption. In Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement; Dragicevic, N., Maibach, H., Eds.; Springer: Heidelberg, Germany, 2015; pp. 109–134. [Google Scholar]
- Torin Huzil, J.; Sivaloganathan, S.; Kohandel, M.; Foldvari, M. Drug delivery through the skin: Molecular simulations of barrier lipids to design more effective noninvasive dermal and transdermal delivery systems for small molecules, biologics, and cosmetics. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2011, 3, 449–462. [Google Scholar] [CrossRef]
- Kong, M.; Hou, L.; Wang, J.; Feng, C.; Liu, Y.; Cheng, X.; Chen, X. Enhanced transdermal lymphatic drug delivery of hyaluronic acid modified transfersomes for tumor metastasis therapy. Chem. Commun. 2015, 51, 1453–1456. [Google Scholar] [CrossRef]
- Pawar, A.Y. Transfersome: A Novel Technique Which Improves Transdermal Permeability. Asian J. Pharm. 2016, 10, S425. [Google Scholar]
- Holmgaard, R.; Nielsen, J.B. Dermal absorption of pesticides—Evaluation of variability and prevention. Danish Environmental Protection Agency. In Pesticides Research; Environmental Medicine Institute of Public Health University of Southern Denmark: Odense, Denmark, 2009; pp. 1–98. Available online: https://www2.mst.dk/udgiv/publications/2009/978-87-7052-980-8/pdf/978-87-7052-981-5.pdf (accessed on 15 September 2021).
- Sudhakar, K.; Mishra, V.; Riyaz, B.; Jain, A.; Charyulu, R.N.; Jain, S. Hydrogel-Based Drug Delivery for Lung Cancer. In Nanotechnology-Based Targeted Drug Delivery Systems for Lung Cancer; Academic Press: Cambridge, MA, USA, 2019; pp. 293–310. [Google Scholar]
- Ahmed, T.A.; Alzahrani, M.M.; Sirwi, A.; Alhakamy, N.A. The Antifungal and Ocular Permeation of Ketoconazole from Ophthalmic Formulations Containing Trans-Ethosomes Nanoparticles. Pharmaceutics 2021, 13, 151. [Google Scholar] [CrossRef]
- De Leo, V.; Milano, F.; Agostiano, A.; Catucci, L. Recent Advancements in Polymer/Liposome Assembly for Drug Delivery: From Surface Modifications to Hybrid Vesicles. Polymers 2021, 13, 1027. [Google Scholar] [CrossRef]
- Castaneda-Reyes, E.D.; Perea-Flores, M.J.; Davila-Ortiz, G.; Lee, Y.; Gonzalez de Mejia, E. Development, Characterization and Use of Liposomes as Amphipathic Transporters of Bioactive Compounds for Melanoma Treatment and Reduction of Skin Inflammation: A Review. Int. J. Nanomed. 2020, 15, 7627–7650. [Google Scholar] [CrossRef]
- Opatha, S.A.T.; Titapiwatanakun, V.; Chutoprapat, R. Transfersomes: A Promising Nanoencapsulation Technique for Transdermal Drug Delivery. Pharmaceutics 2020, 12, 855. [Google Scholar] [CrossRef]
- Paiva-Santos, A.C.; Silva, A.L.; Guerra, C.; Peixoto, D.; Pereira-Silva, M.; Zeinali, M.; Mascarenhas-Melo, F.; Castro, R.; Veiga, F. Ethosomes as Nanocarriers for the Development of Skin Delivery Formulations. Pharm. Res. 2021, 38, 947–970. [Google Scholar] [CrossRef]
- Amarachinta, P.R.; Sharma, G.; Samed, N.; Chettupalli, A.K.; Alle, M.; Kim, J.C. Central composite design for the development of carvedilol-loaded transdermal ethosomal hydrogel for extended and enhanced anti-hypertensive effect. J. Nanobiotechnol. 2021, 19, 100. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, R.; Qi, X.; Li, W.; Guan, Q.; Wang, R.; Li, X.; Li, Y.; Yang, Z.; Feng, Y. Novel transethosomes for the delivery of brucine and strychnine: Formulation optimization, characterization and in vitro evaluation in hepatoma cells. J. Drug Deliv. Sci. Technol. 2021, 64, 102425. [Google Scholar] [CrossRef]
- Barupal, A.K.; Gupta, V.; Ramteke, S. Preparation and Characterization of Ethosomes for Topical delivery of Aceclofenac. Indian J. Pharm. Sci. 2010, 72, 582–586. [Google Scholar] [PubMed] [Green Version]
- Wartewig, S.; Neubert, R.; Rettig, W.; Hesse, K. Structure of stratum corneum lipids characterized by FT-Raman spectroscopy and DSC. IV. Mixtures of ceramides and oleic acid. Chem. Phys. Lipids 1998, 91, 145–152. [Google Scholar] [CrossRef]
- Lin, J.; Wang, S.; Huang, P.; Wang, Z.; Chen, S.; Niu, G.; Li, W.; He, J.; Cui, D.; Lu, G.; et al. Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano 2013, 7, 5320–5329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdulbaqi, I.M.; Darwis, Y.; Assi, R.A.; Khan, N.A.K. Transethosomal gels as carriers for the transdermal delivery of colchicine: Statistical optimization, characterization, and ex vivo evaluation. Drug Des. Devel. 2018, 12, 795–813. [Google Scholar] [CrossRef] [Green Version]
- Majumder, P.; Baxa, U.; Walsh, S.T.R.; Schneider, J.P. Design of a Multicompartment Hydrogel that Facilitates Time-Resolved Delivery of Combination Therapy and Synergized Killing of Glioblastoma. Angew. Chem. Int. Ed. Engl. 2018, 57, 15040–15044. [Google Scholar] [CrossRef]
- Sguizzato, M.; Ferrara, F.; Hallan, S.S.; Baldisserotto, A.; Drechsler, M.; Malatesta, M.; Costanzo, M.; Cortesi, R.; Puglia, C.; Valacchi, G.; et al. Ethosomes and Transethosomes for Mangiferin Transdermal Delivery. Antioxidants 2021, 10, 768. [Google Scholar] [CrossRef]
- Cristiano, M.C.; Froiio, F.; Spaccapelo, R.; Mancuso, A.; Nistico, S.P.; Udongo, B.P.; Fresta, M.; Paolino, D. Sulforaphane-Loaded Ultradeformable Vesicles as A Potential Natural Nanomedicine for the Treatment of Skin Cancer Diseases. Pharmaceutics 2019, 12, 6. [Google Scholar] [CrossRef] [Green Version]
- Nayak, D.; Thathapudi, N.C.; Ashe, S.; Nayak, B. Bioengineered ethosomes encapsulating AgNPs and Tasar silk sericin proteins for non melanoma skin carcinoma (NMSC) as an alternative therapeutics. Int. J. Pharm. 2021, 596, 120265. [Google Scholar] [CrossRef]
- Abouhussein, D.M.N. Enhanced transdermal permeation of BCS class IV aprepitant using binary ethosome: Optimization, characterization and ex vivo permeation. J. Drug Deliv. Sci. Technol. 2021, 61, 102185. [Google Scholar] [CrossRef]
- Apolinário, A.C.; Hauschke, L.; Nunes, J.R.; Lopes, L.B. Towards nanoformulations for skin delivery of poorly soluble API: What does indeed matter? J. Drug Deliv. Sci. Technol. 2020, 60, 102045. [Google Scholar] [CrossRef]
- Gupta, V.; Karthikeyan, C.; Trivedi, P. Localized delivery of cisplatin for the effective management of squamous cell carcinoma from protransfersome formulation. Arch. Pharm Res. 2012, 35, 851–859. [Google Scholar] [CrossRef]
- Gonzalez-Rodriguez, M.L.; Arroyo, C.M.; Cozar-Bernal, M.J.; Gonzalez, R.P.; Leon, J.M.; Calle, M.; Canca, D.; Rabasco, A.M. Deformability properties of timolol-loaded transfersomes based on the extrusion mechanism. Statistical optimization of the process. Drug Dev. Ind. Pharm. 2016, 42, 1683–1694. [Google Scholar] [CrossRef]
- Yu, X.; Du, L.; Li, Y.; Fu, G.; Jin, Y. Improved anti-melanoma effect of a transdermal mitoxantrone ethosome gel. Biomed. Pharm. 2015, 73, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, H.; Nagasaki, Y.; Kataoka, K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv. Drug Deliv. Rev. 2003, 55, 403–419. [Google Scholar] [CrossRef]
- Eskolaky, E.B.; Ardjmand, M.; Akbarzadeh, A. Evaluation of anti-cancer properties of pegylated ethosomal paclitaxel on human melanoma cell line SKMEL-3. Trop. J. Pharm. Res. 2015, 14, 1421. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Chen, Y.; Ding, J.; Zhang, C.; Zhang, A.; He, D.; Zhang, Y. Biocompatible 5-Aminolevulinic Acid/Au Nanoparticle-Loaded Ethosomal Vesicles for In Vitro Transdermal Synergistic Photodynamic/Photothermal Therapy of Hypertrophic Scars. Nanoscale Res. Lett. 2017, 12, 622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moolakkadath, T.; Aqil, M.; Ahad, A.; Imam, S.S.; Iqbal, B.; Sultana, Y.; Mujeeb, M.; Iqbal, Z. Development of transethosomes formulation for dermal fisetin delivery: Box-Behnken design, optimization, in vitro skin penetration, vesicles-skin interaction and dermatokinetic studies. Artif Cells Nanomed. Biotechnol. 2018, 46 (Suppl. 2), 755–765. [Google Scholar] [CrossRef] [Green Version]
- Bhalaria, M.K.; Naik, S.; Misra, A.N. Ethosomes: A novel delivery system for antifungal drugs in the treatment of topical fungal diseases. Indian J. Exp. Biol. 2009, 47, 368–375. [Google Scholar]
- Verma, S.; Utreja, P. Transethosomes of Econazole Nitrate for Transdermal Delivery: Development, In-vitro Characterization, and Ex-vivo Assessment. Pharm. Nanotechnol. 2018, 6, 171–179. [Google Scholar] [CrossRef]
- Agrawal, R.; Sandhu, S.K.; Sharma, I.; Kaur, I.P. Development and evaluation of curcumin-loaded elastic vesicles as an effective topical anti-inflammatory formulation. AAPS PharmSciTech. 2015, 16, 364–374. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Zhang, H.; Sun, J.; Wang, P.; Dong, K.; Dong, Y.; Xing, J. Enhanced transdermal delivery of sinomenine hydrochloride by ethosomes for anti-inflammatory treatment. J. Drug Deliv. Sci. Technol. 2016, 36, 201–207. [Google Scholar] [CrossRef]
- Singh, H.P.; Utreja, P.; Tiwary, A.K.; Jain, S. Elastic liposomal formulation for sustained delivery of colchicine: In vitro characterization and in vivo evaluation of anti-gout activity. AAPS J. 2009, 11, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wo, Y.; Zhang, Y.; Wang, D.; He, R.; Chen, H.; Cui, D. In vitro study of ethosome penetration in human skin and hypertrophic scar tissue. Nanomedicine 2012, 8, 1026–1033. [Google Scholar] [CrossRef] [PubMed]
- Ghanbarzadeh, S.; Arami, S. Enhanced transdermal delivery of diclofenac sodium via conventional liposomes, ethosomes, and transfersomes. Biomed. Res. Int. 2013, 2013, 616810. [Google Scholar] [CrossRef] [PubMed]
- Caddeo, C.; Sales, O.D.; Valenti, D.; Sauri, A.R.; Fadda, A.M.; Manconi, M. Inhibition of skin inflammation in mice by diclofenac in vesicular carriers: Liposomes, ethosomes and PEVs. Int. J. Pharm. 2013, 443, 128–136. [Google Scholar] [CrossRef]
- Garg, V.; Singh, H.; Bhatia, A.; Raza, K.; Singh, S.K.; Singh, B.; Beg, S. Systematic Development of Transethosomal Gel System of Piroxicam: Formulation Optimization, In Vitro Evaluation, and Ex Vivo Assessment. AAPS PharmSciTech. 2017, 18, 58–71. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.K.; Gupta, Y.; Jain, A.; Rai, K. Enhanced transdermal delivery of acyclovir sodium via elastic liposomes. Drug Deliv. 2008, 15, 141–147. [Google Scholar] [CrossRef]
- Oussoren, C. Liposomes as carriers of the antiretroviral agent dideoxycytidine-5′-triphosphate. Int. J. Pharm. 1999, 180, 261–270. [Google Scholar] [CrossRef]
- Maurya, S.D.; Prajapati, S.; Gupta, A.; Saxena, G. Formulation development and evaluation of ethosome of stavudine. Int. J. Pharm. Edu. Res. 2010, 44, 102–108. [Google Scholar]
- Godin, B.; Touitou, E. Mechanism of bacitracin permeation enhancement through the skin and cellular membranes from an ethosomal carrier. J. Control Release 2004, 94, 365–379. [Google Scholar] [CrossRef]
- Darwhekar, G.; Jain, D.K.; Choudhary, A. Elastic liposomes for delivery of neomycin sulphate in deep skin infection. Asian J. Pharm. Sci. 2012, 7, 230–240. [Google Scholar]
- Godin, B.; Touitou, E. Erythromycin ethosomal systems: Physicochemical characterization and enhanced antibacterial activity. Curr. Drug Deliv. 2005, 2, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Vecchio, D.; Li, J.; Zhu, J.; Zhang, Q.; Fu, V.; Li, J.; Thamphiwatana, S.; Lu, D.; Zhang, L. Hydrogel containing nanoparticle-stabilized liposomes for topical antimicrobial delivery. ACS Nano 2014, 8, 2900–2907. [Google Scholar] [CrossRef] [PubMed]
- Ascenso, A.; Raposo, S.; Batista, C.; Cardoso, P.; Mendes, T.; Praca, F.G.; Bentley, M.V.; Simoes, S. Development, characterization, and skin delivery studies of related ultradeformable vesicles: Transfersomes, ethosomes, and transethosomes. Int. J. Nanomed. 2015, 10, 5837–5851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarwa, K.K.; Mazumder, B.; Rudrapal, M.; Verma, V.K. Potential of capsaicin-loaded transfersomes in arthritic rats. Drug Deliv. 2015, 22, 638–646. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xia, Q.; Li, Y.; He, Z.; Li, Z.; Guo, T.; Wu, Z.; Feng, N. CD44 Assists the Topical Anti-Psoriatic Efficacy of Curcumin-Loaded Hyaluronan-Modified Ethosomes: A New Strategy for Clustering Drug in Inflammatory Skin. Theranostics 2019, 9, 48–64. [Google Scholar] [CrossRef] [PubMed]
- Kaur, P.; Garg, V.; Bawa, P.; Sharma, R.; Singh, S.K.; Kumar, B.; Gulati, M.; Pandey, N.K.; Narang, R.; Wadhwa, S.; et al. Formulation, Systematic Optimization, in Vitro, Ex Vivo, and Stability Assessment of Transethosome Based Gel of Curcumin. Asian J. Pharm. Clin. Res. 2018, 11, 41. [Google Scholar] [CrossRef]
Type | Composition | Characteristics | Preparation Method | References |
---|---|---|---|---|
Micelles | Block–Polymer
|
|
| [7,28,29,30,38,44,45] |
Liposomes | Phospholipids
|
|
| [15,19,20,22,31] |
Ethosome | Phospholipids
|
|
| [2,46,47,48] |
Transfersomes | Phospholipids
|
|
| [2,4,9,41,42,43] |
Transethosomes | Phospholipids
|
|
| [2,4,35,43] |
Vesicular Carrier-Based Dosage Form | Drug | Category of Drug | Dosage Form | Disease | Outcomes | Year/Reference |
---|---|---|---|---|---|---|
Ethosome and transethosome | Mangiferin | Antioxidant and anti-inflammatory | Transdermal delivery system | Skin disorders related to pollutants. Potent carcinogens: cigarette smoke can cause melanoma, atopic dermatitis, and eczema. | Ethosomal approach offers a new delivery system for targeted delivery of mangiferin. | 2021 [77] |
Ethosome-based hydrogel | Carvedilol | Anti-hypertensive | Topical delivery | Hypertension | Improved percutaneous permeation and sustained release of carvedilol, and increases in bioavailability. | 2021 [70] |
Binary ethosomes | Fisetin | Anticancer | Transdermal delivery system | Cancer | Alternative dosage forms for the management of skin cancer; fluidized the rigid membrane of the skin of rats for smoother penetration of fisetin transethosomes. | 2019 [34] |
Ethosome gel | Carvedilol | Anti-hypertensive | Transdermal delivery system | Hypertensive angina pectoris | Enhances skin permeation of drugs and reaches into the systemic circulation. | 2019 [35] |
Liposomes, ethosomes, and transfersomes: nanovesicular hydrogels | Diflunisal | Anti-inflammatory Anti-nociceptive analgesic | Transdermal delivery system | Inflammatory diseases | Deeper penetration of drugs into different layers of skin; shows systemic circulation. | 2019 [7] |
Polyethyleneimine and sodium-cholate-modified ethosomes | Doxorubicin and curcumin | Anticancer | Transdermal delivery system | Melanoma | A combination of cytotoxic agents and chemosensitizers as well as nanocarriers can help to overcome multidrug resistance (MDR) of cancer. | 2019 [36] |
Ethosomes and lipid-coated chitosan | Ferrous chlorophyllin | Anticancer | Transdermal delivery system | Squamous-cell carcinoma | Potential for the treatment of SCC using PDT. A higher PDT effect was observed both quantitatively and qualitatively with PC/CHI in SCC monolayers and 3D spheroids compared to ethosomes. | 2019 [37] |
Ethosome and liposomes | Rosmarinic acid (RA) | Anti-aging, antioxidant, anti-collagenase, anti-elastase | Transdermal delivery system | Protects against free radicals and reduces wrinkles; inhibition of elastase enzyme | Ethosome and liposomes improved and increased RA skin penetration significantly. | 2019 [39] |
Ethosomal hydrogel | Resveratrol | Anti-aging, anti-proliferative, anti-inflammatory | Transdermal delivery system | Extrinsic skin ageing, psoriasis | Enhanced skin permeation and retention; permeation flux, and skin deposition were also found to be improved compared to conventional cream. | 2019 [13] |
Microneedle- loaded ethosome | Paeoniflorin | Anti-inflammatory | Transdermal delivery system | Rheumatoid arthritis | Combination of technology to enhance the penetration of paeoniflorin. | 2018 [40] |
Transfersomal gel | Miconazole nitrate | Antifungal | Transdermal delivery system | Superficial fungal infections, Candida skin infections | Transfersomal gel showed higher antifungal activity than marketed conventional formulation. | 2018 [41] |
Polyamido amine dendrimer G3 transfersomal gel | Lidocaine | Local anesthetics | Topical delivery | Reduces pain from sunburns and insect bites | Permeation and localization of drug in skin tissue. Prolongs the activity of lidocaine in a sustained manner. | 2019 [9] |
Ethanol-based malleable liposomes | Cytarabine | Anticancer | Transdermal delivery system | Acute myeloid leukemia | Alternative delivery of drugs for the treatment of leukemia, with low side effects and sustained release. | 2018 [42] |
Vesicles with a physical method combination | Calcein | Fluorescent dye | Transdermal delivery system | Amalgamations of ethosomes and electroporation or a physical sonoporation method to enhance the model drug’s penetration into skin layers. | 2018 [43] | |
Ethosomes and transfersomes | Sulforaphane | Anticancer and antiproliferative | Transdermal delivery system | Melanoma | Both vesicle types have enhanced percutaneous permeation. | 2019 [78] |
Ethosomes | AgNPs and sericin | Anticancer | Transdermal delivery system | Non-melanoma skin carcinoma | Novel loom for treatment of non-melanoma skin carcinoma (NMSC). | 2021 [79] |
Transethosome | Brucine and strychnine | Anticancer | Transdermal delivery system | liver cancer | Transethosome targets the hepatoma cells and sustains the release of drugs for a prolonged time to prevent the proliferation of cells. | 2021 [71] |
Binary ethosome | Aprepitant | Morpholine-based antiemetic | Transdermal delivery system | Highly emetogenic chemotherapy | Binary ethosome improved the permeation of the biopharmaceutics classification system BCS-IV drug aprepitant into the skin, compared to suspension. | 2021 [80] |
Ethosomes | Celecoxib and paclitaxel | Nonsteroidal anti-inflammatory and anticancer | Transdermal delivery system | Inflammation and cancer | Both drugs’ solubility was enhanced, and their penetration into skin was improved by ethosome carriers. | 2020 [81] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sudhakar, K.; Fuloria, S.; Subramaniyan, V.; Sathasivam, K.V.; Azad, A.K.; Swain, S.S.; Sekar, M.; Karupiah, S.; Porwal, O.; Sahoo, A.; et al. Ultraflexible Liposome Nanocargo as a Dermal and Transdermal Drug Delivery System. Nanomaterials 2021, 11, 2557. https://doi.org/10.3390/nano11102557
Sudhakar K, Fuloria S, Subramaniyan V, Sathasivam KV, Azad AK, Swain SS, Sekar M, Karupiah S, Porwal O, Sahoo A, et al. Ultraflexible Liposome Nanocargo as a Dermal and Transdermal Drug Delivery System. Nanomaterials. 2021; 11(10):2557. https://doi.org/10.3390/nano11102557
Chicago/Turabian StyleSudhakar, Kalvatala, Shivkanya Fuloria, Vetriselvan Subramaniyan, Kathiresan V. Sathasivam, Abul Kalam Azad, Shasank S. Swain, Mahendran Sekar, Sundram Karupiah, Omji Porwal, Alaka Sahoo, and et al. 2021. "Ultraflexible Liposome Nanocargo as a Dermal and Transdermal Drug Delivery System" Nanomaterials 11, no. 10: 2557. https://doi.org/10.3390/nano11102557
APA StyleSudhakar, K., Fuloria, S., Subramaniyan, V., Sathasivam, K. V., Azad, A. K., Swain, S. S., Sekar, M., Karupiah, S., Porwal, O., Sahoo, A., Meenakshi, D. U., Sharma, V. K., Jain, S., Charyulu, R. N., & Fuloria, N. K. (2021). Ultraflexible Liposome Nanocargo as a Dermal and Transdermal Drug Delivery System. Nanomaterials, 11(10), 2557. https://doi.org/10.3390/nano11102557