PbS Quantum Dots Saturable Absorber for Dual-Wavelength Solitons Generation
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Martinez, A.; Sun, Z. Nanotube and graphene saturable absorbers for fibre lasers. Nat. Photon. 2013, 7, 842–845. [Google Scholar] [CrossRef]
- Xu, N.; Wang, H.; Zhang, H.; Guo, L.; Shang, X.; Jiang, S.; Li, D. Palladium diselenide as a direct absorption saturable absorber for ultrafast mode-locked operations: From all anomalous dispersion to all normal dispersion. Nanophotonics 2020, 9, 4295–4306. [Google Scholar] [CrossRef]
- Feng, J.; Li, X.; Shi, Z.; Zheng, C.; Li, X.; Leng, D.; Wang, Y.; Liu, J.; Zhu, L. 2D ductile transition metal chalcogenides (TMCs): A novel high-performance Ag2S nanosheets for ultrafast photonics. Adv. Opt. Mater. 2019, 8, 1901762. [Google Scholar] [CrossRef]
- Wu, X.; Yu, S.; Yang, H.; Li, W.; Liu, X.; Tong, L. Effective transfer of micron-size graphene to microfibers for photonic applications. Carbon 2016, 96, 1114–1119. [Google Scholar] [CrossRef]
- Lee, E.; Choi, S.; Jeong, H.; Park, N.; Yim, W.; Kim, M.; Park, J.; Son, S.; Bae, S.; Kim, S.; et al. Active control of all-fibre graphene devices with electrical gating. Nat. Commu. 2015, 6, 6851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Jin, X.; Yang, J.; Wu, J.; Yu, Q.; Pan, Z.; Shi, X.; Xu, Y.; Wu, H.; Wang, J.; et al. Oxidation-resistant black phosphorus enable highly ambient-stable ultrafast pulse generation at a 2 μm Tm/Ho-doped fiber laser. ACS Appl. Mater. Interfaces 2019, 11, 36854–36862. [Google Scholar] [CrossRef] [PubMed]
- Fu, B.; Sun, J.; Wang, C.; Shang, C.; Xu, L.; Li, J.; Zhang, H. MXenes: Synthesis, optical properties, and applications in ultrafast photonics. Small 2021, 17, 2006054. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Liang, Z.; Jiang, X.; Chen, Y.; Li, Z.; Lu, L.; Ge, Y.; Wang, K.; Zheng, J.; Lu, S.; et al. Few-layer antimonene decorated microfiber: Ultra-short pulse generation and all-optical thresholding with enhanced long term stability. 2D Mater. 2017, 4, 045010. [Google Scholar] [CrossRef]
- Mao, D.; Du, B.; Yang, D.; Zhang, S.; Wang, Y.; Zhang, W.; She, X.; Cheng, H.; Zeng, H.; Zhao, J. Nonlinear saturable absorption of liquid-exfoliated molybdenum/tungsten ditelluride nanosheets. Small 2016, 12, 1489–1497. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Liu, M.; Liu, H.; Zheng, X.; Luo, A.; Zhao, C.; Zhang, H.; Wen, S.; Xu, W. 2 GHz passively harmonic mode-locked fiber laser by a microfiber-based topological insulator saturable absorber. Opt. Lett. 2013, 38, 5212–5215. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Rozhin, A.; Scardaci, V.; Sun, Z.; Hennrich, F.; White, I.; Milne, W.; Ferrari, A. Wideband-tuneable, nanotube modelocked, fibre laser. Nat. Nanotechnol. 2008, 3, 738–742. [Google Scholar] [CrossRef] [Green Version]
- Gladush, Y.; Mkrtchyan, A.; Kopylova, D.; Ivanenko, A.; Nyushkov, B.; Kobtsev, S.; Kokhanovskiy, A.; Khegai, A.; Melkumov, M.; Burdanova, M.; et al. Ionic liquid gated carbon nanotube saturable absorber for switchable pulse generation. Nano Lett. 2019, 19, 5836–5843. [Google Scholar] [CrossRef]
- Rafailov, E.; Cataluna, M.; Sibbett, W. Mode-locked quantum-dot lasers. Nat. Photon. 2007, 1, 395–401. [Google Scholar] [CrossRef]
- Guerreiro, P.; Ten, S.; Borrelli, N.; Butty, J.; Jabbour, G.; Peyghambarian, N. PbS quantum-dot doped glasses as saturable absorbers for mode locking of a Cr:Forsterite laser. Appl. Phys. Lett. 1997, 71, 1595–1597. [Google Scholar] [CrossRef]
- Moreels, I.; Lambert, K.; Smeets, D. Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 2009, 3, 3023–3030. [Google Scholar] [CrossRef] [Green Version]
- Lagatsky, A.; Malyarevich, A.; Savitski, V.; Gaponenko, M.; Yumashev, K.; Zhilin, A.; Brown, C.T. PbS quantum-dot-doped glass for efficient passive mode locking in a CW Yb: KYW laser. IEEE Photon. Techol. Lett. 2006, 18, 259–261. [Google Scholar] [CrossRef]
- Lee, Y.; Chen, C.; Huang, C.; Chen, S.; Jiang, J. Passively Q-switched Er3+-doped fiber lasers using colloidal PbS quantum dot saturable absorber. Opt. Express 2016, 24, 10675–10681. [Google Scholar] [CrossRef] [PubMed]
- Yun, L.; Qiu, Y.; Yang, C.; Xing, J.; Yu, K.; Xu, X.; Wei, W. PbS quantum dots as a saturable absorber for ultrafast laser. Photon. Res. 2018, 6, 1028–1032. [Google Scholar] [CrossRef]
- Wundke, K.; Pötting, S.; Auxier, J.; Schülzgen, A.; Peyghambarian, N.; Borrelli, N. PbS quantum-dot-doped glasses for ultrashort pulse generation. Appl. Phys. Lett. 2000, 76, 10–12. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, D.; Wu, X.; Zhao, L. Multi-wavelength dissipative soliton operation of an erbium doped fiber laser. Opt. Express 2009, 17, 12692–12697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Han, D.; Sun, Z.; Zeng, C.; Lu, H.; Mao, D.; Cui, Y.; Wang, F. Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes. Sci. Rep. 2013, 3, 2718. [Google Scholar] [CrossRef]
- Wu, Z.; Fu, S.; Chen, C.; Tang, M.; Shum, P.; Liu, D. Dual-state dissipative solitons from an all-normal dispersion erbium-doped fiber laser: Continuous wavelength tuning and multi-wavelength emission. Opt. Lett. 2015, 40, 2684–2687. [Google Scholar] [CrossRef]
- Zhao, C.; Dai, L.; Huang, Q.; Huang, Z.; Mou, C.; Araimi, M.; Rozhin, A.; Sergeyev, S.; Luo, Z. Dynamic polarization attractors of dissipative solitons from carbon nanotube mode-locked Er-doped laser. Nanophotonics 2020, 9, 2437–2443. [Google Scholar] [CrossRef]
- Huang, S.; Wang, Y.; Yan, P.; Zhao, J.; Li, H.; Lin, R. Tunable and switchable multi-wavelength dissipative soliton generation in a graphene oxide mode-locked Yb-doped fiber laser. Opt. Express 2014, 22, 11417–11426. [Google Scholar] [CrossRef] [PubMed]
- Yun, L. Black phosphorus saturable absorber for dual-wavelength polarization-locked vector soliton generation. Opt. Express 2017, 25, 32380–32385. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Qyyum, A.; Feng, T.; Guo, P.; Jiang, J. Lead sulfide nanoparticles for dual-wavelength ultrashort pulse generation. Nanotechnology 2020, 31, 085202. [Google Scholar] [CrossRef]
- Hines, M.; Scholes, G. Colloidal PbS nanocrystals with size-tunable near-infrared emission: Observation of post-synthesis self-narrowing of the particle size distribution. Adv. Mater. 2003, 15, 1844–1849. [Google Scholar] [CrossRef]
- Liu, X.; Yang, H.; Cui, Y.; Chen, G.; Yang, Y.; Wu, X.; Yao, X.; Han, D.; Han, X.; Zeng, C.; et al. Graphene-clad microfibre saturable absorber for ultrafast fibre lasers. Sci. Rep. 2016, 6, 26024. [Google Scholar] [CrossRef] [Green Version]
- Shang, C.; Zhang, Y.; Qin, H.; He, B.; Zhang, C.; Sun, J.; Li, J.; Ma, J.; Ji, X.; Xu, L.; et al. Review on wavelength-tunable pulsed fiber lasers based on 2D materials. Opt. Laser Technol. 2020, 131, 106375. [Google Scholar] [CrossRef]
- Agrawal, G. Nonlinear Fiber Optics, 4th ed.; Academic Press: Cambridge, MA, USA, 2007. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, L.; Zhao, W. PbS Quantum Dots Saturable Absorber for Dual-Wavelength Solitons Generation. Nanomaterials 2021, 11, 2561. https://doi.org/10.3390/nano11102561
Yun L, Zhao W. PbS Quantum Dots Saturable Absorber for Dual-Wavelength Solitons Generation. Nanomaterials. 2021; 11(10):2561. https://doi.org/10.3390/nano11102561
Chicago/Turabian StyleYun, Ling, and Wei Zhao. 2021. "PbS Quantum Dots Saturable Absorber for Dual-Wavelength Solitons Generation" Nanomaterials 11, no. 10: 2561. https://doi.org/10.3390/nano11102561
APA StyleYun, L., & Zhao, W. (2021). PbS Quantum Dots Saturable Absorber for Dual-Wavelength Solitons Generation. Nanomaterials, 11(10), 2561. https://doi.org/10.3390/nano11102561