Bimetallic M–Cu (M = Ag, Au, Ni) Nanoparticles Supported on γAl2O3-CeO2 Synthesized by a Redox Method Applied in Wet Oxidation of Phenol in Aqueous Solution and Petroleum Refinery Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Support Preparation
2.2. Monometallic and Bimetallic Catalyst Preparation
2.3. Reaction Conditions
2.3.1. Gas Phase Chromatography
2.3.2. Chemical Oxygen Demand
2.3.3. Total Organic Carbon (TOC)
2.4. Characterization Techniques
2.4.1. BET Specific Surface Area ()
2.4.2. X-ray Diffraction (XRD)
2.4.3. Ultraviolet–Visible Spectroscopy with Diffuse Reflectance (DR–UV–Vis)
2.4.4. Scanning Electron Microscopy (SEM)
2.4.5. Transmission Electron Microscopy (MET)
2.4.6. Temperature-Programmed Reduction of H2 (H2-TPR)
3. Results
3.1. Material Characterization
3.1.1. BET Specific Surface Area (SBET)
3.1.2. X-ray Diffraction (XRD)
3.1.3. Ultraviolet–Visible Spectroscopy with Diffuse Reflectance (RD–UV–Vis)
3.1.4. Scanning Electron Microscopy (SEM)
3.1.5. Transmission Electron Microscopy (TEM)
3.1.6. Temperature-Programmed Reduction of H2 (H2-TPR)
3.1.7. Phenol Degradation through CWAO
3.1.8. Petroleum Refinery Wastewater Degradation through CWAO
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keav, S.; Monteros, A.E.D.L.; Barbier, J.; Duprez, D. Wet Air Oxidation of phenol over Pt and Ru catalysts supported on cerium-based oxides: Resistance to fouling and kinetic modelling. Appl. Catal. B Environ. 2014, 150–151, 402–410. [Google Scholar] [CrossRef]
- Hu, L.; Liu, X.; Wang, Q.; Zhou, Y. Highly efficient degradation of high-loaded phenol over Ru–Cu/Al2O3 catalyst at mild conditions. RSC Adv. 2017, 7, 21507–21517. [Google Scholar] [CrossRef] [Green Version]
- Shahidi, D.; Roy, R.; Azzouz, A. Advances in catalytic oxidation of organic pollutants—Prospects for thorough mineralization by natural clay catalysts. Appl. Catal. B Environ. 2015, 174–175, 277–292. [Google Scholar] [CrossRef]
- Vittenet, J.; Aboussaoud, W.; Mendret, J.; Pic, J.-S.; Debellefontaine, H.; Lesage, N.; Faucher, K.; Manero, M.-H.; Thibault-Starzyk, F.; Leclerc, H.; et al. Catalytic ozonation with γ-Al2O3 to enhance the degradation of refractory organics in water. Appl. Catal. A Gen. 2015, 504, 519–532. [Google Scholar] [CrossRef] [Green Version]
- Anushree; Kumar, S.; Sharma, C. Synthesis, characterization and application of CuO CeO2 nanocatalysts in wet air oxidation of industrial wastewater. J. Environ. Chem. Eng. 2017, 5, 3914–3921. [Google Scholar] [CrossRef]
- Martín-Hernández, M.; Carrera, J.; Suárez-Ojeda, M.E.; Besson, M.; Descorme, C. Catalytic wet air oxidation of a high strength p-nitrophenol wastewater over Ru and Pt catalysts: Influence of the reaction conditions on biodegradability enhancement. Appl. Catal. B Environ. 2012, 123–124, 141–150. [Google Scholar] [CrossRef]
- Lebedev, A.; Polyakova, O.; Mazur, D.; Artaev, V.; Canet, I.; Lallement, A.; Vaïtilingom, M.; Deguillaume, L.; Delort, A.-M. Detection of semi-volatile compounds in cloud waters by GC×GC-TOF-MS. Evidence of phenols and phthalates as priority pollutants. Environ. Pollut. 2018, 241, 616–625. [Google Scholar] [CrossRef]
- Britto, J.M.; de Oliveira, S.B.; Rabelo, D.; Rangel, M.D.C. Catalytic wet peroxide oxidation of phenol from industrial wastewater on activated carbon. Catal. Today 2008, 133–135, 582–587. [Google Scholar] [CrossRef]
- Diya’Uddeen, B.H.; Daud, W.M.A.W.; Aziz, A.A. Treatment technologies for petroleum refinery effluents: A review. Process. Saf. Environ. Prot. 2011, 89, 95–105. [Google Scholar] [CrossRef]
- El-Naas, M.; Abu-Alhaija, M.; Al-Zuhair, S. Evaluation of a three-step process for the treatment of petroleum refinery wastewater. J. Environ. Chem. Eng. 2014, 2, 56–62. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, Y.; Quan, X. Treatment of petroleum refinery wastewater by microwave-assisted catalytic wet air oxidation under low temperature and low pressure. Sep. Purif. Technol. 2008, 62, 565–570. [Google Scholar] [CrossRef]
- Fu, J.; Kyzas, G.Z. Wet air oxidation for the decolorization of dye wastewater: An overview of the last two decades. Chin. J. Catal. 2014, 35, 1–7. [Google Scholar] [CrossRef]
- Rocha, M.L.; DelÁngel, G.; Torres, J.G.T.; Cervantes, A.; Vázquez, A.; Arrieta, A.; Beltramini, J. Effect of the Pt oxidation state and Ce3+/Ce4+ ratio on the Pt/TiO2−CeO2 catalysts in the phenol degradation by catalytic wet air oxidation (CWAO). Catal. Today 2015, 250, 145–154. [Google Scholar] [CrossRef]
- Chicinaş, R.P.; Gál, E.; Bedelean, H.; Darabantu, M.; Măicăneanu, A. Novel metal modified diatomite, zeolite and carbon xerogel catalysts for mild conditions wet air oxidation of phenol: Characterization, efficiency and reaction pathway. Sep. Purif. Technol. 2018, 197, 36–46. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhou, Y.; Peng, C.; Shi, J.; Wang, Q.; He, L.; Shi, L. Enhanced activity and stability of copper oxide/γ-alumina catalyst in catalytic wet-air oxidation: Critical roles of cerium incorporation. Appl. Surf. Sci. 2018, 436, 981–988. [Google Scholar] [CrossRef]
- Ersöz, G.; Atalay, S. Treatment of aniline by catalytic wet air oxidation: Comparative study over CuO/CeO2 and NiO/Al2O3. J. Environ. Manag. 2012, 113, 244–250. [Google Scholar] [CrossRef] [PubMed]
- Descorme, C. Catalytic wastewater treatment: Oxidation and reduction processes. Recent studies on chlorophenols. Catal. Today 2017, 297, 324–334. [Google Scholar] [CrossRef]
- Yang, S.; Besson, M.; Descorme, C. Catalytic wet air oxidation of succinic acid over Ru and Pt catalysts supported on Ce Zr1−O2 mixed oxides. Appl. Catal. B Environ. 2015, 165, 1–9. [Google Scholar] [CrossRef]
- Wei, H.; Yan, X.; He, S.; Sun, C. Catalytic wet air oxidation of pentachlorophenol over Ru/ZrO2 and Ru/ZrSiO2 catalysts. Catal. Today 2013, 201, 49–56. [Google Scholar] [CrossRef]
- Nedyalkova, R.; Besson, M.; Descorme, C. Catalytic wet air oxidation of succinic acid over monometallic and bimetallic gold based catalysts: Influence of the preparation method. Charact. Porous Solids III 2010, 175, 177–184. [Google Scholar] [CrossRef]
- Sushma; Kumari, M.; Saroha, A.K. Performance of various catalysts on treatment of refractory pollutants in industrial wastewater by catalytic wet air oxidation: A review. J. Environ. Manag. 2018, 228, 169–188. [Google Scholar] [CrossRef] [PubMed]
- Ovejero, G.; Rodríguez, A.; Vallet, A.; Willerich, S.; García, J. Application of Ni supported over mixed Mg–Al oxides to crystal violet wet air oxidation: The role of the reaction conditions and the catalyst. Appl. Catal. B Environ. 2012, 111–112, 586–594. [Google Scholar] [CrossRef]
- Arena, F.; Italiano, C.; Raneri, A.; Saja, C. Mechanistic and kinetic insights into the wet air oxidation of phenol with oxygen (CWAO) by homogeneous and heterogeneous transition-metal catalysts. Appl. Catal. B Environ. 2010, 99, 321–328. [Google Scholar] [CrossRef]
- Brussino, P.; Gross, M.; Banús, E.; Ulla, M. CuO/TiO2−ZrO2 wire-mesh catalysts for phenol wet oxidation: Substrate effect on the copper leaching. Chem. Eng. Process. Process. Intensif. 2019, 146, 107686. [Google Scholar] [CrossRef]
- Devard, A.; Brussino, P.; Marchesini, F.A.; Ulla, M.A. Cu(5%)/Al2O3 catalytic performance on the phenol wet oxidation with H2O2: Influence of the calcination temperature. J. Environ. Chem. Eng. 2019, 7, 103201. [Google Scholar] [CrossRef]
- Osman, A.I.; Abu-Dahrieh, J.K.; Laffir, F.; Curtin, T.; Thompson, J.M.; Rooney, D.W. A bimetallic catalyst on a dual component support for low temperature total methane oxidation. Appl. Catal. B Environ. 2016, 187, 408–418. [Google Scholar] [CrossRef]
- Mierczynski, P.; Vasilev, K.; Mierczynska, A.; Maniukiewicz, W.; Szynkowska, M.I.; Maniecki, T. Bimetallic Au–Cu, Au–Ni catalysts supported on MWCNTs for oxy-steam reforming of methanol. Appl. Catal. B Environ. 2016, 185, 281–294. [Google Scholar] [CrossRef]
- Li, Z.; An, Z.; Guo, Y.; Zhang, K.; Chen, X.; Zhang, D.; Xue, Z.; Zhou, X.; Lu, X. Au-Pt bimetallic nanoparticles supported on functionalized nitrogen-doped graphene for sensitive detection of nitrite. Talanta 2016, 161, 713–720. [Google Scholar] [CrossRef] [PubMed]
- Rao, G.R.; Meher, S.K.; Mishra, B.G.; Charan, P.H.K. Nature and catalytic activity of bimetallic CuNi particles on CeO2 support. Catal. Today 2012, 198, 140–147. [Google Scholar] [CrossRef]
- Destro, P.; Marras, S.; Manna, L.; Colombo, M.; Zanchet, D. AuCu alloy nanoparticles supported on SiO2: Impact of redox pretreatments in the catalyst performance in CO oxidation. Catal. Today 2017, 282, 105–110. [Google Scholar] [CrossRef]
- Silahua-Pavón, A.A.; Torres-Torres, G.; Arévalo-Pérez, J.C.; Cervantes-Uribe, A.; Guerra-Que, Z.; Cordero-García, A.; Monteros, A.E.D.L.; Beltramini, J.N. Effect of gold addition by the recharge method on silver supported catalysts in the catalytic wet air oxidation (CWAO) of phenol. RSC Adv. 2019, 9, 11123–11134. [Google Scholar] [CrossRef] [Green Version]
- Pieck, C.; Marecot, P.; Barbier, J. Preparation of Pt ReAl2O3 catalysts by surface redox reactions I. Influence of operating variables on Re deposit in the presence of hydrochloric acid. Appl. Catal. A Gen. 1996, 134, 319–329. [Google Scholar] [CrossRef]
- Benitez, V.; Boutzeloit, M.; Mazzieri, V.A.; Especel, C.; Epron, F.; Vera, C.R.; Marécot, P.; Pieck, C.L. Preparation of trimetallic Pt–Re–Ge/Al2O3 and Pt–Ir–Ge/Al2O3 naphtha reforming catalysts by surface redox reaction. Appl. Catal. A Gen. 2007, 319, 210–217. [Google Scholar] [CrossRef]
- Redina, E.; Greish, A.A.; Mishin, I.V.; Kapustin, G.I.; Tkachenko, O.P.; Kirichenko, O.; Kustov, L. Selective oxidation of ethanol to acetaldehyde over Au–Cu catalysts prepared by a redox method. Catal. Today 2015, 241, 246–254. [Google Scholar] [CrossRef]
- Guerra-Que, Z.; Torres, J.G.T.; Vidal, H.P.; Cuauhtémoc, I.; Monteros, A.E.D.L.; Beltramini, J.N.; Frías-Márquez, D.M. Silver nanoparticles supported on zirconia–ceria for the catalytic wet air oxidation of methyl tert-butyl ether. RSC Adv. 2017, 7, 3599–3610. [Google Scholar] [CrossRef] [Green Version]
- Cervantes, A.; Del Angel, G.; Torres, J.G.T.; Lafaye, G.; Barbier, J.; Beltramini, J.; Cabanas-Moreno, J.; Monteros, A.E.D.L. Degradation of methyl tert-butyl ether by catalytic wet air oxidation over Rh/TiO2–CeO2 catalysts. Catal. Today 2013, 212, 2–9. [Google Scholar] [CrossRef]
- Wang, C.; Yu, F.; Zhu, M.; Tang, C.; Zhang, K.; Zhao, D.; Dong, L.; Dai, B. Highly selective catalytic reduction of NOx by MnOx–CeO2–Al2O3 catalysts prepared by self-propagating high-temperature synthesis. J. Environ. Sci. 2019, 75, 124–135. [Google Scholar] [CrossRef]
- Baranowska, K.; Okal, J.; Tylus, W. Microwave-assisted polyol synthesis of bimetallic RuRe nanoparticles stabilized by PVP or oxide supports (γ-alumina and silica). Appl. Catal. A Gen. 2016, 511, 117–130. [Google Scholar] [CrossRef]
- Neves, T.M.; Frantz, T.S.; Schenque, E.C.C.D.; Gelesky, M.A.; Mortola, V.B. An investigation into an alternative photocatalyst based on CeO2/Al2O3 in dye degradation. Environ. Technol. Innov. 2017, 8, 349–359. [Google Scholar] [CrossRef]
- Yang, H.; Deng, J.; Liu, Y.; Xie, S.; Wu, Z.; Dai, H. Preparation and catalytic performance of Ag, Au, Pd or Pt nanoparticles supported on 3DOM CeO2–Al2O3 for toluene oxidation. J. Mol. Catal. A Chem. 2016, 414, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Rout, L.; Kumar, A.; Dhaka, R.; Reddy, G.N.; Giri, S.; Dash, P. Bimetallic Au-Cu alloy nanoparticles on reduced graphene oxide support: Synthesis, catalytic activity and investigation of synergistic effect by DFT analysis. Appl. Catal. A Gen. 2017, 538, 107–122. [Google Scholar] [CrossRef]
- More, P.M.; Nguyen, D.L.; Granger, P.; Dujardin, C.; Dongare, M.K.; Umbarkar, S.B. Activation by pretreatment of Ag–Au/Al2O3 bimetallic catalyst to improve low temperature HC-SCR of NOx for lean burn engine exhaust. Appl. Catal. B Environ. 2015, 174–175, 145–156. [Google Scholar] [CrossRef]
- Bogireddy, N.K.R.; Martinez Gomez, L.; Osorio-Roman, I.; Agarwal, V. Synthesis of gold nanoparticles using Coffea Arabica fruit extract. Adv. Nano Res. 2017, 5, 253–260. [Google Scholar] [CrossRef]
- Bai, M.; Xin, H.; Guo, Z.; Guo, D.; Wang, Y.; Zhao, P.; Li, J. α-Alkylation of ketones with primary alcohols driven by visible light and bimetallic gold and palladium nanoparticles supported on transition metal oxide. Appl. Surf. Sci. 2017, 391, 617–626. [Google Scholar] [CrossRef]
- Amaniampong, P.N.; Booshehri, A.Y.; Jia, X.; Dai, Y.; Wang, B.; Mushrif, S.H.; Borgna, A.; Yang, Y. High-temperature reduction improves the activity of rutile TiO2 nanowires-supported gold-copper bimetallic nanoparticles for cellobiose to gluconic acid conversion. Appl. Catal. A Gen. 2015, 505, 16–27. [Google Scholar] [CrossRef]
- Sandoval, A.; Aguilar, A.; Louis, C.; Traverse, A.; Zanella, R. Bimetallic Au–Ag/TiO2 catalyst prepared by deposition–precipitation: High activity and stability in CO oxidation. J. Catal. 2011, 281, 40–49. [Google Scholar] [CrossRef]
- Yang, M.; Guo, Z.; Li, L.-N.; Huang, Y.-Y.; Liu, J.-H.; Zhou, Q.; Chen, X.; Huang, X.-J. Electrochemical determination of arsenic(III) with ultra-high anti-interference performance using Au–Cu bimetallic nanoparticles. Sens. Actuators B Chem. 2016, 231, 70–78. [Google Scholar] [CrossRef]
- Liu, X.; Wang, A.; Li, L.; Zhang, T.; Mou, C.-Y.; Lee, J.-F. Synthesis of Au–Ag alloy nanoparticles supported on silica gel via galvanic replacement reaction. Prog. Nat. Sci. 2013, 23, 317–325. [Google Scholar] [CrossRef] [Green Version]
- Sacarescu, G.; Ardeleanu, R.; Sacarescu, L.; Simionescu, M. Synthesis of polysilane–bis(salicyliden)ethylenediamine Ni(II) complex. J. Organomet. Chem. 2003, 685, 202–206. [Google Scholar] [CrossRef]
- Li, W.; Wang, A.; Liu, X.; Zhang, T. Silica-supported Au–Cu alloy nanoparticles as an efficient catalyst for selective oxidation of alcohols. Appl. Catal. A Gen. 2012, 433-434, 146–151. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, C.; Xie, Y.; Yang, L.; Ling, Y.; Chen, L. Au–Cu nanoalloy/TiO2/MoS2 ternary hybrid with enhanced photocatalytic hydrogen production. J. Alloy. Compd. 2020, 820, 153440. [Google Scholar] [CrossRef]
- Dai, X.; Xu, W.; Zhang, T.; Shi, H.; Wang, T. Room temperature sintering of Cu-Ag core-shell nanoparticles conductive inks for printed electronics. Chem. Eng. J. 2019, 364, 310–319. [Google Scholar] [CrossRef]
- Yu, Q.; Chen, W.; Li, Y.; Jin, M.; Suo, Z. The action of Pt in bimetallic Au–Pt/CeO2 catalyst for water–gas shift reaction. Catal. Today 2010, 158, 324–328. [Google Scholar] [CrossRef]
- Guerra-Que, Z.; Pérez-Vidal, H.; Torres-Torres, G.; Arévalo-Pérez, J.C.; Pavón, A.A.S.; Cervantes-Uribe, A.; Monteros, A.E.D.L.; Lunagómez-Rocha, M.A. Treatment of phenol by catalytic wet air oxidation: A comparative study of copper and nickel supported on γ-alumina, ceria and γ-alumina–ceria. RSC Adv. 2019, 9, 8463–8479. [Google Scholar] [CrossRef] [Green Version]
- Durán-Álvarez, J.C.; Avella, E.; Ramírez-Zamora, R.M.; Zanella, R. Photocatalytic degradation of ciprofloxacin using mono- (Au, Ag and Cu) and bi- (Au–Ag and Au–Cu) metallic nanoparticles supported on TiO2 under UV-C and simulated sunlight. Catal. Today 2016, 266, 175–187. [Google Scholar] [CrossRef]
- Pojanavaraphan, C.; Luengnaruemitchai, A.; Gulari, E. Catalytic activity of Au-Cu/CeO2−ZrO2 catalysts in steam reforming of methanol. Appl. Catal. A Gen. 2013, 456, 135–143. [Google Scholar] [CrossRef]
- Massa, A.; Hernández, S.; Ansaloni, S.; Castellino, M.; Russo, N.; Fino, D. Enhanced electrochemical oxidation of phenol over manganese oxides under mild wet air oxidation conditions. Electrochim. Acta 2018, 273, 53–62. [Google Scholar] [CrossRef]
- Zhou, S.; Qian, Z.; Sun, T.; Xu, J.; Xia, C. Catalytic wet peroxide oxidation of phenol over Cu–Ni–Al hydrotalcite. Appl. Clay Sci. 2011, 53, 627–633. [Google Scholar] [CrossRef]
- Yu, L.; Han, M.; He, F. A review of treating oily wastewater. Arab. J. Chem. 2017, 10, S1913–S1922. [Google Scholar] [CrossRef] [Green Version]
- Pintor, A.M.; Vilar, V.; Botelho, C.; Boaventura, R.A. Oil and grease removal from wastewaters: Sorption treatment as an alternative to state-of-the-art technologies. A critical review. Chem. Eng. J. 2016, 297, 229–255. [Google Scholar] [CrossRef]
- Ani, I.; Akpan, U.; Olutoye, M.; Hameed, B. Photocatalytic degradation of pollutants in petroleum refinery wastewater by TiO2− and ZnO-based photocatalysts: Recent development. J. Clean. Prod. 2018, 205, 930–954. [Google Scholar] [CrossRef]
- Wang, N.; Wang, P. Study and application status of microwave in organic wastewater treatment—A review. Chem. Eng. J. 2016, 283, 193–214. [Google Scholar] [CrossRef]
Catalyst | SBET a (m2g−1) | PV a (cm3g−1) | PS a (nm) | a (nm) | dXRD, CeO2 b (nm) | dXRD, Al2O3 b (nm) |
---|---|---|---|---|---|---|
AlCe | 321 | 1.880 | 16 | 1.7 | - | - |
CuAlCe | 268 | 0.839 | 12 | 2 | 3 | 4 |
AgCuAlCe | 191 | 0.490 | 8 | 3 | 11 | - |
AuCuAlCe | 211 | 0.520 | 7 | 2.6 | 5 | 7 |
NiCuAlCe | 236 | 0.697 | 9 | 2.4 | 4 | 2 |
Bimetallic Catalyst | Metallic Particle by Scherrer’s Equation (nm) a | Metallic Particle by SEM (nm) |
---|---|---|
AgCuAlCe | 14 | 36 |
AuCuAlCe | 9 | n. d. |
NiCuAlCe | n. d. | 74 |
Catalysts | XC a (%) | XCOD a (%) | XTOC a (%) | A (mmol/L) | r1 a (mmol h−1g−1 phenol) | SCO2 |
---|---|---|---|---|---|---|
CuAlCe | 54 | 8 | 6 | 27 | 681 | 11 |
AgCuAlCe | 100 | 87 | 80 | 10 | 2022 | 80 |
AuCuAlCe | 99 | 93 | 89 | 9 | 1680 | 89 |
NiCuAlCe | 66 | 15 | 10 | 22 | 1234 | 15 |
pH | Temperature (°C) | COD (mg·L−1) | TOC (mg·L−1) |
---|---|---|---|
3.5 | 38–40 | 1909 | 4720 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerra-Que, Z.; Cortez-Elizalde, J.; Pérez-Vidal, H.; Arévalo-Pérez, J.C.; Silahua-Pavón, A.A.; Córdova-Pérez, G.E.; Cuauhtémoc-López, I.; Martínez-García, H.; González-Díaz, A.; Torres-Torres, J.G. Bimetallic M–Cu (M = Ag, Au, Ni) Nanoparticles Supported on γAl2O3-CeO2 Synthesized by a Redox Method Applied in Wet Oxidation of Phenol in Aqueous Solution and Petroleum Refinery Wastewater. Nanomaterials 2021, 11, 2570. https://doi.org/10.3390/nano11102570
Guerra-Que Z, Cortez-Elizalde J, Pérez-Vidal H, Arévalo-Pérez JC, Silahua-Pavón AA, Córdova-Pérez GE, Cuauhtémoc-López I, Martínez-García H, González-Díaz A, Torres-Torres JG. Bimetallic M–Cu (M = Ag, Au, Ni) Nanoparticles Supported on γAl2O3-CeO2 Synthesized by a Redox Method Applied in Wet Oxidation of Phenol in Aqueous Solution and Petroleum Refinery Wastewater. Nanomaterials. 2021; 11(10):2570. https://doi.org/10.3390/nano11102570
Chicago/Turabian StyleGuerra-Que, Zenaida, Jorge Cortez-Elizalde, Hermicenda Pérez-Vidal, Juan C. Arévalo-Pérez, Adib A. Silahua-Pavón, Gerardo E. Córdova-Pérez, Ignacio Cuauhtémoc-López, Héctor Martínez-García, Anabel González-Díaz, and José Gilberto Torres-Torres. 2021. "Bimetallic M–Cu (M = Ag, Au, Ni) Nanoparticles Supported on γAl2O3-CeO2 Synthesized by a Redox Method Applied in Wet Oxidation of Phenol in Aqueous Solution and Petroleum Refinery Wastewater" Nanomaterials 11, no. 10: 2570. https://doi.org/10.3390/nano11102570
APA StyleGuerra-Que, Z., Cortez-Elizalde, J., Pérez-Vidal, H., Arévalo-Pérez, J. C., Silahua-Pavón, A. A., Córdova-Pérez, G. E., Cuauhtémoc-López, I., Martínez-García, H., González-Díaz, A., & Torres-Torres, J. G. (2021). Bimetallic M–Cu (M = Ag, Au, Ni) Nanoparticles Supported on γAl2O3-CeO2 Synthesized by a Redox Method Applied in Wet Oxidation of Phenol in Aqueous Solution and Petroleum Refinery Wastewater. Nanomaterials, 11(10), 2570. https://doi.org/10.3390/nano11102570