Comparison of the Surface Properties of Hydrothermally Synthesised Fe3O4@C Nanocomposites at Variable Reaction Times
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Fe3O4@C Nanocomposite
2.3. Instrumental Analyses
3. Results and Discussion
3.1. Spectroscopic and Surface Characteristics of the Fe3O4@C Nanocomposites
3.1.1. Fourier Transform Infrared Spectroscopy
3.1.2. X-ray Diffraction Analysis
3.1.3. Thermogravimetric Analysis/Differential Thermogravimetry (TGA/DTG)
3.1.4. Scanning Electron Microscopy
3.1.5. Transmission Electron Microscopy
3.1.6. Brunauer–Emmett–Teller (BET) Nitrogen Adsorption–Desorption Analysis
3.2. Two-Step Fe3O4@C NCs Formation Mechanism
3.3. Statistical Analysis of the Surface Properties
3.3.1. Analysis of Variance (ANOVA)
3.3.2. Pairwise Comparisons for Surface Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Asab, G.; Zereffa, E.A.; Seghne, T.A. Synthesis of silica-coated Fe3O4 nanoparticles by microemulsion method: Characterization and evaluation of antimicrobial activity. Int. J. Biomater. 2020, 2020, 11. [Google Scholar] [CrossRef] [Green Version]
- Abdel Maksoud, M.I.A.; Elgarahy, A.M.; Farrell, C.; Al-Muhtaseb, A.H.; Rooney, D.W.; Osman, A.I. Insight on water remediation application using magnetic nanomaterials and biosorbents. Coord. Chem. Rev. 2020, 403, 213096. [Google Scholar] [CrossRef]
- Qi, M.; Zhang, K.; Li, S.; Wu, J.; Pham-Huy, C.; Diao, X.; Xiao, D.; He, H. Superparamagnetic Fe3O4 nanoparticles: Synthesis by a solvothermal process and functionalization for a magnetic targeted curcumin delivery system. New J. Chem. 2016, 40, 4480–4491. [Google Scholar] [CrossRef]
- Yew, Y.P.; Shameli, K.; Miyake, M.; Ahmad Khairudin, N.B.B.; Mohamad, S.E.B.; Naiki, T.; Lee, K.X. Green biosynthesis of superparamagnetic magnetite Fe3O4 nanoparticles and biomedical applications in targeted anticancer drug delivery system: A review. Arab. J. Chem. 2020, 13, 2287–2308. [Google Scholar] [CrossRef]
- Qin, L.; Ru, R.; Mao, J.; Meng, Q.; Fan, Z.; Li, X.; Zhang, G. Assembly of MOFs/polymer hydrogel derived Fe3O4-CuO@hollow carbon spheres for photochemical oxidation: Freezing replacement for structural adjustment. Appl. Catal. B Environ. 2020, 269, 118754. [Google Scholar] [CrossRef]
- Xiong, L.L.; Huang, R.; Chai, H.H.; Yu, L.; Li, C.M. Facile synthesis of Fe3O4@Tannic Acid@Au nanocomposites as a catalyst for 4-nitrophenol and methylene blue removal. ACS Omega 2020, 5, 20903–20911. [Google Scholar] [CrossRef]
- Vinodhkumar, G.; Wilson, J.; Inbanathan, S.S.R.; Potheher, I.V.; Ashokkumar, M.; Peter, A.C. Solvothermal synthesis of magnetically separable reduced graphene oxide/Fe3O4 hybrid nanocomposites with enhanced photocatalytic properties. Phys. B Condens. Matter 2020, 580, 411752. [Google Scholar] [CrossRef]
- Ballarin, B.; Boanini, E.; Montalto, L.; Mengucci, P.; Nanni, D.; Parise, C.; Ragazzini, I.; Rinaldi, D.; Sangiorgi, N.; Sanson, A.; et al. PANI/Au/Fe3O4 nanocomposite materials for high performance energy storage. Electrochim. Acta 2019, 322, 134707. [Google Scholar] [CrossRef]
- Pawar, S.P.; Melo, G.; Sundararaj, U. Dual functionality of hierarchical hybrid networks of multiwall carbon nanotubes anchored magnetite particles in soft polymer nanocomposites: Simultaneous enhancement in charge storage and microwave absorption. Compos. Sci. Technol. 2019, 183, 107802. [Google Scholar] [CrossRef]
- Wang, L.; Lei, T.; Ren, Z.; Jiang, X.; Yang, X.; Bai, H.; Wang, S. Fe3O4@PDA@MnO2 core-shell nanocomposites for sensitive electrochemical detection of trace Pb(II) in water. J. Electroanal. Chem. 2020, 864, 114065. [Google Scholar] [CrossRef]
- Zhu, J.; Zhou, S.; Li, M.; Xue, A.; Zhao, Y.; Peng, W.; Xing, W. PVDF mixed matrix ultrafiltration membrane incorporated with deformed rebar-like Fe3O4–palygorskite nanocomposites to enhance strength and antifouling properties. J. Memb. Sci. 2020, 612, 118467. [Google Scholar] [CrossRef]
- Ebrahimi-Tazangi, F.; Hekmatara, S.H.; Seyed-Yazdi, J. Synthesis and remarkable microwave absorption properties of amine-functionalized magnetite/graphene oxide nanocomposites. J. Alloy. Compd. 2019, 809, 151779. [Google Scholar] [CrossRef]
- An, B.H.; Park, B.C.; Yassi, H.A.; Lee, J.S.; Park, J.R.; Kim, Y.K.; Ryu, J.E.; Choi, D.S. Fabrication of graphene-magnetite multi-granule nanocluster composites for microwave absorption application. J. Compos. Mater. 2019, 53, 4097–4103. [Google Scholar] [CrossRef]
- Ma, C.; Liu, F.Y.; Wei, M.B.; Zhao, J.H.; Zhang, H.Z. Synthesis of novel core-shell magnetic Fe3O4@C nanoparticles with carboxyl function for use as an immobilisation agent to remediate lead-contaminated soils. Polish J. Environ. Stud. 2020, 29, 2273–2283. [Google Scholar] [CrossRef]
- Suchanek, W.L.; Lencka, M.M.; Riman, R.E. Hydrothermal synthesis of ceramic materials. In Aqueous Systems at Elevated Temperatures and Pressures; Palmer, D.A., Prini, R.F., Harvey, A.H., Eds.; Elsevier Ltd.: Amsterdam, The Netherlands, 2004; pp. 716–744. [Google Scholar]
- Moradiganjeh, J.; Aghajani, Z. Synthesis and characterization of novel magnetic Fe3O4/C through the co-precipitation method and investigation of its desulfurization application. J. Mater. Sci. Mater. Electron. 2016, 27, 5948–5953. [Google Scholar] [CrossRef]
- Diodati, S.; Dolcet, P.; Casarin, M.; Gross, S. Pursuing the crystallization of mono- and polymetallic nanosized crystalline inorganic compounds by low-temperature wet-chemistry and colloidal routes. Chem. Rev. 2015, 115, 11449–11502. [Google Scholar] [CrossRef] [PubMed]
- Darr, J.A.; Zhang, J.; Makwana, N.M.; Weng, X. Continuous hydrothermal synthesis of inorganic nanoparticles: Applications and future directions. Chem. Rev. 2017, 117, 11125–11238. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Song, S.; Zhang, H. Hydrothermal synthetic strategies of inorganic semiconducting nanostructures. Chem. Soc. Rev. 2013, 42, 5714–5743. [Google Scholar] [CrossRef]
- Zeng, H.; Qiao, T.; Zhai, L.; Zhang, J.; Li, D. Fe3O4@C particles synthesized with iron-containing water treatment residuals and its potential for methylene blue removal. J. Chem. Technol. Biotechnol. 2019, 94, 3970–3980. [Google Scholar] [CrossRef]
- Heidari, H.; Razmi, H. Multi-response optimization of magnetic solid phase extraction based on carbon coated Fe3O4 nanoparticles using desirability function approach for the determination of the organophosphorus pesticides in aquatic samples by HPLC-UV. Talanta 2012, 99, 13–21. [Google Scholar] [CrossRef]
- Meng, X.; Yang, W.; Han, G.; Yu, Y.; Ma, S.; Liu, W.; Zhang, Z. Three-dimensional foam-like Fe3O4@C core-shell nanocomposites: Controllable synthesis and wideband electromagnetic wave absorption properties. J. Magn. Magn. Mater. 2020, 502, 1–10. [Google Scholar] [CrossRef]
- Zhuang, Y.; Liu, J.; Yuan, S.; Ge, B.; Du, H.; Qu, C.; Chen, H.; Wu, C.; Li, W.; Zhang, Y. Degradation of octane using an efficient and stable core-shell Fe3O4@C during Fenton processes: Enhanced mass transfer, adsorption and catalysis. Appl. Surf. Sci. 2020, 515, 146083. [Google Scholar] [CrossRef]
- Khoshsang, H.; Ghaffarinejad, A.; Kazemi, H.; Jabarian, S. Synthesis of mesoporous Fe3O4 and Fe3O4/C nanocomposite for removal of hazardous dye from aqueous media. J. Water Environ. Nanotechnol. 2018, 3, 191–206. [Google Scholar] [CrossRef]
- Han, S.; Hu, L.; Liang, Z.; Wageh, S.; Al-Ghamdi, A.A.; Chen, Y.; Fang, X. One-step hydrothermal synthesis of 2D hexagonal nanoplates of α-Fe2O3/graphene composites with enhanced photocatalytic activity. Adv. Funct. Mater. 2014, 24, 5719–5727. [Google Scholar] [CrossRef]
- Cao, B.; Adutwum, L.A.; Oliynyk, A.O.; Luber, E.J.; Olsen, B.C.; Mar, A.; Buriak, J.M. How to optimize materials and devices via design of experiments and machine learning: Demonstration using organic photovoltaics. ACS Nano 2018, 12, 7434–7444. [Google Scholar] [CrossRef] [Green Version]
- Subramanian, V.; Zhu, H.; Vajtai, R.; Ajayan, P.M.; Wei, B. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. J. Phys. Chem. B 2005, 109, 20207–20214. [Google Scholar] [CrossRef] [PubMed]
- He, Q.; Liu, J.; Liang, J.; Liu, X.; Ding, Z.; Tuo, D.; Li, W. Sodium acetate orientated hollow/mesoporous magnetite nanoparticles: Facile synthesis, characterization and formation mechanism. Appl. Sci. 2018, 8, 292. [Google Scholar] [CrossRef] [Green Version]
- Li, S.K.; Huang, F.Z.; Wang, Y.; Shen, Y.H.; Qiu, L.G.; Xie, A.J.; Xu, S.J. Magnetic Fe3O4@C@Cu2O composites with bean-like core/shell nanostructures: Synthesis, properties and application in recyclable photocatalytic degradation of dye pollutants. J. Mater. Chem. 2011, 21, 7459–7466. [Google Scholar] [CrossRef]
- Karaoǧlu, E.; Baykal, A.; Erdemi, H.; Alpsoy, L.; Sozeri, H. Synthesis and characterization of dl-thioctic acid (DLTA)-Fe3O4 nanocomposite. J. Alloys Compd. 2011, 509, 9218–9225. [Google Scholar] [CrossRef]
- Unal, B.; Durmus, Z.; Kavas, H.; Baykal, A.; Toprak, M.S. Synthesis, conductivity and dielectric characterization of salicylic acid-Fe3O4 nanocomposite. Mater. Chem. Phys. 2010, 123, 184–190. [Google Scholar] [CrossRef]
- Unal, B.; Toprak, M.S.; Durmus, Z.; Sözeri, H.; Baykal, A. Synthesis, structural and conductivity characterization of alginic acid-Fe3O4 nanocomposite. J. Nanoparticle Res. 2010, 12, 3039–3048. [Google Scholar] [CrossRef]
- Samadaei, F.; Salami-Kalajahi, M.; Roghani-Mamaqani, H.; Banaei, M. A structural study on ethylenediamine- and poly(amidoamine)-functionalized graphene oxide: Simultaneous reduction, functionalization, and formation of 3D structure. RSC Adv. 2015, 5, 71835–71843. [Google Scholar] [CrossRef]
- Shen, L.; Li, B.; Qiao, Y.; Song, J. Monodisperse Fe3O4/SiO2 and Fe3O4/SiO2/PPy core-shell composite nanospheres for IBU loading and release. Materials 2019, 12, 828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ardelean, I.L.; Stoencea, L.B.N.; Ficai, D.; Ficai, A.; Trusca, R.; Vasile, B.S.; Nechifor, G.; Andronescu, E. Development of Stabilized Magnetite Nanoparticles for Medical Applications. J. Nanomater. 2017, 2017. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Shang, L.; Shen, J.; Shi, Z.; Wu, L.; Tung, C.; Zhang, T. A mild one-step solvothermal route to truncated octahedral magnetite crystals. Particuology 2014, 15, 51–55. [Google Scholar] [CrossRef]
- Xu, J.; Yang, H.; Fu, W.; Du, K.; Sui, Y.; Chen, J.; Zeng, Y.; Li, M.; Zou, G. Preparation and magnetic properties of magnetite nanoparticles by sol–gel method. J. Magn. Magn. Mater. 2007, 309, 307–311. [Google Scholar] [CrossRef]
- Saraswati, T.E.; Maharani, D.; Widiyandari, H. Copper oxide-based carbonaceous nanocomposites: Electrochemical synthesis and characterization. AIP Conf. Proc. 2020, 2243. [Google Scholar] [CrossRef]
- Itoh, M.; Liu, J.R.; Horikawa, T.; Machida, K.I. Electromagnetic wave absorption properties of nanocomposite powders derived from intermetallic compounds and amorphous carbon. J. Alloys Compd. 2006, 408–412, 1400–1403. [Google Scholar] [CrossRef]
- Shi, D.; Yang, H.; Ji, S.; Jiang, S.; Liu, X.; Zhang, D. Preparation and characterization of core-shell structure Fe3O4@C magnetic nanoparticles. Procedia Eng. 2015, 102, 1555–1562. [Google Scholar] [CrossRef] [Green Version]
- Yuan, S.M.; Li, J.X.; Yang, L.T.; Su, L.W.; Liu, L.; Zhou, Z. Preparation and lithium storage performances of mesoporous Fe3O4@C microcapsules. ACS Appl. Mater. Interfaces 2011, 3, 705–709. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.M.; Wu, X.L.; Hu, J.S.; Guo, Y.G.; Wan, L.J. Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv. Funct. Mater. 2008, 18, 3941–3946. [Google Scholar] [CrossRef]
- Xu, J.L.; Zhang, X.; Miao, Y.X.; Wen, M.X.; Yan, W.J.; Lu, P.; Wang, Z.R.; Sun, Q. In-situ plantation of Fe3O4@C nanoparticles on reduced graphene oxide nanosheet as high-performance anode for lithium/sodium-ion batteries. Appl. Surf. Sci. 2021, 546, 149163. [Google Scholar] [CrossRef]
- Liu, J.; Dong, S.; He, Q.; Yang, S.; Xie, M.; Deng, P.; Xia, Y.; Li, G. Facile preparation of Fe3O4/C nanocomposite and its application for cost-effective and sensitive detection of tryptophan. Biomolecules 2019, 9, 245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong, B.H.; Devaraj, N.K.; Matsumoto, M.; Abdullah, M.H. Thermal stability of magnetite (Fe3O4) nanoparticles. Mater. Res. Soc. Symp. Proc. 2009, 1118, 1–7. [Google Scholar] [CrossRef]
- Fatima, H.; Lee, D.W.; Yun, H.J.; Kim, K.S. Shape-controlled synthesis of magnetic Fe3O4 nanoparticles with different iron precursors and capping agents. RSC Adv. 2018, 8, 22917–22923. [Google Scholar] [CrossRef] [Green Version]
- Arenas-Alatorre, J.; Tehuacanero, C.S.; Lukas, O.; Rodríguez-Gómez, A.; Hernández Reyes, R.; Tapia-del León, C.; Lara V., J. Synthesis and characterization of iron oxide nanoparticles grown via a non-conventional chemical method using an external magnetic field. Mater. Lett. 2019, 242, 13–16. [Google Scholar] [CrossRef]
- Aragón, F.H.; Coaquira, J.A.H.; Villegas-Lelovsky, L.; Da Silva, S.W.; Cesar, D.F.; Nagamine, L.C.C.M.; Cohen, R.; Menéndez-Proupin, E.; Morais, P.C. Evolution of the doping regimes in the Al-doped SnO2 nanoparticles prepared by a polymer precursor method. J. Phys. Condens. Matter 2015, 27. [Google Scholar] [CrossRef]
- Maboudi, S.A.; Shojaosadati, S.A.; Arpanaei, A. Synthesis and characterization of multilayered nanobiohybrid magnetic particles for biomedical applications. Mater. Des. 2017, 115, 317–324. [Google Scholar] [CrossRef]
- Biau, D.J. In brief: Standard deviation and standard error. Clin. Orthop. Relat. Res. 2011, 469, 2661–2664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohan, D.; Sarswat, A.; Singh, V.K.; Alexandre-Franco, M.; Pittman, C.U. Development of magnetic activated carbon from almond shells for trinitrophenol removal from water. Chem. Eng. J. 2011, 172, 1111–1125. [Google Scholar] [CrossRef]
- Wang, W.; Liu, P.; Zhang, M.; Hu, J.; Xing, F. The pore structure of phosphoaluminate cement. Open J. Compos. Mater. 2012, 02, 104–112. [Google Scholar] [CrossRef] [Green Version]
- Kumari, M.; Pittman, C.U.; Mohan, D. Heavy metals [chromium (VI) and lead (II)] removal from water using mesoporous magnetite (Fe3O4) nanospheres. J. Colloid Interface Sci. 2015, 442, 120–132. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Nan, Z. Zn-Doped Fe3O4 nanosheet formation induced by EDA with high magnetization and an investigation of the formation mechanism. Am. Chem. Soc. 2017, 121. [Google Scholar] [CrossRef]
- Wohlleben, W.; Mielke, J.; Bianchin, A.; Ghanem, A.; Freiberger, H.; Rauscher, H.; Gemeinert, M.; Hodoroaba, V.D. Reliable nanomaterial classification of powders using the volume-specific surface area method. J. Nanoparticle Res. 2017, 19. [Google Scholar] [CrossRef] [Green Version]
- Imran, M.; Zouli, N.; Ahamad, T.; Alshehri, S.M.; Chandan, M.R.; Hussain, S.; Aziz, A.; Dar, M.A.; Khan, A. Carbon-coated Fe3O4 core-shell superparamagnetic nanoparticle-based ferrofluid for heat transfer applications. Nanoscale Adv. 2021, 3, 1962–1975. [Google Scholar] [CrossRef]
- Sousa, A.C.C.; Romo, A.I.B.; Almeida, R.R.; Silva, A.C.C.; Fechine, L.M.U.; Brito, D.H.A.; Freire, R.M.; Pinheiro, D.P.; Silva, L.M.R.; Pessoa, O.D.L.; et al. Starch-based magnetic nanocomposite for targeted delivery of hydrophilic bioactives as anticancer strategy. Carbohydr. Polym. 2021, 264. [Google Scholar] [CrossRef]
- Asmatulu, R.; Fakhari, A.; Wamocha, H.L.; Chu, H.Y.; Chen, Y.Y.; Eltabey, M.M.; Hamdeh, H.H.; Ho, J.C. Drug-carrying magnetic nanocomposite particles for potential drug delivery systems. J. Nanotechnol. 2009, 2009, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Bao, S.; Tan, Q.; Li, B.; Wang, C.; Shan, L.; Wang, C.; Xu, B. Facile synthesis of a rod-like porous carbon framework confined magnetite nanoparticle composite for superior lithium-ion storage. J. Colloid Interface Sci. 2021, 600, 602–612. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Liu, Z.; Li, Q.; Wang, Y.; Shah, T.; Ahmad, M.; Zhang, Q.; Zhang, B. Wrinkled Fe3O4@C magnetic composite microspheres: Regulation of magnetic content and their microwave absorbing performance. J. Colloid Interface Sci. 2021, 601, 397–410. [Google Scholar] [CrossRef]
- Zhang, M.; Ling, H.; Ding, S.; Xie, Y.; Cheng, T.; Zhao, L.; Wang, T.; Bian, H.; Lin, H.; Li, Z.; et al. Synthesis of CF@PANI hybrid nanocomposites decorated with Fe3O4 nanoparticles towards excellent lightweight microwave absorber. Carbon 2021, 174, 248–259. [Google Scholar] [CrossRef]
- Li, Z.; Lin, H.; Ding, S.; Ling, H.; Wang, T.; Miao, Z.; Zhang, M.; Meng, A.; Li, Q. Synthesis and enhanced electromagnetic wave absorption performances of Fe3O4@C decorated walnut shell-derived porous carbon. Carbon 2020, 167, 148–159. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, C.; Zhang, M.; Feng, A.; Qu, S.; Zhang, Y.; Liu, X.; Jia, Z.; Wu, G. Synthesis of Fe3O4/carbon foams composites with broadened bandwidth and excellent electromagnetic wave absorption performance. Compos. Part A Appl. Sci. Manuf. 2019, 127, 105627. [Google Scholar] [CrossRef]
- Wu, F.; Sun, B.; Chu, X.; Zhang, Q.; She, Z.; Song, S.; Zhou, N.-L.; Zhang, J.; Yi, X.; Wu, D.; et al. Hyaluronic acid-modified porous carbon-coated Fe3O4 nanoparticles for magnetic resonance imaging-guided photothermal/chemotherapy of tumors. Langmuir 2019, 35, 13135–13144. [Google Scholar] [CrossRef]
- Li, Q.; Tang, G.; Xiong, X.; Cao, Y.; Chen, L.; Xu, F.; Tan, H. Carbon coated magnetite nanoparticles with improved water-dispersion and peroxidase-like activity for colorimetric sensing of glucose. Sensors Actuators, B Chem. 2015, 215, 86–92. [Google Scholar] [CrossRef]
- Bao, X.; Qiang, Z.; Chang, J.H.; Ben, W.; Qu, J. Synthesis of carbon-coated magnetic nanocomposite (Fe3O4@C) and its application for sulfonamide antibiotics removal from water. J. Environ. Sci. 2014, 26, 962–969. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, G.; Lin, K.; Liu, Y.; Deng, X.; Li, Q. Facile one-pot synthesis of ultrathin carbon layer encapsulated magnetite nanoparticle and graphene oxide nanocomposite for efficient removal of metal ions. Sep. Purif. Technol. 2021, 266. [Google Scholar] [CrossRef]
- Chishti, A.N.; Guo, F.; Aftab, A.; Ma, Z.; Liu, Y.; Chen, M.; Gautam, J.; Chen, C.; Ni, L.; Diao, G. Synthesis of silver doped Fe3O4/C nanoparticles and its catalytic activities for the degradation and reduction of methylene blue and 4-nitrophenol. Appl. Surf. Sci. 2021, 546, 149070. [Google Scholar] [CrossRef]
- Kakavandi, B.; Takdastan, A.; Jaafarzadeh, N.; Azizi, M.; Mirzaei, A.; Azari, A. Application of Fe3O4@C catalyzing heterogeneous UV-Fenton system for tetracycline removal with a focus on optimization optimisation by a response surface method. J. Photochem. Photobiol. A Chem. 2016, 314, 178–188. [Google Scholar] [CrossRef]
Source | DF 1 | SS 2 | MS 3 | F Value | p Value |
---|---|---|---|---|---|
Surface area | |||||
Reaction time, tr (h) | 2 | 585.25 | 292.626 | 54.79 | 0.000 |
Error | 12 | 64.09 | 5.341 | ||
Total | 14 | 649.34 | |||
Total pore volume | |||||
Reaction time, tr (h) | 2 | 0.012364 | 0.006182 | 1117.55 | 0.000 |
Error | 9 | 0.000050 | 0.000006 | ||
Total | 11 | 0.012414 | |||
Pore diameter | |||||
Reaction time, tr (h) | 2 | 94.19 | 47.093 | 10.42 | 0.005 |
Error | 9 | 40.68 | 4.520 | ||
Total | 11 | 134.87 |
Statistic | Surface Property | ||
---|---|---|---|
Surface Area | Total Pore Volume | Pore Diameter | |
S | 2.31107 | 0.002352 | 2.12613 |
R2 | 90.13% | 99.60% | 69.83% |
R2-adj | 88.48% | 99.51% | 63.13% |
R2-pred | 84.58% | 99.29% | 46.37% |
DOL 1 | DOM 2 | DSE 3 | T Value | Fisher Test | Tukey Test | ||
---|---|---|---|---|---|---|---|
ICL (%) 4 | p-adj 5 | SCL (%) 6 | p-adj 5 | ||||
Pore diameter | |||||||
4–3 | 4.79 | 1.50 | 3.18 | 97.91 | 0.011 | 88.66 | 0.027 |
5–3 | −1.87 | 1.50 | −1.24 | 0.246 | 0.460 | ||
5–4 | −6.65 | 1.50 | −4.42 | 0.002 | 0.004 | ||
Pore volume | |||||||
4–3 | 0.05658 | 0.00166 | 34.02 | 97.91 | 0.000 | 88.66 | 0.000 |
5–3 | −0.01900 | 0.00166 | −11.42 | 0.000 | 0.000 | ||
5–4 | −0.07558 | 0.00166 | −45.44 | 0.000 | 0.000 | ||
Surface area | |||||||
4–3 | 9.88 | 1.46 | 6.76 | 97.94 | 0.000 | 88.44 | 0.000 |
5–3 | −5.18 | 1.46 | −3.54 | 0.004 | 0.010 | ||
5–4 | −15.06 | 1.46 | −10.30 | 0.000 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sani, S.; Adnan, R.; Oh, W.-D.; Iqbal, A. Comparison of the Surface Properties of Hydrothermally Synthesised Fe3O4@C Nanocomposites at Variable Reaction Times. Nanomaterials 2021, 11, 2742. https://doi.org/10.3390/nano11102742
Sani S, Adnan R, Oh W-D, Iqbal A. Comparison of the Surface Properties of Hydrothermally Synthesised Fe3O4@C Nanocomposites at Variable Reaction Times. Nanomaterials. 2021; 11(10):2742. https://doi.org/10.3390/nano11102742
Chicago/Turabian StyleSani, Sadiq, Rohana Adnan, Wen-Da Oh, and Anwar Iqbal. 2021. "Comparison of the Surface Properties of Hydrothermally Synthesised Fe3O4@C Nanocomposites at Variable Reaction Times" Nanomaterials 11, no. 10: 2742. https://doi.org/10.3390/nano11102742
APA StyleSani, S., Adnan, R., Oh, W. -D., & Iqbal, A. (2021). Comparison of the Surface Properties of Hydrothermally Synthesised Fe3O4@C Nanocomposites at Variable Reaction Times. Nanomaterials, 11(10), 2742. https://doi.org/10.3390/nano11102742