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Abstract: Demand for hybrid energy storage systems is growing, but electric double-layer capacitors
(EDLCs) have insufficient output characteristics because of the microporous structure of the activated
carbon electrode material. Commercially, activated carbon is prepared from coconut shells, which
yield an activated carbon material (YP-50F) rich in micropores, whereas mesopores are desired in
EDLCs. In this study, we prepared mesoporous activated carbon (PB-AC) using a readily available,
environmentally friendly resource: bamboo. Crucially, modification using phosphoric acid and
steam activation was carried out, which enabled the tuning of the crystal structure and the pore
characteristics of the product. The structural characteristics and textural properties of the PB-AC were
determined, and the specific surface area and mesopore volume ratio of the PB-AC product were
960–2700 m2/g and 7.5–44.5%, respectively. The high specific surface area and mesopore-rich nature
originate from the phosphoric acid treatment. Finally, PB-AC was used as the electrode material in
EDLCs, and the specific capacitance was found to be 86.7 F/g for the phosphoric-acid-treated sample
steam activated at 900 ◦C for 60 min; this capacitance is 35% better than that of the commercial YP-50F
(64.2 F/g), indicating that bamboo is a suitable material for the production of activated carbon.

Keywords: electric double-layer capacitor; bamboo; phosphoric acid; activated carbon; specific
capacitance

1. Introduction

Recently, concerns about the global environment have increased, and this has spurred
studies into environmentally friendly forms of transport, especially alternatives to vehicles
based on the internal combustion engine. These vehicles include electric and fuel cell
vehicles and are promising because they do not emit harmful exhaust gases such as NOx,
SOx, or COx, unlike internal combustion engine vehicles that use fossil fuels. Energy
storage devices with high energy densities, such as Li-ion batteries (LiBs) [1] and fuel
cells [2], are key to the development of this technology but are limited by low power
densities [3], which make it challenging for vehicles to adapt to varying power demands [4].
However, a hybrid energy storage system (HESS) is a promising alternative. A HESS
comprises an electric double-layer capacitor (EDLC) and a LiB or fuel cell [4,5].

EDLCs have low energy densities but high power densities, fast responses, and long-
cycle lives [6]. Therefore, in a HESS, the EDLC acts as an auxiliary power source, supple-
menting the insufficient output of the main power source, improving the energy efficiency
of regenerative braking, and reducing the size of the HESS. Recently, the applications of
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HESSs were expanded to energy storage and renewable energy systems, but these output
characteristics [7,8]. Therefore, to improve the output characteristics of HESSs, research
into how to improve both the energy and power densities of EDLCs is required. Because
EDLCs store energy by adsorbing electrolyte ions onto an electrode coated with activated
carbon, the electrochemical properties such as the energy and power densities of EDLCs
are determined by the pore characteristics of the carbon material [9]. Previously, many
EDLC studies focused on improving the energy density of these materials, and, as a result,
most studies focused on the development of activated carbon with a high specific surface
area and a micropore-rich pore structure [10–12]. However, the organic electrolyte’s large
ion size (e.g., TEA+ in PC ≈ 1.36 nm, BF4

− in PC ≈ 1.40 nm) and high viscosity have
poor compatibility with activated carbon composed mostly of micropores (<2 nm) [13].
The result is a large decrease in capacitance retention at high current densities due to
slow mass diffusion [14]. In this regard, higher requirements have been put forward to
simultaneously meet high energy density and power density, which necessitates not only
the capacity of storage of many electrolyte ions, but also a pore structure that can rapidly
mass transfer sufficient charges.

Recently, various electrode materials (such as CNT-bridged graphene 3D building
blocks [15], 3D activated graphene [16], 3D Carbon Frameworks [17]) for EDLCs were
developed to improve the energy and power density of EDLCs. Leng et al. [17] clearly
showed that 3D Carbon Frameworks with high specific surface area and high mesopore
volume could simultaneously meet energy density and power density. However, to achieve
the desired porous structure, the synthetic methods necessarily involved complex pre-
synthesis and the hazardous post-removal via acidic washing. Therefore, there is a need
for a simple and eco-friendly new activation method with high specific surface area and
mesopore ratio for high-performance EDLCs [15–17].

The pore characteristics of activated carbon are determined by the activation process,
precursor, and carbonization process, in that order [18], and the activation methods can
be classified as physical or chemical [18–20]. Of these two methods, chemical activation
can produce activated carbon with a micropore-rich pore structure and a high specific
surface area [19,20] but at high economic cost. On the other hand, compared to chemical
activation, physical activation produces activated carbon with a relatively low specific
surface area [20,21]. However, physical activation can produce activated carbon with a
mesopore-rich pore structure [22,23], which results in an improved power density when
applied in EDLCs and has the advantage of low processing costs. Crucially, in physical
activation, pores are formed as the carbon precursor is oxidized, and the amorphous phase
is oxidized before the crystalline phase [24]. Therefore, in physical activation, the pore
characteristics are determined by the crystal structure of the carbon precursor [18].

Coconut shells are a renewable source of carbon, making them an attractive pre-
cursor for the preparation of activated carbon with a low ash content [25,26]. In fact,
the most widely used commercial activated carbon (YP-50F) for EDLCs is produced from
coconut shells via steam activation. However, coconut-shell-derived activated carbon has
a micropore-rich pore structure, so it is not suitable for the preparation of high-power
EDLCs. As an alternative activated carbon precursor, bamboo can be used because of its
rapid growth and high fixed carbon content [27]. However, bamboo has a higher cellulose
content than coconut shells [26,28], which results in highly crystalline charcoal, making
it difficult to produce activated carbon with a high specific surface area by physical ac-
tivation. Therefore, to use bamboo as an activated carbon precursor for applications in
high-power, high-energy-density EDLCs, a stabilization process for controlling the carbon
crystal structure is required.

In this study, bamboo-derived activated carbon having a high specific surface area
and mesopore ratio was prepared for high power and energy capacity EDLCs. Specifically,
stabilization with phosphoric acid before steam activation was used to achieve a high yield
and favorable textural properties (i.e., high specific surface area and mesopore ratio) in
the bamboo-derived activated carbon. The effect of phosphoric acid stabilization on the
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pore development mechanism was studied by observing the textural properties, as well as
crystal structure analysis. In addition, we tested the electrochemical performance of the
PB-ACs prepared under different activation conditions, focusing on the effects of their pore
and structural characteristics.

2. Experimental
2.1. Sample Preparation

The bamboo was crushed after drying to less than 2% water content and sieved to a
particle size fraction of 2–3 cm.

2.1.1. Phosphoric Acid Stabilization

The sorted bamboo was immersed in phosphoric acid (H3PO4, 85%, Daejung Chemical
& Metals Co., Siheung, Korea) and stabilized at 150 ◦C for 24 h via impregnation treatment.
Typically, biomass is decomposed (dehydrated) by phosphoric acid and cross-linked via
phosphate groups [29]. The stabilization temperature was set based on the results of our
previous study [30]. Then, the stabilized bamboo was washed in boiling distilled water
until the pH of the filtrate reached pH 7 to remove the phosphoric acid, and then, the final
stabilized bamboo was dried at 100 ◦C for 24 h. The yield of stabilized bamboo was
approximately 50%.

2.1.2. Carbonization

For carbonization, the bamboo was heated to 700 ◦C under N2 flow at a rate of
10 ◦C/min and then held at this temperature for 1 h. The carbonization yield of the bamboo
was approximately 25%.

2.1.3. Steam Activation

The carbonized or stabilized bamboo was placed in an alumina boat, which was then
inserted into a self-made cylindrical tubular furnace (SIC heater, length: 1000 mm, diameter:
100 mm). The carbonized or stabilized bamboo was heated to 900 ◦C under N2 flow at
a rate of 10 ◦C/min. The gas flow was then switched to steam at a rate of 0.5 mL/min
and held at this temperature for 20–60 min. The sample was then cooled to below 30 ◦C
under N2 flow, yielding the activated carbon product. The thus-obtained activated carbon
samples are labeled based on the treatment process, for example, PB-H-9-5. Here, PB or
CB indicate phosphoric acid stabilization or carbonization, respectively, H indicates the
steam (H2O) treatment, 9 indicates an activation temperature of 900 ◦C, and 2, 3, 4, 5, or 6
indicates the activation period, i.e., 20, 30, 40, 50, or 60 min, respectively.

2.2. Characterization

The textural properties of the PB-AC were determined using N2 adsorption–desorption
isotherms obtained at 77 K (BELSORP-max, BEL Japan, Osaka, Japan). Before the obser-
vation, the CB-AC and PB-AC samples were placed into a cylindrical cell and degassed
overnight while maintaining a residual pressure of less than 10−3 bar at 300 ◦C. The spe-
cific surface area (SBET) was calculated from the isothermal adsorption curves using the
Brunauer–Emmett–Teller (BET) equation [31]. The mesopore volumes were calculated
using the Barrett–Joyner–Halenda (BJH) equation from the desorption curves [32], and the
pore size distribution (PSD) was calculated using non-localized density functional theory
(NLDFT) [33]. The differences in the microstructures of the activated carbon samples
prepared using different activation times (20–60 min) were identified using X-ray diffrac-
tometry (XRD, MiniFlex 600, Rigaku, Tokyo, Japan) with a Cu Kα source. The XRD patterns
were obtained between 3◦ and 80◦ in 2θ at a scanning speed of 2◦/min. The sizes of the
crystallites of CB-AC and PB-AC were calculated using the Scherrer equation, as shown in
Equation (1) [34].

L = Kλ/Bcos θ (1)
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Here, the constant K is either 0.91 or 1.84 for calculating the crystallite height (Lc)
or crystallite diameter (La), respectively, and λ is the wavelength of the X-rays (1.5406 Å,
Cu Kα). B is the full width at half maximum (FWHM) of the relevant peak in radians.

2.3. Electrochemical Tests

Electrodes were made using the prepared PB-AC by mixing PB-AC, a conductive ma-
terial, and a binder in 84:7:9 mass ratio. The conductive material was carbon black (Super-P,
Timcal, Bodio, Switzerland), and the binders were carboxymethyl cellulose (CMC, Dai-Ichi
Kogyo Seiyaku Co., Ltd., Kyoto, Japan), styrene–butadiene rubber (SBR, BM400B, Zeon,
Tokyo, Japan), and polytetrafluoroethylene (PTFE, 9002-84-0, Sigma Aldrich, ST. Louis,
MO, USA). The PB-AC and carbon black were added to the solution containing the binder
and dispersed using a planetary centrifugal mixer (AR-100, Thinky Co., Ltd., Tokyo, Japan)
for 20 min. The so-obtained slurry was cast immediately on aluminum foil by using a
laboratory scale doctor blade coater, whose blade was set at 152 µm. The coated foil was
dried overnight in an oven at 150 ◦C. EDLCs were constructed using CR2032 coin cells.
The electrode was punched into round electrodes 12 mm in diameter. Two symmetric elec-
trodes were isolated using cellulose paper (NKK, Kanagawa, Japan). The electrolyte was
1 M tetraethylammonium tetrafluoroborate/propylene carbonate (TEABF4/PC). All elec-
trochemical tests were performed at room temperature with a Maccor 4300 battery tester
(Maccor Inc., Tulsa, OK, USA) and a VSP electrochemical workstation (Bio-Logic Science In-
struments, Grenoble, France). Galvanostatic charge/discharge (GCD) tests were performed
at a current density of 0.1–10 A/g from 0.0 to 2.5 V. Cyclic voltammetry (CV) measurements
were performed in the same potential range as the GCD tests at scan rates of 5–400 mV/s.
The impedance plots were recorded in the frequency range of 10 mHz to 300 kHz. The cells
were assessed for their specific capacitance (capacitance per electrode weight), energy
density (Wh/kg) and power density (W/kg), which was calculated using only the weight
of the active material and the GCD results using Equations (2)–(4).

Cg =
i∆t

m∆V
(2)

E =
Cg × (∆V)2

2 × 3.6
(3)

P =
E × 3600

∆t
(4)

Here, i is the discharge current (A), ∆t is the discharge time (s), m is the mass of the
electrode (g), and ∆V is the potential difference (V).

3. Results and Discussion
3.1. Adsorption Isotherms and Textural Properties

The N2/77 K isothermal adsorption–desorption curve reveals the surface area and
pore structure of the activated carbon samples. As shown in Figure 1a, the adsorption–
desorption isotherms of CB-AC are type I, according to the IUPAC classification [35];
thus, the pore structure of CB-AC contains many micropores. In addition, an H4-type
hysteresis loop, normally associated with slit-shaped pores, was observed for all CB-
ACs [35]. The isotherms of the PB-AC samples are shown in Figure 1b and are all type I,
indicating a majority of micropores. In addition, we found that a longer activation time is
associated with an increased specific surface area and number of mesopores. Therefore,
as the activation time increased, the pore structure of PB-AC changed from microporous
to mesoporous. In addition, with increase in the activation time, the hysteresis loops of
the PB-AC samples increased, and the largest hysteresis loop was observed for the sample
steam-activated at 900 ◦C for 60 min (i.e., PB-H-9-6).
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Figure 1. N2/77 K isotherm adsorption–desorption curves of (a) CB-AC; (b) PB-AC. 

Table 1 lists the textural properties of CB-AC and PB-AC. As the activation time in-
creased, the yields of CB-AC and PB-AC continued to decrease because of crystallite oxi-
dation. In general, the CB-AC samples had lower specific surface areas and total pore vol-
umes than the PB-AC samples prepared under the same activation conditions. The spe-
cific surface area and total pore volume of CB-AC were determined to be 770–1120 m2/g 
and 0.32–0.50 cm3/g, respectively. As the activation time increased, the micropore volume 
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Figure 1. N2/77 K isotherm adsorption–desorption curves of (a) CB-AC; (b) PB-AC.

Table 1 lists the textural properties of CB-AC and PB-AC. As the activation time
increased, the yields of CB-AC and PB-AC continued to decrease because of crystallite
oxidation. In general, the CB-AC samples had lower specific surface areas and total pore
volumes than the PB-AC samples prepared under the same activation conditions. The spe-
cific surface area and total pore volume of CB-AC were determined to be 770–1120 m2/g
and 0.32–0.50 cm3/g, respectively. As the activation time increased, the micropore volume
of CB-AC increased, but only up to a maximum activation time of 30 min, subsequently
remaining constant. On the other hand, the mesopore volume of CB-AC increased to
0.03–0.07 cm3/g as the activation time increased.

Table 1. Textural properties of bamboo-derived activated carbon samples as a function of activation conditions.

Sample SBET
a

(m2/g)
VTotal

b

(cm3/g)
VMicro

c

(cm3/g)
VMeso

d

(cm3/g)
Mesopore Ratio e

(%)
Yield f

(%)

CB-H-9-2 770 0.32 0.29 0.03 9.4 19.6
CB-H-9-3 1100 0.47 0.42 0.05 10.6 13.9
CB-H-9-4 1030 0.44 0.39 0.05 11.4 8.5
CB-H-9-5 1120 0.50 0.43 0.07 14.0 5.8
CB-H-9-6 - - - - - 0

PB-H-9-2 960 0.41 0.36 0.03 7.7 22.9
PB-H-9-3 1350 0.56 0.51 0.05 8.9 19.4
PB-H-9-4 1630 0.68 0.61 0.07 10.3 16.7
PB-H-9-5 1890 0.86 0.69 0.17 19.8 12.6
PB-H-9-6 2700 1.46 0.81 0.65 44.5 4.6

YP-50F 1780 0.83 0.70 0.13 15.7 -
a SBET: The specific surface area; BET method P

v(P0−P) = 1
vmc +

c−1
vmc

p
P0

. b VTotal: Total pore volume; BET method. c VMicro: Micropore volume;

VTotal − VMeso. d VMeso: Mesopore volume; BJH method rp = rk + t, (rp = actual radius of the pore, t = thickness of the adsorbed film).
e Mesopore ratio: VMeso

VTotal
× 100. f Yield: Weight of activated sample

Weight of carbonized or stabilized sample input × 100.

The specific surface area and total pore volume of PB-AC were determined to be
960–2700 m2/g and 0.41–1.46 cm3/g, respectively. As the activation time increased, the mi-
cropore and mesopore volumes of PB-AC continued to increase. Based on the changes in
the pore characteristics, further analysis was performed in two distinct stages: (1) stage I,
which involves an increase in the number of micropores between activation times of
0–40 min, and (2) stage II, which is characterized by the development of both microp-
ores and mesopores at activation times of 50–60 min. As the activation time increased,
the micropore and mesopore volumes of all the PB-ACs increased. In particular, in stage I,
PB-AC has a microporous structure because the micropore volume increases more than the
mesopore volume. In contrast, in stage II, PB-AC has a mesoporous structure because the
mesopore volume increased more than the micropore volume.
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The PSD curves reveal the pore development. Figure 2 shows the PSDs of PB-AC ob-
tained using NLDFT. In stage I, all PB-AC samples have narrow PSDs with pore diameters
centered around 1.12 nm; thus, all PB-AC samples have similar pore diameters, but the
volume of pores having diameters of 1–2 nm gradually increased with increase in activation
time. In stage II, the pore distribution of PB-AC was centered around 1.12 nm but showed
a decrease in the volume of pores having a diameter of 2–4 nm. The increase in the pore
volume in activated carbon induced by physical activation occurs in two different ways:
pore drilling (which results in a steady increase in pore diameter) and pore deepening
(which has virtually no effect on pore diameter) [36]. Therefore, in stage I, the micropore
volume was increased by pore deepening, and, in stage II, the mesopore volume increased
by pore drilling. As shown in Table 1, the textural properties of commercial activated
carbon (YP-50F) are similar to those of PB-H-9-5. Further, as shown in Figure 2, YP-50F and
PB-H-9-5 have similar PSDs centered around 1.3 nm, but PB-H-9-5 has a higher mesopore
volume (≥2 nm) than that of YP-50F.
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3.2. X-ray Diffraction Analysis

Figure 3 shows the XRD curves of the bamboo-derived activated carbon. The XRD
patterns of CB-AC and PB-AC are typical of isotropic carbon materials, containing peaks
corresponding to the C(002) and C(10l) planes [37]. As the activation time increased,
the intensity of the peaks in the XRD patterns gradually decreased owing due to the
oxidation of the crystalline phase. In the XRD pattern of CB-AC, peaks corresponding to
ash were observed in addition to those arising from the C(002) and C(10l) planes of the
carbon. In contrast, in the XRD pattern of PB-AC, only peaks corresponding to the C(002)
and C(10l) planes of carbon were observed. Naturally derived carbon precursors contain
large amounts of ash, but we assumed that the ash content of PB-AC is lower than that
of CB-AC because the ash is removed together with monosaccharides (originating from
hemicellulose and lignin) during the phosphoric acid stabilization process [38].

Figure 4 shows the crystallite height (Lc) and size (La) of the bamboo-derived acti-
vated carbon. Because the crystal structure of activated carbon is based on an sp2 carbon
framework, a larger change in La than Lc was observed [24,39]. Further, CB-AC and PB-AC
showed distinct changes in the crystal structures with increase in activation time. In the
XRD patterns of CB-AC, La remained unchanged after treatment for 40 min, and Lc showed
little change with increase in activation time. On the other hand, for PB-AC, both La and
Lc increased with an increase in activation time. The difference in pore characteristics
between CB-AC and PB-AC is considered to arise from the differences in the oxidation be-
havior of the crystals. However, it is important to note that XRD data provide information
concerning the average crystallite size. Therefore, the increase in structural parameters
(Lc or La) is considered to be a relative increase arising from the oxidation of amorphous
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or small crystals rather than crystal growth. On the other hand, the decrease in these
structural parameters suggests that more oxidation reactions took place at the edges of the
crystalline phase than in the amorphous phase. Therefore, the micropores and mesopores
were formed in the activated carbon by the oxidation of amorphous regions or crystalline
edges, respectively. Consequently, CB-AC has a lower specific surface area and total pore
volume than PB-AC because oxidation mainly occurs at the crystal edges.
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The changes to the crystal structure of PB-AC can be divided into two stages with
increasing activation time, as previously observed for the textual properties. In stage I,
La increased from 32.5 to 39.0 Å and Lc increased slightly from 9.2 to 9.8 Å. However,
in stage II, La remained unchanged, but Lc increased from 10.3% to 11.9%. In stage I,
the increase in La of PB-AC can be considered to result from the oxidation of the amor-
phous region. Specifically, the micropore volume increases because of the oxidation of the
amorphous region and small crystallites. In addition, the Lc of PB-AC was maintained
without significant changes in stage II because the oxidation of the amorphous regions and
crystal edges occurred simultaneously. Therefore, in stage II, the micropore and mesopore
volumes increased. In conclusion, although CB-AC and PB-AC have the same precursor,
their pore development differs because of their different crystal structures resulting from
the differences in activation: phosphoric acid treatment or carbonization.

3.3. Electrochemical Properties

The SEM images were taken to estimate the morphology of the prepared electrode.
As shown in Figure 5, the activated carbons are homogeneously distributed with no sign of
agglomeration, and signature of electrode cracking was not observed either. Moreover, we
did not notice any significant difference between the morphology of the YP-50F electrode
and PB-AC electrode, hence, the procedure for electrode preparation with PB-AC is a
competitive in that the electrode components are well dispersed. The shorter the activation
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time, the more relatively densely observed the surface of PB-AC; this was due to the high
apparent density.
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(d) PB-H-9-6, and (e) YP-50F.

The electrochemical properties of the PB-AC electrodes were assessed using GCD, CV,
and impedance measurements. The measurements were carried out in 1 M TEABF4/PC.
Figure 6 shows the GCD curves of the PB-AC electrode at various current densities.
The GCD curves of all PB-ACs are linear and symmetrical, which is typical of an ideal
EDLC. No obvious IR drop was observed in any of the curves at a current density of 0.1 A/g.
However, the IR drop of PB-AC increased with an increase in current density. The IR drop
in the GCD represents a voltage change arising from changes in the internal resistance of
the electrode, which is related to the self-resistance of the electrode, electrolyte resistance,
distance between the electrodes, and contact resistance between the electrode and current
collector [6]. Therefore, the IR drop increased owing to the increase in resistance as the
current density increased. Further, the IR drops measured for the different electrodes
decreased as the activation time increased, and that of PB-H-9-6 was the smallest of the
samples at the same current density. As discussed concerning the pore characteristics,
the internal resistance decreases as the pore diameter increases, which occurs with an
increase in activation time. In addition, the commercial activated carbon (YP-50F) had a
higher IR drop than that of PB-H-9-5, despite their similar pore structures, whereas the IR
drop of PB-H-9-4 was similar.

Figure 7 shows the specific capacitances of the PB-AC samples as a function of the
current density. As the current density increased from 0.1 to 10 A/g, the specific capacitance
decreased owing to the increase in the internal resistance of the PB-AC. Further, the specific
capacitance increased with an increase in activation time: 64.2–86.7 F/g at a current density
of 0.1 A/g and 21.6–65.3 F/g at 10 A/g. In addition, as the activation time increased,
the rate of decrease in the specific capacitance decreased with an increase in the current
density. This is presumably because the mesopore volume increased as the activation
time increased.
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At a current density of 0.1 A/g, YP-50F and PB-H-9-5 have similar specific capac-
itances, but, at a current density of 10 A/g, the specific capacitance of PB-H-9-5 was
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approximately 8% higher than that of YP-50F. The changes in the specific capacitance with
current density observed for PB-H-9-5 and YP-50F are considered to be closely related to
the ion diffusion resistance. PB-H-9-5 has a micropore volume similar to that of YP-50F,
but has a higher mesopore volume, and, thus, at a current density of 0.1 A/g, PB-H-9-5
and YP-50F have similar specific capacitances. However, at a current density of 10A/g,
PB-H-9-5 has a lower ion diffusion resistance than YP-50F because of its higher mesopore
volume. In conclusion, large micropore and mesopore volumes are required to achieve
high energy and power densities, respectively, in EDLCs.

Figure 8 shows the CV curves obtained for the PB-AC electrodes at various scan
rates (5–400 mV/s). The current densities in the CV curves are normalized with respect
to the mass of the active electrode material. Interestingly, the trends in the CV curves are
identical to those observed for the GCD curves in Figure 6. All the electrodes exhibit nearly
ideal EDLC behavior, having rectangular CV curves at low scan rates. However, for all
electrodes, at high scan rates, the shapes of the CV curves deviate significantly from the
ideal rectangular shape. The sizes of the electrolyte ions in 1 M TEABF4/PC are 1.35 to
1.40 nm [13]. Thus, the CV curves of PB-H-9-3 to PB-H-9-6 show an ideal rectangular shape
at low scan rates because they contain pores with diameters of 1.5–2.0 nm. However, as the
scan rate increased, the rectangular CV curve of PB-AC became leaf-shaped because of the
increase in internal resistance.
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Figure 8. Cycle voltammograms of the bamboo-derived activated carbon samples at various scan 
rates: (a) 5, (b) 50, (c) 100, (d) 200, (e) 300, and (f) 400 mV/s. 

Next, Nyquist plots were prepared to analyze the impedance data obtained for the 
EDLCs. In a typical Nyquist plot, a semicircle is observed in the high-frequency region 
and a Warburg line (slope of approximately 45°) is observed in the low-frequency region 
[40]. The semicircle portion in the Nyquist plot corresponds to the charge transfer process, 
with the diameter of the semicircle is proportional to the charge transfer resistance (RCT) 
[41]. The diffusion coefficient is calculated in the low-frequency region (Warburg imped-
ance) [41]. The diffusion coefficient is related to the mobility of the diffusion ions and is 
proportional to the squared velocity of diffusing ions, which means that there is faster 
diffusion of ions with a higher diffusion coefficient [41]. 

Figure 9 shows the Nyquist plots of the EDLCs prepared containing the PB-AC sam-
ples. The data about Nyquist plots were listed in Table 2. As shown in the Figure 8, as the 
activation time increased, the size of the semicircle decreased until an activation time of 
50 min, after which the semicircle size increased. The diameter of the semicircle can be 
attributed to the interfacial resistance of the electrode pores and the electrolyte. Thus, the 
interfacial resistance decreased because the pore diameter increased with an increase in 
activation time (20 to 50 min). On the other hand, the interfacial resistance of PB-H-9-6 
increased because of the formation of oxygen functional groups caused by the oxidation 
of the crystal edges [42]. 
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rates: (a) 5, (b) 50, (c) 100, (d) 200, (e) 300, and (f) 400 mV/s.
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Next, Nyquist plots were prepared to analyze the impedance data obtained for the
EDLCs. In a typical Nyquist plot, a semicircle is observed in the high-frequency region
and a Warburg line (slope of approximately 45◦) is observed in the low-frequency re-
gion [40]. The semicircle portion in the Nyquist plot corresponds to the charge transfer
process, with the diameter of the semicircle is proportional to the charge transfer resistance
(RCT) [41]. The diffusion coefficient is calculated in the low-frequency region (Warburg
impedance) [41]. The diffusion coefficient is related to the mobility of the diffusion ions
and is proportional to the squared velocity of diffusing ions, which means that there is
faster diffusion of ions with a higher diffusion coefficient [41].

Figure 9 shows the Nyquist plots of the EDLCs prepared containing the PB-AC
samples. The data about Nyquist plots were listed in Table 2. As shown in the Figure 8,
as the activation time increased, the size of the semicircle decreased until an activation time
of 50 min, after which the semicircle size increased. The diameter of the semicircle can
be attributed to the interfacial resistance of the electrode pores and the electrolyte. Thus,
the interfacial resistance decreased because the pore diameter increased with an increase
in activation time (20 to 50 min). On the other hand, the interfacial resistance of PB-H-9-6
increased because of the formation of oxygen functional groups caused by the oxidation of
the crystal edges [42].

In the Nyquist plot, the Warburg impedance of the PB-AC appears as a line with a 45◦

slope and is related to the mass transfer of electrolyte ions. Liu at al. [43] reported that the
mesoporous structure of electrode activity material significantly decreases the resistance of
EDLC by increasing the diffusion coefficient of ions within electrodes and decreasing the
interface resistance. In this study, the mesopore volume ratio of PB-AC increased (44.5%)
and the pore diameter increased with increasing activation time. Therefore, the meso-
porous structure of PB-AC greatly increases the diffusion coefficient, so that the Warburg
impedance is greatly reduced from 4.24 to 2.79 Ω. These results enable PB-AC to have high
output characteristics (Figure 8). Although YP-50F has a specific surface area similar to
that of PB-AC-H-9-5, it has a low specific capacitance owing to its high impedance.
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Table 2. Values of equivalent circuit parameters from fitting of the impedance spectra in Figure 8.

Sample RS
a

(Ω)
RCT

b

(Ω)
RW

c

(Ω)

PB-H-9-3 1.26 10.32 4.24
PB-H-9-4 1.24 6.46 3.91
PB-H-9-5 1.25 5.03 3.61
PB-H-9-6 1.22 10.01 2.89
YP-50F 1.18 10.2 4.39

a Rs: bulk electrolyte resistance, b RCT: charge transfer resistance, c RW: Warburg impedance.

The electrochemical behavior of EDLCs is determined by the pore properties of the
activated carbon. The crucial role of the pore structure in determining the performance
of the EDLCs was confirmed through a correlation analysis between the pore volume,
diameter, and specific surface area (Figure 10). At a current density of 0.1 A/g, a coefficient
of determination (R2) of 0.9 was obtained at a pore diameter of 1.5 Å. These results indicate
that the specific capacitance of the EDLC is determined by the volume of pores having
diameters of 1.5 Å at a current density of 0.1 A/g. As mentioned above, the sizes of the
cations and anions of 1 M TEABF4/PC electrolyte are 1.35 and 1.40 nm, respectively [13].
Thus, if the volume of pores having a diameter of 1.5 Å is predominant, the area for the
adsorption of ions is large, resulting in a high specific capacitance. On the other hand, at a
current density of 10 A/g, a broad bimodal PSD in the micropore regions (1.5 nm) and
micropore and mesopore regions (widths between 3.5 and 4.5 nm) was obtained (Figure 10).
This means that, to achieve a high specific capacitance at a current density of 10 A/g, both
the surface area for the adsorption of ions and the diameter of the passages through which
ions can move through the micropores without significant resistance are important.
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Figure 11 shows the Ragone plot that rendered the relationship of the energy density
and power density. The data of Ragone plots are listed Table 3. The EDLC cell based
on PB-H-9-6 delivered a maximum energy density of 22.1 Wh/kg at a maximum power
density 14.7 W/kg at a current density of 0.1 A/g, outperforming existing data in the
literature. Energy density of PB-H-9-6 is higher than that of YP-50F. The relatively small
sacrifice in the energy density while increasing the power density is another evidence that
PB-H-9-6 has both high specific surface area for ion adsorption and a pore diameter through
which ions can move through the micropores without significant resistance. On the basis of
the observed results, it can be clearly exhibited that PB-AC is promising for use as electrode
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materials of high power and energy capacity EDLCs and responsible for ameliorating the
forthcoming EDLCs for HESS in an effective way.
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Table 3. The electrochemical performance comparison of various biomass-derived activated carbons.

Precursor Activation
Method

SBET
(m2/g) Electrolyte Specific Capacitance

(F/g)
Energy Density

(Wh/kg) Ref

Baboo Steam 2700 1 M TEABF4/PC 86.7 @ 0.1 A/g 22.1 This work
Rice straw KOH 1007 EMIMBF4 64.0 @ 0.1 A/g 17.4 [44]
Corn husk KOH 1378 1 M TEABF4/AN 64.0 @ 1.0 A/g 20.0 [45]

Stiff silkworm KOH 2523 6 M KOH 199.8 @ 1.0 A/g 7.9 [46]
Bamboo KOH 2221 3 M KOH 234.4 @ 0.5 A/g 10.9 [47]

4. Conclusions

We carried out a comprehensive study of PB-AC, including its textural properties,
nanostructure, and electrochemical properties. To prepare the PB-AC, bamboo was stabi-
lized by treatment with phosphoric acid, which resulted in its decomposition, dehydration,
and crosslinking. Crucially, the stabilization process yielded a crystal structure different
from that produced by carbonization. Thus, based on our findings, bamboo is a suit-
able precursor for the preparation of activated carbon having a high specific surface area.
The specific surface area of the optimal PB-H-9-6 sample was 2700 m2/g and had large
micropore (0.81 cm3/g) and mesopore (0.65 cm3/g) volumes. In the activation step, the acti-
vation period was varied to control the pore size. As the activation time increased, the pore
structure of PB-AC changed from microporous to mesoporous. The microstructure affects
the electrochemical performance at a current density of 0.1 A/g. Further, a correlation
between the specific capacitance at a current density of 0.1 A/g in 1 M TEABF4/PC and the
pore characteristics of the PB-AC was determined to result from the matching of the pore
size (diameter of 1.5 nm) to the sizes of the electrolyte species. Electrochemical analysis
showed that the large mesopore volumes and micropore/mesopore ratios in the PB-AC
reduced the ion diffusion resistance, which led to a high specific capacitance when applied
in EDLCs at all tested current densities. In conclusion, PB-AC prepared using the phos-
phoric acid stabilization and steam activation exhibited an enhanced specific surface area
and specific capacitance compared to commercial coconut-shell-based activated carbon
(YP-50F), which was also prepared by steam activation.
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