Simulation and Computer Study of Structures and Physical Properties of Hydroxyapatite with Various Defects
Abstract
:1. Introduction
2. Computational Details, Main Models, and Methods
2.1. Main Methods and Used Software
2.2. Main Details of HAP Crystal Structure
2.3. HAP One Unit Cell Model
2.4. HAP Supercell Model
3. Main Results and Discussions
3.1. Main Structural and Mechanical Properties of HAP
3.1.1. Defects (OH-Vacancy and Various O-Vacancies) Influence on Structural and Mechanical HAP Properties
3.2. Electronic and Optical Properties
3.2.1. Electronic Properties of Pure HAP by Various Methods
3.2.2. Electronic Band Structure of Perfect Stoichiometric HAP
3.2.3. Electronic Band Structure of Defective HAP (with OH-Vacancy and O-Vacancies)
3.3. Electronic and Optical Properties of HAP with Defects in Supercell Model
3.3.1. Oxygen Originated Complex HAP Defects in Supercell Model
3.3.2. Kohn−Sham Energy Levels of Neutral Oxygen Vacancy VO Defects
3.3.3. OH-Vacancy in HAP Supercell Model and Some General Remarks
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ratner, B.D.; Hoffman, A.S.; Schoen, F.J.; Lemons, J.E. Biomaterials Science, 3rd ed.; Academic Press: Oxford, UK, 2013. [Google Scholar]
- Bystrov, V.; Bystrova, A.; Dekhtyar, Y.; Khlusov, I.A.; Pichugin, V.; Prosolov, K.; Sharkeev, Y. Electrical functionalization and fabrication of nanostructured hydroxyapatite coatings. In Bioceramics and Biocomposites: From Research to Clinical Practice; Jiulian, A., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 149–190. [Google Scholar]
- Leon, B.; Janson, J.A. Thin Calcium Phosphate Coatings for Medical Implants; Springer: Berlin, Germany, 2009. [Google Scholar]
- Baltacis, K.; Bystrov, V.; Bystrova, A.; Dekhtyar, Y.; Freivalds, T.; Raines, J.; Rozenberga, K.; Sorokins, H.; Zeidaks, M. Physical fundamentals of biomaterials surface electrical functionalization. Materials 2020, 13, 4575. [Google Scholar] [CrossRef]
- Bystrov, V.S.; Coutinho, J.; Bystrova, A.V.; Dekhtyar, Y.D.; Pullar, R.C.; Poronin, A.; Palcevskis, E.; Dindune, A.; Alkan, B.; Durucan, C. Computational study of the hydroxyapatite structures, properties and defects. J. Phys. D Appl. Phys. 2015, 48, 195302. [Google Scholar] [CrossRef]
- Bystrov, V.S.; Piccirillo, C.; Tobaldi, D.M.; Castro, P.M.L.; Coutinho, J.; Kopyl, S.; Pullar, R.C. Oxygen vacancies, the optical band gap (Eg) and photocatalysis of hydroxyapatite: Comparing modelling with measured data. Appl. Catal. B Environ. 2016, 196, 100–107. [Google Scholar] [CrossRef]
- Avakyan, L.A.; Paramonova, E.V.; Coutinho, J.; Öberg, S.; Bystrov, V.S.; Bugaev, L.A. Optoelectronics and defect levels in hydroxyapatite by first-principles. J. Chem. Phys. 2018, 148, 154706. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bystrov, V.S.; Avakyan, L.A.; Paramonova, E.V.; Coutinho, J. Sub-Band Gap Absorption Mechanisms Involving Oxygen Vacancies in Hydroxyapatite. J. Chem. Phys. C. 2019, 123, 4856–4865. [Google Scholar] [CrossRef] [Green Version]
- Bystrov, V.S. Computational Studies of the Hydroxyapatite Nanostructures, Peculiarities and Properties. Math. Biol. Bioinform. 2017, 12, 14–54. [Google Scholar] [CrossRef]
- Elliott, J. Structure and Chemistry of the Apatites and Other Calcium Orthophosphates, Studies in Inorganic Chemistry; Elsevier Science: Amsterdam, The Netherlands, 2013; p. 404. [Google Scholar]
- Hughes, J.M.; Cameron, M.; Crowley, K.D. Structural variations in natural F, OH, and Cl apatites. Am. Mineral. 1989, 74, 870–876. [Google Scholar]
- Ma, G.; Liu, X.Y. Hydroxyapatite: Hexagonal or monoclinic? Cryst. Growth Des. 2009, 9, 2991–2994. [Google Scholar] [CrossRef]
- Kay, M.I.; Young, R.A.; Posner, A.S. Crystal structure of hydroxyapatite. Nature 1964, 204, 1050. [Google Scholar] [CrossRef]
- Hitmi, N.; LaCabanne, C.; Young, R.A. OH-dipole reorientability in hydroxyapatites: Effect of tunnel size. J. Phys. Chem. Solids 1986, 47, 533–546. [Google Scholar] [CrossRef]
- Hitmi, N.; LaCabanne, C.; Young, R.A. Oh–reorientability in hydroxyapatites: Effect of F– and Cl–. J. Phys. Chem. Solids 1988, 49, 541–550. [Google Scholar] [CrossRef]
- Nakamura, S.; Takeda, H.; Yamashita, K. Proton transport polarization and depolarization of hydroxyapatite ceramics. J. Appl. Phys. 2001, 89, 5386. [Google Scholar] [CrossRef]
- Horiuchi, N.; Nakamura, M.; Nagai, A.; Katayama, K.; Yamashita, K. Proton conduction related electrical dipole and space charge polarization in hydroxyapatite. J. Appl. Phys. 2012, 112, 074901. [Google Scholar] [CrossRef]
- Tofail, S.A.M.; Haverty, D.; Stanton, K.T.; McMonagle, J.B. Structural order and dielectric behaviour of hydroxyapatite. Ferroelectrics 2005, 319, 117–123. [Google Scholar] [CrossRef]
- Matsunaga, K.; Kuwabara, A. First-principles study of vacancy formation in hydroxyapatite. Phys. Rev. B Condens. Matter Mater. Phys. 2007, 75, 014102. [Google Scholar] [CrossRef] [Green Version]
- Aronov, D.; Chaikina, M.; Haddad, J.; Karlov, A.; Mezinskis, G.; Oster, L.; Pavlovska, I.; Rosenman, G. Electronic states spectroscopy of Hydroxyapatite ceramics. J. Mater. Sci. Mater. Med. 2007, 18, 865–870. [Google Scholar] [CrossRef]
- Nishikawa, H. A high active type of hydroxyapatite for photocatalytic decomposition of dimethyl sulfide under UV irradiation. J. Mol. Catal. A Chem. 2004, 207, 149–153. [Google Scholar] [CrossRef]
- Nishikawa, H. Photo-induced catalytic activity of hydroxyapatite based on photo-excitation. Phosphorus Res. Bull. 2007, 21, 97–102. [Google Scholar] [CrossRef] [Green Version]
- Silin, A.R.; Trukhin, A.I. Point Defects and Elementary Excitations in Crystalline and Glassy SiO2; Zinatne: Riga, Latvia, 1985. (In Russian) [Google Scholar]
- Paramonova, E.V.; Avakyan, L.A.; Bystrov, V.S.; Coutinho, J. Hybrid density functional study of iron impurities in hydroxyapatite. In Book of Abstracts, Proceedings of the 4th International Conference on Nanomaterials Science and Mechanical Engineering (ICNMSME-2021), University of Aveiro, Aveiro, Portugal, 6–9 July 2021; UA Editora, Universidade de Aveiro: Aveiro, Portugal, 2021; p. 115. [Google Scholar]
- Paramonova, E.V.; Avakyan, L.A.; Bystrov, V.S.; Coutinho, J. Magnetic iron substitutions in hydroxyapatite: Density functional study. In Book of Abstracts, Proceedings of the 2nd International Conference on Nanomaterials Science and Mechanical Engineering, University of Aveiro, Aveiro, Portugal, 9–12 July 2019; UA Editora, Universidade de Aveiro: Aveiro, Portugal, 2019; p. 67. [Google Scholar]
- Bulina, N.V.; Chaikina, M.V.; Prosanov, I.Y. Mechanochemical Synthesis of Sr-Substituted Hydroxyapatite. Inorg. Mater. 2018, 54, 820–825. [Google Scholar] [CrossRef]
- Šupova, M. Substituted hydroxyapatites for biomedical applications: A review. Ceram. Int. 2015, 41, 9203–9231. [Google Scholar] [CrossRef]
- Capuccini, C.; Torricelli, P.; Boanini, E.; Gazzano, M.; Giardino, R.; Bigi, A. Interaction of Sr-doped hydroxyapatite nanocrystals with osteoclast and osteoblast-like cells. J. Biomed. Mater. Res. Part A 2009, 89, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Bystrov, V.S.; Paramonova, E.V.; Bystrova, A.V.; Avakyan, L.A.; Coutinho, J.; Makarova, S.V.; Bulina, N.V. Structural and physical properties of Sr-substituted hydroxyapatite: Modeling and experiments. In Book of Abstracts, Proceedings of the 4th International Conference on Nanomaterials Science and Mechanical Engineering (ICNMSME-2021), University of Aveiro, Aveiro, Portugal, 6–9 July 2021; UA Editora: Aveiro, Portugal, 2021; pp. 82–83. [Google Scholar]
- Calderin, l.; Stott, M.J.; Rubio, A. Electronic and crystallographic structure of apatites. Phys. Rev. B Condens. Matter Mater. Phys. 2003, 67, 134106. [Google Scholar] [CrossRef] [Green Version]
- Rulis, P.; Ouyang, L.; Ching, W.Y. Electronic structure and bonding in calcium apatite crystals: Hydroxyapatite, fluorapatite, chlorapatite, and bromapatite. Phys. Rev. B Condens. Matter Mater. Phys. 2004, 70, 155104. [Google Scholar] [CrossRef]
- Rulis, P.; Yao, H.; Ouyang, L.; Ching, W.Y. Electronic structure, bonding, charge distribution, and x-ray absorption spectra of the (001) surfaces of fluorapatite and hydroxyapatite from first principles. Phys. Rev. B Condens. Matter Mater. Phys. 2007, 76, 245410. [Google Scholar] [CrossRef]
- Haverty, D.; Tofail, S.A.M.; Stanton, K.T.; McMonagle, J.B. Structure and stability of hydroxyapatite: Density functional calculation and Rietveld analysis. Phys. Rev. B Condens. Matter Mater. Phys. 2005, 71, 094103. [Google Scholar] [CrossRef]
- Slepko, A.; Demkov, A.A. First-principles study of the biomineral hydroxyapatite. Phys. Rev. B Condens. Matter Mater. Phys. 2011, 84, 134108. [Google Scholar] [CrossRef] [Green Version]
- Corno, M.; Busco, C.; Civalleri, B.; Ugliengo, P. Periodic ab initio study of structural and vibrational features of hexagonal hydroxyapatite Ca10(PO4)6(OH)2. Phys. Chem. Chem. Phys. 2006, 8, 2464. [Google Scholar] [CrossRef]
- Bystrov, V.S.; Coutinho, J.; Avakyan, L.A.; Bystrova, A.V.; Paramonova, E.V. Piezoelectric, ferroelectric, optoelectronic phenomena in hydroxyapatite by first-principles and with various defects. Nanomater. Sci. Eng. 2019, 1, 10–21. [Google Scholar] [CrossRef]
- Bystrov, V.S.; Coutinho, J.; Avakyan, L.A.; Bystrova, A.V.; Paramonova, E.V. Piezoelectric, ferroelectric, and optoelectronic phenomena in hydroxyapatite with various defect levels. Ferroelectrics 2020, 550, 45–55. [Google Scholar] [CrossRef]
- AIMPRO. 2010. Available online: http://aimpro.ncl.ac.uk/ (accessed on 28 February 2016).
- VASP (Vienna Ab initio Simulation Package). Available online: https://www.vasp.at/ (accessed on 31 July 2019).
- HyperChem. Tools for Molecular Modeling (Release 8); Hypercube, Inc.: Gainnesville, FL, USA, 2011. [Google Scholar]
- Quantum Espresso. Available online: https://www.quantum-espresso.org/ (accessed on 7 September 2021).
- Britney, P.R.; Jones, R. LDA Calculations Using a Basis of Gaussian Orbitals. Phys. Status Solidi B Basic Res. 2000, 217, 131–171. [Google Scholar]
- Briddon, P.R.; Rayson, M.J. Accurate Kohn–Sham DFT with the Speed of Tight Binding: Current Techniques and Future Directions in Materials Modeling. Phys. Status Solidi B. 2011, 248, 1309–1318. [Google Scholar] [CrossRef]
- Martin, R.M.; Reining, L.; Ceperley, D.M. Interacting Electrons: Theory and Computational Approaches; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B Condens. Matter Mater. Phys. 1994, 49, 14251–14269. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter Mater. Phys. 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B Condens. Matter Mater. Phys. 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter Mater. Phys. 1988, 37, 785–789. [Google Scholar] [CrossRef] [Green Version]
- Becke, A.D. A new mixing of Hartree-Fock and local density functional theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B Condens. Matter Mater. Phys. 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, G.-X.; Martin, R.M.; Chadi, D.J. First-principles study of the atomic reconstructions and energies of Ga- and As-stabilized GaAs(100) surfaces. Phys. Rev. B Condens. Matter Mater. Phys. 1988, 38, 7649–7663. [Google Scholar] [CrossRef]
- Bystrova, A.V.; Dekhtyar, Y.; Popov, A.I.; Coutinho, J.; Bystrov, V.S. Modified Hydroxyapatite Structure and Properties: Modeling and Synchrotron Data Analysis of Modified Hydroxyapatite Structure. Ferroelectrics 2015, 475, 135–147. [Google Scholar] [CrossRef]
- Heyd, J.; Scuseria, G.E.; Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 2003, 118, 8207. [Google Scholar] [CrossRef] [Green Version]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158. [Google Scholar] [CrossRef]
- Open Babel. Available online: https://openbabel.org/docs/dev/Installation/install.html (accessed on 30 August 2021).
- Monkhorst, H.J.; Pack, L.D. Special points for Brillouin-zone integrations. Phys. Rev. 1976, 13, 5188. [Google Scholar] [CrossRef]
- Bulina, N.V.; Makarova, S.V.; Prosanov, I.Y.; Vinokurova, O.B.; Lyakhov, N.Z. Structure and thermal stability of fluorhydroxyapatite and fluorapatite obtained by mechanochemical method. J. Solid State Chem. 2020, 282, 121076. [Google Scholar] [CrossRef]
- Pogosova, M.A.; Provotorov, D.I.; Eliseev, A.A.; Jansen, M.; Kazin, P.E. Synthesis and characterization of the Bi-for-Ca substituted copper-based apatite pigments. Dyes Pigment. 2015, 113, 96–101. [Google Scholar] [CrossRef]
- Gomes, S.; Renaudin, G.; Mesbah, A.; Jallot, E.; Bonhomme, C.; Babonneau, F.; Nedelec, J.M. Thorough analysis of silicon substitution in biphasic calcium phosphate bioceramics: A multi-technique study. Acta Biomater. 2010, 6, 3264–3274. [Google Scholar] [CrossRef] [PubMed]
- Katz, J.L.; Ukraincik, K. On the anisotropic elastic properties of hydroxyapatite. J. Biomech. 1971, 4, 221–227. [Google Scholar] [CrossRef]
- Gilmore, R.S.; Katz, J.L. Elastic properties of apatites. J. Mater. Sci. 1982, 17, 1131–1141. [Google Scholar] [CrossRef]
- Paier, J.; Marsman, M.; Kresse, G. Why does the B3LYP hybrid functional fail for metals? J. Chem. Phys. 2007, 127, 024103. [Google Scholar] [CrossRef] [PubMed]
- Birch, F. Finite Elastic Strain of Cubic Crystals. Phys. Rev. 1947, 71, 809. [Google Scholar] [CrossRef]
- Mostofi, A.A.; Yates, J.R.; Pizzi, G.; Lee, Y.-S.; Souza, I.; Vanderbilt, D.; Marzari, N. An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 2014, 185, 2309. [Google Scholar] [CrossRef] [Green Version]
- Garza, A.J.; Scuseria, G.E. Predicting Band Gaps with Hybrid Density Functionals. J. Phys. Chem. Lett. 2016, 7, 4165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prendergast, D.; Grossman, J.C.; Galli, G. The electronic structure of liquid water within density-functional theory. J. Chem. Phys. 2005, 123, 014501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Engel, E.A.; Monserrat, B.; Needs, R.J. Vibrational renormalisation of the electronic band gap in hexagonal and cubic ice. J. Chem. Phys. 2015, 143, 244708. [Google Scholar] [CrossRef] [Green Version]
- Salehli, F.; Aydin, A.O.; Chovan, D.; Kopyl, S.; Bystrov, V.; Thompson, D.; Tofail, S.A.M.; Kholkin, A. Nanoconfined water governs polarization-related properties of self-assembled peptide nanotubes. Nano Sel. 2021, 2, 817–829. [Google Scholar] [CrossRef]
- Bystrov, V.; Coutinho, J.; Zelenovskiy, P.; Nuraeva, A.; Kopyl, S.; Zhulyabina, O.; Tverdislov, V. Structures and properties of the self-assembling diphenylalanine peptide nanotubes containing water molecules: Modeling and data analysis. Nanomaterials 2020, 10, 1999. [Google Scholar] [CrossRef] [PubMed]
- Bystrov, V.S.; Paramonova, E.V.; Dekhtyar, Y.D.; Bystrova, A.V.; Pullar, R.C.; Kopyl, S.; Tobaldi, D.M.; Piccirillo, C.; Avakyan, L.A.; Coutinho, J. Surface modified hydroxyapatites with various functionalized nanostructures: Computational studies of the vacancies in HAp. Ferroelectrics 2017, 509, 105. [Google Scholar] [CrossRef]
Phase | Group | a, Å | b, Å | c, Å |
---|---|---|---|---|
Hexagonal | P63/m | 9.417 | 9.417 | 6.875 |
Monoclinic | P21/b | 9.480 | 18.960 | 6.830 |
Property | Experim. [11] | Experim. [58] | Experim. [59] ([60]) | AIMPRO (LDA) (3) [5,6] | PBE VASP (3) (GGA) | PBE (GGA)/SuperCell (4) [7,8] | B3LYP/Super-Cell (4) [7,8] | HSE [7] | PBE0 [7] | ||
---|---|---|---|---|---|---|---|---|---|---|---|
OH-OH P63 | OH-HO P63/m | OH-OH P63 | OH-HO P63/m | ||||||||
Initial stoichiometric HAP (hexagonal P63) | |||||||||||
a, Å | 9.417 | 9.4236 | 9.4205 (9.4248) | 9.4732 | 9.4624 | 9.3628 | 9.3640 | 9.537 | 9.5770 | 9.481 | 9.477 |
c, Å | 6.875 | 6.8802 | 6.8828 (6.8860) | 6.9986 | 7.0182 | 6.8454 | 6.8621 | 6.909 | 6.8767 | 6.859 | 6.851 |
V, Å (3) | 527.99 | 529.13 | 528.99 (529.71) | 543.92 | 544.20 | 519.69 | 521.09 | 546.07 | 546.22 | 533.95 | 532.88 |
B,GPa | 89 ± 1 (1) | 81.6 ± 2 | 82.35 ± 2 | - | 82 ± 3 | 86 ± 2 | 83 ± 3 | 82.8 ± 0.3 | |||
E, a.u. E, eV | −467.0992 | −467.0944 | −311.82 | −311.39 | |||||||
ΔE,eV | 0.132 | 0.43 | |||||||||
HAP with OH-vacancy | |||||||||||
a, Å | 9.4155 (2) | 9.4883 | 9.3685 | 9.4210 | 9.537 | 9.5770 | - | - | |||
c, Å | 6.8835 (2) | 7.0018 | 6.8351 | 6.8800 | 6.909 | 6.8767 | - | - | |||
V, Å (3) | 528.48 (2) | 545.905 | 519.53 | 528.83 | 546.07 | 546.22 | - | - | |||
B,GPa | 78 ± 2 | −297.78 | −297.99 | ||||||||
E, eV | 0.21 |
Property | Type of O-Vacancy | AIMPRO (LDA) [5,6] | PBE–VASP (GGA) |
---|---|---|---|
HAP with O-vacancy from OH (one unit cell HAP P63 model) | |||
a, Å | - | 9.4539 | 9.3437 |
c, Å | - | 7.0028 | 6.8463 |
V, Å (2) | - | 542.03 | 517.64 |
HAP with O-vacancy from PO4 (one unit cell model HAP P63 model) | |||
Atom O in different positions in PO4 (1) | |||
a, Å, | V_O1 (O6) V_O2 (O15) V_O3 (O30,O35) V_O4 (O24) | 9.4599 9.4630 9.4581 9.47295 | 9.3570 9.3520 9.3544 |
aver. a, Å | 9.4635 ± 0.005 | 9.3545 ± 0.005 | |
c, Å | V_O1 (O6) V_O2 (O15) V_O3 (O30,O35) V_O4 (O24) | 6.9884 6.9890 6.9893 6.97822 | 6.8139 6.8242 6.8402 |
aver. c, Å | 6.9890 ± 0.005 | 6.8261 ± 0.005 | |
V, Å (2) | V_O1 (O6) V_O2 (O15) V_O3 (O30,O35) V_O4 (O24) | 541.60 542.01 541.47 542.31 | 517.86 518.33 517.45 |
aver. V, Å (2) | 541.85 ± 0.3 | 517.88 ± 0.1 |
Defect Type | LDA | GGA (PBE) | ||||||
---|---|---|---|---|---|---|---|---|
Eg = Ec − Ev, eV | ΔEg = Eg − Eg0 ~ Δϕ, eV | Ei − Ev, eV | Eg* = Ec − Ei, eV | Eg = Ec − Ev, eV | ΔEg = Eg−Eg0~ ~ Δϕ eV | Ei − Ev, eV | Eg* = Ec − Ei, eV | |
HAP in P63/m, Eg0 | 4.6 | - | - | - | 5.26 | - | - | - |
O(OH) vac | 5.15 | +0.55 | 0.1 (1 occ.) | 5.05 | 5.72 | +0.46 | 0.27 | 5.45 |
OH vac | 5.49 | +0.89 | 3.11–3.82 peaks: 3.40 3.53 3.66 (½ occ.) | 2.38–1.67 peaks: 2.09 1.96 1.83 | 5.75 | +0.49 | 3.66–4.28 peaks: 3.96 4.11 4.17 | 1.97–1.35 peaks: 1.78 1.63 1.57 |
Ovac(PO4) (1) V_O1 (O6) V_O2 (O15) V_O3 (O30,O35) V_O4 (O24) | 4.734 4.768 4.735 4.5614 | 1.346 1.300 1.347 0.9557 | 3.388 3.468 3.388 3.6057 | 5.416 5.246 5.326 | 1.045 1.212 1.142 | 4.115 4.034 4.184 | ||
aver. O(PO4) -vac | 4.70 ± 0.2 | +0.15 | 1.14 ± 0.3 | 3.52 ± 0.3 | 5.34 ± 0.2 | +0.08 | 1.13 ± 0.2 | 4.11 ± 0.2 |
Defect Type | PBE | B3LYP | ||||||
---|---|---|---|---|---|---|---|---|
Eg = Ec − Ev, eV | ΔEg = Eg − Eg0 ~Δφ, eV | Ei − Ev, eV | Ec − Ei = Eg*, eV | Eg = Ec − Ev, eV | ΔEg = Eg − Eg0 ~Δφ, eV | Ei − Ev, eV | Ec − Ei = Eg*, eV | |
HAP in P63/m, Eg0 | 5.23 | - | - | - | 7.3 | - | - | - |
A0=A0I (VO(I)) | 5.0674 | −0.1626 | 1.1496 ~1.15 | 3.9178 | 7.0497 | −0.2503 | 1.4291 ~1.43 | 5.6206 |
A0=A0II (VO(II)) | 5.2004 | −0.0296 | 1.3167 ~1.32 | 3.8837 | 7.2311 | −0.0689 | 1.6512 ~1.65 | 5.5799 |
A0=A0III (VO(III)) | 5.1393 | −0.0907 | 1.3811 ~1.38 | 3.7582 | 7.1333 | −0.1667 | 1.685 ~1.68 | 5.4488 |
D0=D0I (VO(IV)) | 5.3004 | +0.0704 | 0.4189 ~0.42 | 4.8815 | 7.3842 | +0.0842 | 0.7347 ~0.73 | 6.6495 |
Unit Cell | AIMPRO (LDA), Eg* | VASP-PBE (GGA), Eg* | Super-Cell | PBE opt (Eg* = Ec − Ei) (GGA-Supercell) | B3LYP opt (Eg* = Ec − Ei) (GGA-Supercell) | Spectr. | ||
---|---|---|---|---|---|---|---|---|
Ovac from Figure 2 | Ovac from Figure 10 | Kohn− Sham | Defect as quasiparticle in crystal | Kohn− Sham | Defect as quasiparticle in crystal | |||
V_O1 | 3.3880 (Eg = 4.734) | 4.115 (Eg = 5.416) | VO(I) | 3.9178 (Eg = 5.067) | 3.7052 | 5.6206 (Eg = 7.05) | 4.3375 | UVA–UVB |
V_O2 | 3.6057 (Eg = 4.562) | 4.034 (Eg = 5.246) | VO(II) | 3.8837 (Eg = 5.200) | 3.6575 | 5.5799 (Eg = 7.23) | 4.3486 | |
V_O3 | 3.4677 (Eg = 4.768) | 4.184 (Eg = 5.326) | VO(III) | 3.7582 (Eg = 5.139) | 3.5166 | 5.4488 (Eg = 7.13) | 4.1291 | |
V_O4 | 3.6057 (Eg = 4.562) | - | - | - | - | - | - | |
Aver. (O1_4) | 3.52 ± 0.3 (Eg = 4.70) | 4.11 ± 0.3 (Eg = 5.34) | Aver. (I-III) | 3.8532 ± 0.2 (Eg = 5.14) | 3.6264 ± 0.2 | 5.5498 ± 0.2 (Eg = 7.14) | 4.2717 ± 0.2 | UVA |
V_O of OH | 5.05 (Eg = 5.15) | 5.45 (Eg = 5.72) | VO(IV) | 4.8815 | 5.0630 | 6.6495 | 5.8563 | UVC |
VOH | 2.38-1.67 2.09 1.96 1.83 (Eg = 5.49) | 1.97- 1.35 1.78 1.63 1.57 (Eg = 5.75) | VOH | 1.73 | 1.7372 | 2.9174 and 2.7074 | 1.7491 and 2.200 | Green-Red |
Eg0 | 4.6 | 5.26 | 5.4 | 5.237 | 7.34 | 6.849 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bystrov, V.; Paramonova, E.; Avakyan, L.; Coutinho, J.; Bulina, N. Simulation and Computer Study of Structures and Physical Properties of Hydroxyapatite with Various Defects. Nanomaterials 2021, 11, 2752. https://doi.org/10.3390/nano11102752
Bystrov V, Paramonova E, Avakyan L, Coutinho J, Bulina N. Simulation and Computer Study of Structures and Physical Properties of Hydroxyapatite with Various Defects. Nanomaterials. 2021; 11(10):2752. https://doi.org/10.3390/nano11102752
Chicago/Turabian StyleBystrov, Vladimir, Ekaterina Paramonova, Leon Avakyan, José Coutinho, and Natalia Bulina. 2021. "Simulation and Computer Study of Structures and Physical Properties of Hydroxyapatite with Various Defects" Nanomaterials 11, no. 10: 2752. https://doi.org/10.3390/nano11102752
APA StyleBystrov, V., Paramonova, E., Avakyan, L., Coutinho, J., & Bulina, N. (2021). Simulation and Computer Study of Structures and Physical Properties of Hydroxyapatite with Various Defects. Nanomaterials, 11(10), 2752. https://doi.org/10.3390/nano11102752