Mono- and Dicationic DABCO/Quinuclidine Composed Nanomaterials for the Loading of Steroidal Drug: 32 Factorial Design and Physicochemical Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Factorial Design
2.2.2. Preparation of Nanoemulsions
2.2.3. Physicochemical Characterization
2.2.4. Accelerated Stability Analysis
2.2.5. Encapsulation Efficiency
2.2.6. Surface Tension
2.2.7. Osmolality Assessment
2.2.8. Rheological Behavior
2.2.9. Stability of NEs in Simulated Tears
2.2.10. Morphology Analysis TEM
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doktorovova, S.; Souto, E.B.; Silva, A.M. Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers—A systematic review of in vitro data. Eur. J. Pharm. Biopharm. 2014, 87, 1–18. [Google Scholar] [CrossRef]
- Fangueiro, J.F.; Silva, A.M.; Garcia, M.L.; Souto, E.B. Current nanotechnology approaches for the treatment and management of diabetic retinopathy. Eur. J. Pharm. Biopharm. 2015, 95, 307–322. [Google Scholar] [CrossRef]
- Doktorovova, S.; Santos, D.L.; Costa, I.; Andreani, T.; Souto, E.B.; Silva, A.M. Cationic solid lipid nanoparticles interfere with the activity of antioxidant enzymes in hepatocellular carcinoma cells. Int. J. Pharm. 2014, 471, 18–27. [Google Scholar] [CrossRef]
- Fangueiro, J.F.; Andreani, T.; Egea, M.A.; Garcia, M.L.; Souto, S.B.; Silva, A.M.; Souto, E.B. Design of cationic lipid nanoparticles for ocular delivery: Development, characterization and cytotoxicity. Int. J. Pharm. 2014, 461, 64–73. [Google Scholar] [CrossRef]
- Dukovski, B.J.; Bračko, A.; Šare, M.; Pepić, I.; Lovrić, J. In vitro evaluation of stearylamine cationic nanoemulsions for improved ocular drug delivery. Acta Pharm. 2019, 69, 621–634. [Google Scholar] [CrossRef] [Green Version]
- Becerra, E.M.; Morescalchi, F.; Gandolfo, F.; Danzi, P.; Nascimbeni, G.; Arcidiacono, B.; Semeraro, F. Clinical evidence of intravitreal triamcinolone acetonide in the management of age-related macular degeneration. Curr. Drug Targets 2011, 12, 149–172. [Google Scholar] [CrossRef] [Green Version]
- Pickrell, A.; Harris, A.; Ngo, S.; Amireskandari, A.; Stewart, E.; Siesky, B. Delivery of intraocular triamcinolone acetonide in the treatment of macular edema. Pharmaceutics 2012, 4, 230–242. [Google Scholar] [CrossRef] [Green Version]
- Araujo, J.; Gonzalez-Mira, E.; Egea, M.A.; Garcia, M.L.; Souto, E.B. Optimization and physicochemical characterization of a triamcinolone acetonide-loaded NLC for ocular antiangiogenic applications. Int. J. Pharm. 2010, 393, 167–175. [Google Scholar] [CrossRef]
- Cevc, G.; Blume, G. Biological activity and characteristics of triamcinolone-acetonide formulated with the self-regulating drug carriers, Transfersomes®. Biochim. Biophys. Acta Biomembr. 2003, 1614, 156–164. [Google Scholar] [CrossRef] [Green Version]
- Araujo, J.; Gonzalez, E.; Egea, M.A.; Garcia, M.L.; Souto, E.B. Nanomedicines for ocular NSAIDs: Safety on drug delivery. Nanomedicine 2009, 5, 394–401. [Google Scholar] [CrossRef]
- Araujo, J.; Vega, E.; Lopes, C.; Egea, M.A.; Garcia, M.L.; Souto, E.B. Effect of polymer viscosity on physicochemical properties and ocular tolerance of FB-loaded PLGA nanospheres. Colloids Surf. B Biointerfaces 2009, 72, 48–56. [Google Scholar] [CrossRef]
- Tamilvanan, S.; Benita, S. The potential of lipid emulsion for ocular delivery of lipophilic drugs. Eur. J. Pharm. Biopharm. 2004, 58, 357–368. [Google Scholar] [CrossRef]
- Lallemand, F.; Daull, P.; Benita, S.; Buggage, R.; Garrigue, J.S. Successfully improving ocular drug delivery using the cationic nanoemulsion, novasorb. J. Drug Deliv. 2012, 2012, 604204. [Google Scholar] [CrossRef]
- Fangueiro, J.F.; Veiga, F.; Silva, A.M.; Souto, E.B. Ocular Drug Delivery—New Strategies for Targeting Anterior and Posterior Segments of the Eye. Curr. Pharm. Des. 2016, 22, 1135–1146. [Google Scholar] [CrossRef]
- Gan, L.; Wang, J.; Jiang, M.; Bartlett, H.; Ouyang, D.; Eperjesi, F.; Liu, J.; Gan, Y. Recent advances in topical ophthalmic drug delivery with lipid-based nanocarriers. Drug Discov. Today 2013, 18, 290–297. [Google Scholar] [CrossRef]
- Shah, J.; Nair, A.B.; Jacob, S.; Patel, R.K.; Shah, H.; Shehata, T.M.; Morsy, M.A. Nanoemulsion Based Vehicle for Effective Ocular Delivery of Moxifloxacin Using Experimental Design and Pharmacokinetic Study in Rabbits. Pharmaceutics 2019, 11, 230. [Google Scholar] [CrossRef] [Green Version]
- Zakharova, L.Y.; Pashirova, T.N.; Doktorovova, S.; Fernandes, A.R.; Sanchez-Lopez, E.; Silva, A.M.; Souto, S.B.; Souto, E.B. Cationic Surfactants: Self-Assembly, Structure-Activity Correlation and Their Biological Applications. Int. J. Mol. Sci. 2019, 20, 5534. [Google Scholar] [CrossRef] [Green Version]
- Fedorova, A.A.; Goncharova, E.P.; Koroleva, L.S.; Burakova, E.A.; Ryabchikova, E.I.; Bichenkova, E.V.; Silnikov, V.N.; Vlassov, V.V.; Zenkova, M.A. Artificial ribonucleases inactivate a wide range of viruses using their ribonuclease, membranolytic, and chaotropic-like activities. Antivir. Res. 2016, 133, 73–84. [Google Scholar] [CrossRef]
- Pashirova, T.N.; Lukashenko, S.S.; Zakharov, S.V.; Voloshina, A.D.; Zhiltsova, E.P.; Zobov, V.V.; Souto, E.B.; Zakharova, L.Y. Self-assembling systems based on quaternized derivatives of 1,4-diazabicyclo[2.2.2]octane in nutrient broth as antimicrobial agents and carriers for hydrophobic drugs. Colloids Surf. B Biointerfaces 2015, 127, 266–273. [Google Scholar] [CrossRef]
- Fangueiro, J.F.; Calpena, A.C.; Clares, B.; Andreani, T.; Egea, M.A.; Veiga, F.J.; Garcia, M.L.; Silva, A.M.; Souto, E.B. Biopharmaceutical evaluation of epigallocatechin gallate-loaded cationic lipid nanoparticles (EGCG-LNs): In vivo, in vitro and ex vivo studies. Int. J. Pharm. 2016, 502, 161–169. [Google Scholar] [CrossRef]
- Zielińska, A.; Martins-Gomes, C.; Ferreira, N.R.; Silva, A.M.; Nowak, I.; Souto, E.B. Anti-inflammatory and anti-cancer activity of citral: Optimization of citral-loaded solid lipid nanoparticles (SLN) using experimental factorial design and LUMiSizer®. Int. J. Pharm. 2018, 553, 428–440. [Google Scholar] [CrossRef] [PubMed]
- Detloff, T.; Sobisch, T.; Lerche, D. Instability index. Dispers. Lett. Tech. 2013, 4, 1–4. [Google Scholar]
- da Silva, A.C.; Lopes, P.M.; de Azevedo, M.M.; Costa, D.C.; Alviano, C.S.; Alviano, D.S. Biological activities of alpha-pinene and beta-pinene enantiomers. Molecules 2012, 17, 6305–6316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Liu, Y.; Li, M.; Mao, J.; Zhang, L.; Huang, R.; Jin, X.; Ye, L. Anti-tumor effect of α-pinene on human hepatoma cell lines through inducing G2/M cell cycle arrest. J. Pharmacol. Sci. 2015, 127, 332–338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, B.; Ferreira, A.; Fonseca, I. Surface and interfacial tensions of the systems water+ n-butyl acetate+ methanol and water+ n-pentyl acetate+ methanol at 303.15 K. Fluid Phase Equilibria 2003, 208, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Aloisio, C.; Longhi, M.R.; De Oliveira, A.G. Development and Characterization of a Biocompatible Soybean Oil-Based Microemulsion for the Delivery of Poorly Water-Soluble Drugs. J. Pharm. Sci. 2015, 104, 3535–3543. [Google Scholar] [CrossRef]
- Zhang, H.; Yao, M.; Morrison, R.A.; Chong, S. Commonly used surfactant, Tween 80, improves absorption of P-glycoprotein substrate, digoxin, in rats. Arch. Pharm Res. 2003, 26, 768–772. [Google Scholar] [CrossRef]
- Khachane, P.V.; Jain, A.S.; Dhawan, V.V.; Joshi, G.V.; Date, A.A.; Mulherkar, R.; Nagarsenker, M.S. Cationic nanoemulsions as potential carriers for intracellular delivery. Saudi Pharm. J. 2015, 23, 188–194. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Madan, P.; Lin, S. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: A co-surfactant study. Asian J. Pharm. Sci. 2016, 11, 404–416. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Liu, Z.; Tao, C.; Lin, X.; Zhang, M.; Zeng, L.; Chen, X.; Song, H. Cationic nanoemulsions with prolonged retention time as promising carriers for ophthalmic delivery of tacrolimus. Eur. J. Pharm. Sci. 2020, 144, 105229. [Google Scholar] [CrossRef]
- Doktorovova, S.; Kovacevic, A.B.; Garcia, M.L.; Souto, E.B. Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: Current evidence from in vitro and in vivo evaluation. Eur. J. Pharm. Biopharm. 2016, 108, 235–252. [Google Scholar] [CrossRef] [PubMed]
- Fangueiro, J.F.; Andreani, T.; Egea, M.A.; Garcia, M.L.; Souto, S.B.; Souto, E.B. Experimental factorial design applied to mucoadhesive lipid nanoparticles via multiple emulsion process. Colloids Surf. B Biointerfaces 2012, 100, 84–89. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, A.R.; Ferreira, N.R.; Fangueiro, J.F.; Santos, A.C.; Veiga, F.J.; Cabral, C.; Silva, A.M.; Souto, E.B. Ibuprofen nanocrystals developed by 22 factorial design experiment: A new approach for poorly water-soluble drugs. Saudi Pharm. J. 2017, 25, 1117–1124. [Google Scholar] [CrossRef] [PubMed]
- Souto, E.B.; Wissing, S.A.; Barbosa, C.M.; Müller, R.H. Evaluation of the physical stability of SLN and NLC before and after incorporation into hydrogel formulations. Eur. J. Pharm. Biopharm. 2004, 58, 83–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caddeo, C.; Manconi, M.; Fadda, A.M.; Lai, F.; Lampis, S.; Diez-Sales, O.; Sinico, C. Nanocarriers for antioxidant resveratrol: Formulation approach, vesicle self-assembly and stability evaluation. Colloids Surf. B Biointerfaces 2013, 111, 327–332. [Google Scholar] [CrossRef]
- Penney, M.; Walters, G. Are osmolality measurements clinically useful? Ann. Clin. Biochem. 1987, 24, 566–571. [Google Scholar] [CrossRef]
- Dutescu, R.M.; Panfil, C.; Schrage, N. Osmolarity of prevalent eye drops, side effects, and therapeutic approaches. Cornea 2015, 34, 560–566. [Google Scholar] [CrossRef]
- Papa, V.; Aragona, P.; Russo, S.; Di Bella, A.; Russo, P.; Milazzo, G. Comparison of hypotonic and isotonic solutions containing sodium hyaluronate on the symptomatic treatment of dry eye patients. Ophthalmologica 2001, 215, 124–127. [Google Scholar] [CrossRef]
- Cassir, M.; Ringuedé, A.; Lair, V. 17—Molten Carbonates from Fuel Cells to New Energy Devices. In Molten Salts Chemistry; Lantelme, F., Groult, H., Eds.; Elsevier: Oxford, UK, 2013; pp. 355–371. [Google Scholar] [CrossRef]
- Mandal, A.; Pal, D.; Agrahari, V.; Trinh, H.M.; Joseph, M.; Mitra, A.K. Ocular delivery of proteins and peptides: Challenges and novel formulation approaches. Adv. Drug Deliv. Rev. 2018, 126, 67–95. [Google Scholar] [CrossRef]
- Fiscella, R. Ophthalmic Drug Formulations. In Clinical Ocular Pharmacology, 5th ed.; Bartlett, J.D., Jaanus, S.D., Eds.; Elsevier: St. Louis, MI, USA, 2008; Chapter 2; pp. 17–37. [Google Scholar] [CrossRef]
Soybean Oil (% w/w) | Tween 80 (% w/w) | Poloxamer 188 (% w/w) | Glycerol (% w/w) | Ctab (μg/mL) | Cationic Surfactants (CMC, in mM) | |
---|---|---|---|---|---|---|
Pre-formulation | 1.00 to 2.00 | 0.20 | 0.01 | 1.50 to 2.50 | 50 | - |
Formulation S1 | 2.00 | 0.20 | 0.01 | 1.50 | - | 1.00 |
Formulation S2 | 2.00 | 0.20 | 0.01 | 1.50 | - | 0.33 |
Formulation S3 | 2.00 | 0.20 | 0.01 | 1.50 | - | 0.80 |
Formulation S4 | 2.00 | 0.20 | 0.01 | 1.50 | - | 2.00 |
Formulation S5 | 2.00 | 0.20 | 0.01 | 1.50 | - | 3.00 |
Formulation S6 | 2.00 | 0.20 | 0.01 | 1.50 | - | 11.00 |
Formulation S7 | 2.00 | 0.20 | 0.01 | 1.50 | - | 4.00 |
Formulation S8 | 2.00 | 0.20 | 0.01 | 1.50 | - | 0.12 |
Formulation S9 | 2.00 | 0.20 | 0.01 | 1.50 | - | 0.08 |
Formulation | Pattern | Soybean Oil | Glycerol | Amplitude | Soybean Oil (g) | Glycerol (g) | Amplitude |
---|---|---|---|---|---|---|---|
1 | 000 | 0 | 0 | 0 | 0.45 | 0.60 | 80 |
2 | −++ | −1 | 1 | 1 | 0.30 | 0.75 | 100 |
3 | −−+ | −1 | −1 | 1 | 0.30 | 0.45 | 100 |
4 | +−− | 1 | −1 | −1 | 0.60 | 0.45 | 60 |
5 | −+− | −1 | 1 | −1 | 0.30 | 0.75 | 60 |
6 | +++ | 1 | 1 | 1 | 0.60 | 0.75 | 100 |
7 | 000 | 0 | 0 | 0 | 0.45 | 0.60 | 80 |
8 | 000 | 0 | 0 | 0 | 0.45 | 0.60 | 80 |
9 | −−− | −1 | −1 | −1 | 0.30 | 0.45 | 60 |
10 | ++− | 1 | 1 | −1 | 0.60 | 0.75 | 60 |
11 | +−+ | 1 | −1 | 1 | 0.60 | 0.45 | 100 |
Nanoemulsion | Pattern | z-Ave (nm) | PI | ZP (mV) | pH | Osmolality (mOsm/kg) |
---|---|---|---|---|---|---|
1 | 000 | 240.2 | 0.369 | 0.032 | 4.019 | 188 |
2 | −++ | 214.6 | 0.269 | 52.000 | 4.109 | 257 |
3 | −−+ | 216.9 | 0.262 | 47.600 | 3.953 | 151 |
4 | +−− | 162.1 | 0.203 | 63.600 | 4.030 | 154 |
5 | −+− | 207.6 | 0.282 | 38.200 | 4.839 | 238 |
6 | +++ | 262.9 | 0.328 | 10.600 | 4.146 | 277 |
7 | 000 | 242.0 | 0.329 | 0.035 | 4.314 | 211 |
8 | 000 | 210.0 | 0.258 | 0.003 | 4.174 | 219 |
9 | −−− | 189.2 | 0.213 | −0.022 | 3.992 | 145 |
10 | ++− | 290.1 | 0.415 | 13.300 | 4.263 | 237 |
11 | +−+ | 264.0 | 0.319 | 15.600 | 4.186 | 239 |
Nanoemulsion | Instability Index | Profiles (RPM) |
---|---|---|
1 | 0.911 | 1000–4000 |
2 | 0.921 | 1000–4000 |
3 | 0.932 | 1000–4000 |
4 | 0.214 | 1000–4000 |
5 | 0.930 | 1000–4000 |
6 | 0.903 | 1000–4000 |
7 | 0.917 | 1000–4000 |
8 | 0.902 | 1000–4000 |
9 | 0.914 | 1000–4000 |
10 | 0.879 | 1000–4000 |
11 | 0.912 | 1000–4000 |
DAY | 0 | 1 | 3 | 7 | 14 | 28 | 60 | |
---|---|---|---|---|---|---|---|---|
S1 | Osmo. mOsm/kg | 162 | 155 | 153 | 154 | 153 | 153 | 153 |
pH | 4.230 | |||||||
S2 | Osmo. mOsm/kg. | 157 | 150 | 155 | 152 | 152 | 152 | 153 |
pH | 4.382 | |||||||
S3 | Osmo. mOsm/kg. | 156 | 157 | 150 | 152 | 150 | 152 | 146 |
pH | 4.163 | |||||||
S4 | Osmo. mOsm/kg. | 164 | 155 | 153 | 161 | 156 | 154 | 152 |
pH | 4.011 | |||||||
S5 | Osmo. mOsm/kg | 154 | 155 | 152 | 151 | 152 | 154 | 149 |
pH | 4.704 | |||||||
S6 | Osmo. mOsm/kg | 151 | 153 | 146 | 142 | 144 | 151 | 152 |
pH | 4.359 | |||||||
S7 | Osmo. mOsm/kg. | 154 | 156 | 145 | 144 | 146 | 152 | 151 |
pH | 4.307 | |||||||
S8 | Osmo. mOsm/kg | 160 | 151 | 151 | 151 | 151 | 152 | 152 |
pH | 4.016 | |||||||
S9 | Osmo. mOsm/kg | 160 | 158 | 153 | 154 | 157 | 158 | 157 |
pH | 4.176 | |||||||
CTAB | Osmo. mOsm/kg | 153 | 155 | 151 | 153 | 155 | 158 | 155 |
pH | 4.030 |
Formulation | F2 | F7 | CTAB-Based |
---|---|---|---|
Encapsulation Efficiency (%) | 80.8 | 87.5 | 78.3 |
Formulation | Day | |||||
---|---|---|---|---|---|---|
0 | 1 | 3 | 7 | 14 | 28 | |
F2 | 169 | 171 | 177 | 170 | 176 | 174 |
F7 | 138 | 142 | 146 | 141 | 144 | 149 |
CTAB-based | 136 | 139 | 150 | 143 | 147 | 152 |
Formulation | NEs in Sterile Saline Solution | NEs in Sterile Phosphate Buffer at Neutral pH | ||
---|---|---|---|---|
(1:1 Dilution) | (1:3 Dilution) | (1:1 Dilution) | (1:3 Dilution) | |
F2 | 204 | 243 | 479 | 601 |
F7 | 200 | 244 | 464 | 602 |
CTAB-based | 236 | 261 | 481 | 606 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernandes, A.R.; Sanchez-Lopez, E.; Santini, A.; Santos, T.d.; Garcia, M.L.; Silva, A.M.; Souto, E.B. Mono- and Dicationic DABCO/Quinuclidine Composed Nanomaterials for the Loading of Steroidal Drug: 32 Factorial Design and Physicochemical Characterization. Nanomaterials 2021, 11, 2758. https://doi.org/10.3390/nano11102758
Fernandes AR, Sanchez-Lopez E, Santini A, Santos Td, Garcia ML, Silva AM, Souto EB. Mono- and Dicationic DABCO/Quinuclidine Composed Nanomaterials for the Loading of Steroidal Drug: 32 Factorial Design and Physicochemical Characterization. Nanomaterials. 2021; 11(10):2758. https://doi.org/10.3390/nano11102758
Chicago/Turabian StyleFernandes, Ana R., Elena Sanchez-Lopez, Antonello Santini, Tiago dos Santos, Maria L. Garcia, Amélia M. Silva, and Eliana B. Souto. 2021. "Mono- and Dicationic DABCO/Quinuclidine Composed Nanomaterials for the Loading of Steroidal Drug: 32 Factorial Design and Physicochemical Characterization" Nanomaterials 11, no. 10: 2758. https://doi.org/10.3390/nano11102758
APA StyleFernandes, A. R., Sanchez-Lopez, E., Santini, A., Santos, T. d., Garcia, M. L., Silva, A. M., & Souto, E. B. (2021). Mono- and Dicationic DABCO/Quinuclidine Composed Nanomaterials for the Loading of Steroidal Drug: 32 Factorial Design and Physicochemical Characterization. Nanomaterials, 11(10), 2758. https://doi.org/10.3390/nano11102758