Armchair Janus MoSSe Nanoribbon with Spontaneous Curling: A First-Principles Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, A.-Y.; Zhu, H.; Xiao, J.; Chuu, C.-P.; Han, Y.; Chiu, M.-H.; Cheng, C.-C.; Yang, C.-W.; Wei, K.-H.; Yang, Y.; et al. Janus Monolayers of Transition Metal Dichalcogenides. Nat. Nanotechnol. 2017, 12, 744–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Jia, S.; Kholmanov, I.; Dong, L.; Er, D.; Chen, W.; Guo, H.; Jin, Z.; Shenoy, V.B.; Shi, L.; et al. Janus Monolayer Transition-Metal Dichalcogenides. ACS Nano 2017, 11, 8192–8198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, H.; Zhou, J.; Er, D.; Price, C.C.; Yu, Z.; Liu, Y.; Lowengrub, J.; Lou, J.; Liu, Z.; Shenoy, V.B. Toward a Mechanistic Understanding of Vertical Growth of van Der Waals Stacked 2D Materials: A Multiscale Model and Experiments. ACS Nano 2017, 11, 12780–12788. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Xu, B.; Shi, J.; Zhong, S.; Lei, X.; Liu, G.; Wu, M. Tunable Dipole Moment in Janus Single-Layer MoSSe via Transition-Metal Atom Adsorption. J. Phys. Chem. C 2019, 123, 9059–9065. [Google Scholar] [CrossRef]
- Wen, Y.-N.; Xia, M.-G.; Zhang, S.-L. Bandgap Engineering of Janus MoSSe Monolayer Implemented by Se Vacancy. Comput. Mater. Sci. 2018, 152, 20–27. [Google Scholar] [CrossRef]
- Shang, C.; Xu, B.; Lei, X.; Yu, S.; Chen, D.; Wu, M.; Sun, B.; Liu, G.; Ouyang, C. Bandgap Tuning in MoSSe Bilayers: Synergistic Effects of Dipole Moment and Interlayer Distance. Phys. Chem. Chem. Phys. 2018, 20, 20919–20926. [Google Scholar] [CrossRef]
- Guo, S.-D.; Dong, J. Biaxial Strain Tuned Electronic Structures and Power Factor in Janus Transition Metal Dichalchogenide Monolayers. Semicond. Sci. Technol. 2018, 33, 085003. [Google Scholar] [CrossRef] [Green Version]
- Shi, W.; Wang, Z. Mechanical and Electronic Properties of Janus Monolayer Transition Metal Dichalcogenides. J. Phys. Condens. Matter 2018, 30, 215301. [Google Scholar] [CrossRef]
- Long, C.; Dai, Y.; Gong, Z.-R.; Jin, H. Robust Type-II Band Alignment in Janus-MoSSe Bilayer with Extremely Long Carrier Lifetime Induced by the Intrinsic Electric Field. Phys. Rev. B 2019, 99, 115316. [Google Scholar] [CrossRef]
- Song, B.; Liu, L.; Yam, C. Suppressed Carrier Recombination in Janus MoSSe Bilayer Stacks: A Time-Domain Ab Initio Study. J. Phys. Chem. Lett. 2019, 10, 5564–5570. [Google Scholar] [CrossRef]
- Pallares, R.M.; Su, X.; Lim, S.H.; Thanh, N.T.K. The Tunable Dipole and Carrier Mobility for Few Layer Janus MoSSe Structure. J. Mater. Chem. C 2016, 4, 53–61. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Lei, X.; Wang, Y.; Zhong, S.; Liu, G.; Xu, B.; Ouyang, C. Tunable Electronic Structures in BP/MoSSe van Der Waals Heterostructures by External Electric Field and Strain. Appl. Surf. Sci. 2019, 497, 143809. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Ye, H.; Yu, Z.; Liu, Y.; Su, B.; Xu, W. Structural and Electronic Properties of 2H Phase Janus Transition Metal Dichalcogenide Bilayers. Superlattices Microstruct. 2019, 131, 8–14. [Google Scholar] [CrossRef]
- Guan, S.-S.; Ke, S.-S.; Yu, F.-F.; Deng, H.-X.; Guo, Y.; Lv, H.-F. Controlling Magnetism of Monolayer Janus MoSSe by Embedding Transition-Metal Atoms. Appl. Surf. Sci. 2019, 496, 143692. [Google Scholar] [CrossRef]
- Meng, M.; Li, T.; Li, S.; Liu, K. Ferromagnetism Induced by Point Defect in Janus Monolayer Mosse Regulated by Strain Engineering. J. Phys. Appl. Phys. 2018, 51, 105004. [Google Scholar] [CrossRef]
- Guo, S.-D. Phonon Transport in Janus Monolayer MoSSe: A First-Principles Study. Phys. Chem. Chem. Phys. 2018, 20, 7236–7242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, L.; Lou, J.; Shenoy, V.B. Large In-Plane and Vertical Piezoelectricity in Janus Transition Metal Dichalchogenides. ACS Nano 2017, 11, 8242–8248. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wei, W.; Huang, B.; Dai, Y. The Mirror Asymmetry Induced Nontrivial Properties of Polar WSSe/MoSSe Heterostructures. J. Phys. Condens. Matter 2019, 31, 125003. [Google Scholar] [CrossRef]
- Peng, R.; Ma, Y.; Zhang, S.; Huang, B.; Dai, Y. Valley Polarization in Janus Single-Layer MoSSe via Magnetic Doping. J. Phys. Chem. Lett. 2018, 9, 3612–3617. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, J.; Zhou, B.; Wang, F.; Miao, Y.; Wei, J.; Zhang, B.; Zhang, K. Tunable Interlayer Coupling and Schottky Barrier in Graphene and Janus MoSSe Heterostructures by Applying an External Field. Phys. Chem. Chem. Phys. 2018, 20, 24109–24116. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Yang, M.; Lin, H.; Hou, T.; Wang, L.; Li, Y.; Lee, S.-T. Janus Structures of Transition Metal Dichalcogenides as the Heterojunction Photocatalysts for Water Splitting. J. Phys. Chem. C 2018, 122, 3123–3129. [Google Scholar] [CrossRef]
- Ma, X.; Yong, X.; Jian, C.; Zhang, J. Transition Metal-Functionalized Janus MoSSe Monolayer: A Magnetic and Efficient Single-Atom Photocatalyst for Water-Splitting Applications. J. Phys. Chem. C 2019, 123, 18347–18354. [Google Scholar] [CrossRef]
- Guan, Z.; Ni, S.; Hu, S. Tunable Electronic and Optical Properties of Monolayer and Multilayer Janus MoSSe as a Photocatalyst for Solar Water Splitting: A First-Principles Study. J. Phys. Chem. C 2018, 122, 6209–6216. [Google Scholar] [CrossRef]
- Ma, X.; Wu, X.; Wang, H.; Wang, Y. A Janus MoSSe Monolayer: A Potential Wide Solar-Spectrum Water-Splitting Photocatalyst with a Low Carrier Recombination Rate. J. Mater. Chem. A 2018, 6, 2295–2301. [Google Scholar] [CrossRef]
- Cui, Z.; Bai, K.; Ding, Y.; Wang, X.; Li, E.; Zheng, J.; Wang, S. Electronic and Optical Properties of Janus MoSSe and ZnO VdWs Heterostructures. Superlattices Microstruct. 2020, 140, 106445. [Google Scholar] [CrossRef]
- Li, F.; Wei, W.; Zhao, P.; Huang, B.; Dai, Y. Electronic and Optical Properties of Pristine and Vertical and Lateral Heterostructures of Janus MoSSe and WSSe. J. Phys. Chem. Lett. 2017, 8, 5959–5965. [Google Scholar] [CrossRef]
- Pham, K.D.; Hieu, N.N.; Phuc, H.V.; Hoi, B.D.; Ilysov, V.V.; Amin, B.; Nguyen, C.V. First Principles Study of the Electronic Properties and Schottky Barrier in Vertically Stacked Graphene on the Janus MoSeS under Electric Field. Comput. Mater. Sci. 2018, 153, 438–444. [Google Scholar] [CrossRef]
- Idrees, M.; Din, H.U.; Ali, R.; Rehman, G.; Hussain, T.; Nguyen, C.V.; Ahmad, I.; Amin, B. Optoelectronic and Solar Cell Applications of Janus Monolayers and Their van Der Waals Heterostructures. Phys. Chem. Chem. Phys. 2019, 21, 18612–18621. [Google Scholar] [CrossRef]
- Liang, Y.; Li, J.; Jin, H.; Huang, B.; Dai, Y. Photoexcitation Dynamics in Janus-MoSSe/WSe2 Heterobilayers: Ab Initio Time-Domain Study. J. Phys. Chem. Lett. 2018, 9, 2797–2802. [Google Scholar] [CrossRef]
- Wei, Y.; Xu, X.; Wang, S.; Li, W.; Jiang, Y. Second Harmonic Generation in Janus MoSSe a Monolayer and Stacked Bulk with Vertical Asymmetry. Phys. Chem. Chem. Phys. 2019, 21, 21022–21029. [Google Scholar] [CrossRef]
- Palsgaard, M.; Gunst, T.; Markussen, T.; Thygesen, K.S.; Brandbyge, M. Stacked Janus Device Concepts: Abrupt Pn-Junctions and Cross-Plane Channels. Nano Lett. 2018, 18, 7275–7281. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Wang, X.; Hao, W.; Mi, C.; Zhou, H. Structural, Electronic, and Electromechanical Properties of MoSSe/Blue Phosphorene Heterobilayer. AIP Adv. 2019, 9, 115302. [Google Scholar] [CrossRef]
- Shang, C.; Lei, X.; Hou, B.; Wu, M.; Xu, B.; Liu, G.; Ouyang, C. Theoretical Prediction of Janus MoSSe as a Potential Anode Material for Lithium-Ion Batteries. J. Phys. Chem. C 2018, 122, 23899–23909. [Google Scholar] [CrossRef]
- Chaurasiya, R.; Dixit, A. Defect Engineered MoSSe Janus Monolayer as a Promising Two-Dimensional Material for NO2 and NO Gas Sensing. Appl. Surf. Sci. 2019, 490, 204–219. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Liao, X.; Liang, J.; Wang, M.; Yuan, Q. Tuning the Electronic Properties of Hydrogen Passivated C3N Nanoribbons through van Der Waals Stacking. Front. Phys. 2020, 15, 63503. [Google Scholar] [CrossRef]
- Wang, M.; Pang, Y.; Liu, D.Y.; Zheng, S.H.; Song, Q.L. Tuning Magnetism by Strain and External Electric Field in Zigzag Janus MoSSe Nanoribbons. Comput. Mater. Sci. 2018, 146, 240–247. [Google Scholar] [CrossRef]
- Wang, T.; Li, J.; Gao, D.; Si, M. A Large Enhancement of Magnetism in Zigzag Janus MoSSe Nanoribbons: First-Principles Calculations. EPL Europhys. Lett. 2019, 127, 46003. [Google Scholar] [CrossRef]
- Zheng, F.; Guo, W.; Sun, S.; Ye, X. Tuning the Magnetic and Electronic Properties of Janus MoSSe Nanoribbon by Edge Modification: A First-Principles Study. Phys. Status Solidi B 2019, 256, 1900106. [Google Scholar] [CrossRef]
- Hao, W.; Wu, Z.; Li, X.; Pu, Y. Edge Effect on Flexoelectronic Properties of Janus MoSSe Nanoribbons: A First-Principles Study. J. Appl. Phys. 2021, 129, 185101. [Google Scholar] [CrossRef]
- Cui, X.; Kong, Z.; Gao, E.; Huang, D.; Hao, Y.; Shen, H.; Di, C.; Xu, Z.; Zheng, J.; Zhu, D. Rolling up Transition Metal Dichalcogenide Nanoscrolls via One Drop of Ethanol. Nat. Commun. 2018, 9, 1301. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Li, Y.; Duan, W.; Ding, F. Ultra-Stable Small Diameter Hybrid Transition Metal Dichalcogenide Nanotubes X–M–Y (X, Y = S, Se, Te; M = Mo, W, Nb, Ta): A Computational Study. Nanoscale 2015, 7, 13586–13590. [Google Scholar] [CrossRef]
- Yu, L.; Ruzsinszky, A.; Perdew, J.P. Bending Two-Dimensional Materials to Control Charge Localization and Fermi-Level Shift. Nano Lett. 2016, 16, 2444–2449. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Q.; Zhou, J.; Zhang, J.; Kitamura, T.; Li, Z. Spontaneous Curling of Freestanding Janus Monolayer Transition-Metal Dichalcogenides. Phys. Chem. Chem. Phys. 2018, 20, 20988–20995. [Google Scholar] [CrossRef]
- Ye, H.; Zhang, Y.; Wei, A.; Han, D.; Liu, Y.; Liu, W.; Yin, Y.; Wang, M. Intrinsic-Strain-Induced Curling of Free-Standing Two-Dimensional Janus MoSSe Quantum Dots. Appl. Surf. Sci. 2020, 519, 146251. [Google Scholar] [CrossRef]
- Luo, Y.F.; Pang, Y.; Tang, M.; Song, Q.; Wang, M. Electronic Properties of Janus MoSSe Nanotubes. Comput. Mater. Sci. 2019, 156, 315–320. [Google Scholar] [CrossRef]
- Evarestov, R.A.; Kovalenko, A.V.; Bandura, A.V. First-Principles Study on Stability, Structural and Electronic Properties of Monolayers and Nanotubes Based on Pure Mo(W)S(Se)2 and Mixed (Janus) Mo(W)SSe Dichalcogenides. Phys. E Low-Dimens. Syst. Nanostructures 2020, 115, 113681. [Google Scholar] [CrossRef]
- Tang, Z.-K.; Wen, B.; Chen, M.; Liu, L.-M. Janus MoSSe Nanotubes: Tunable Band Gap and Excellent Optical Properties for Surface Photocatalysis. Adv. Theory Simul. 2018, 1, 1800082. [Google Scholar] [CrossRef]
- Wu, H.-H.; Meng, Q.; Huang, H.; Liu, C.T.; Wang, X.-L. Tuning the Indirect–Direct Band Gap Transition in the MoS2−xSex Armchair Nanotube by Diameter Modulation. Phys. Chem. Chem. Phys. 2018, 20, 3608–3613. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Ideue, T.; Onga, M.; Qin, F.; Suzuki, R.; Zak, A.; Tenne, R.; Smet, J.H.; Iwasa, Y. Enhanced Intrinsic Photovoltaic Effect in Tungsten Disulfide Nanotubes. Nature 2019, 570, 349–353. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Open-Shell Transition Metals. Phys. Rev. B 1993, 48, 13115–13118. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 1997, 78, 1396. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.J.; Pack, J.D. Special Points for Brillouin-Zone Integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.-W. Misfit Strain-Induced Buckling for Transition-Metal Dichalcogenide Lateral Heterostructures: A Molecular Dynamics Study. Acta Mech. Solida Sin. 2019, 32, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Hoover, W.G. Canonical Dynamics: Equilibrium Phase-Space Distributions. Phys. Rev. A 1985, 31, 1695–1697. [Google Scholar] [CrossRef] [Green Version]
- Michaud-Rioux, V.; Zhang, L.; Guo, H. RESCU: A Real Space Electronic Structure Method. J. Comput. Phys. 2016, 307, 593–613. [Google Scholar] [CrossRef] [Green Version]
- Nikishkov, G.P. Curvature Estimation for Multilayer Hinged Structures with Initial Strains. J. Appl. Phys. 2003, 94, 5333. [Google Scholar] [CrossRef] [Green Version]
- Bernardi, A.; Goñi, A.R.; Alonso, M.I.; Alsina, F.; Scheel, H.; Vaccaro, P.O.; Saito, N. Probing Residual Strain in InGaAs/GaAs Micro-Origami Tubes by Micro-Raman Spectroscopy. J. Appl. Phys. 2006, 99, 063512. [Google Scholar] [CrossRef]
- Dou, K.P.; Hu, H.H.; Wang, X.; Wang, X.; Jin, H.; Zhang, G.-P.; Shi, X.-Q.; Kou, L. Asymmetrically Flexoelectric Gating Effect of Janus Transition-Metal Dichalcogenides and Their Sensor Applications. J. Mater. Chem. C 2020, 8, 11457–11467. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, N.; Wang, M.; Quhe, R.; Liu, Y.; Liu, W.; Guo, Z.; Ye, H. Armchair Janus MoSSe Nanoribbon with Spontaneous Curling: A First-Principles Study. Nanomaterials 2021, 11, 3442. https://doi.org/10.3390/nano11123442
Sun N, Wang M, Quhe R, Liu Y, Liu W, Guo Z, Ye H. Armchair Janus MoSSe Nanoribbon with Spontaneous Curling: A First-Principles Study. Nanomaterials. 2021; 11(12):3442. https://doi.org/10.3390/nano11123442
Chicago/Turabian StyleSun, Naizhang, Mingchao Wang, Ruge Quhe, Yumin Liu, Wenjun Liu, Zhenlin Guo, and Han Ye. 2021. "Armchair Janus MoSSe Nanoribbon with Spontaneous Curling: A First-Principles Study" Nanomaterials 11, no. 12: 3442. https://doi.org/10.3390/nano11123442
APA StyleSun, N., Wang, M., Quhe, R., Liu, Y., Liu, W., Guo, Z., & Ye, H. (2021). Armchair Janus MoSSe Nanoribbon with Spontaneous Curling: A First-Principles Study. Nanomaterials, 11(12), 3442. https://doi.org/10.3390/nano11123442