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Abstract: In this work, we present a strategy to improve the gas-sensing performance of NiFe2O4

via a controllable annealing Ni/Fe precursor to fluffy NiFe2O4 nanosheet flowers. X-ray diffraction
(XRD), a scanning electron microscope (SEM), nitrogen adsorption–desorption measurements and
X-ray photoelectron spectroscopy (XPS) were used to characterize the crystal structure, morphology,
specific surface area and surface structure. The gas-sensing performance was tested and the results
demonstrate that the response was strongly influenced by the specific surface area and surface
structure. The resultant NiFe2O4 nanosheet flowers with a heating rate of 8 ◦C min−1, which have a
fluffier morphology and more oxygen vacancies in the surface, exhibited enhanced response and
shortened response time toward ethanol. The easy approach facilitates the mass production of gas
sensors based on bimetallic ferrites with high sensing performance via controlling the morphology
and surface structure.

Keywords: gas sensor; NiFe2O4; nanosheet flowers; heating rate

1. Introduction

Resistive gas sensors based on metal oxides, most of which are semiconductors (con-
taining n-type and p-type semiconductors), have been widely used in a range of commercial
gas detection systems [1]. Bimetallic semiconductor materials have stood out for gas sens-
ing due to their low cost, easy manufacture, versatility, high stability, eco-friendliness
and large range of detectable gases [2–7]. More interestingly, NiFe2O4 having an inverse
spinel ferrite structure is characterized to be an n-type or p-type semiconductor which
can be altered by controlling the stoichiometric and cation distribution [8–11]. Therefore,
many efforts have been made to apply NiFe2O4 with various microstructures to the energy
storage [12], catalysis [13] and effective detection of hazardous gases [14]. However, the
gas-sensing properties of the NiFe2O4-based sensor are expected to be further enhanced.
Regulating the surface active sites and microstructures of NiFe2O4 is considered to be an
effective method as the gas-sensing process involves the surface reaction.

For one thing, it is widely acknowledged that a large specific surface area can increase
the number of active atoms which are able to participate in the gas-sensing process [15,16].
Designing a microstructure of NiFe2O4 with less agglomeration, large specific surface
area and good surface permeability is a promising approach to enhance the gas-sensing
performance [17,18]. Using a carbon sphere as a template, Zhou et al. prepared NiFe2O4
nanospheres with a core-in-shell structure as a gas-sensing material [19]. The homologous
sensor exhibited rapid response and recovery to 100 ppm acetone with a response value
of 10.6. Zhang et al. successfully synthesized NiFe2O4 nano-octahedrons via pyrolysis
of Ni/Fe-bimetallic metal–organic frameworks (MOFs), and the as-fabricated sensor ex-
hibited immense potential in monitoring toluene gas [20]. Our group has also conducted
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several research works on nanostructured bimetallic ferrites including hollow NiFe2O4
materials, which were synthesized through annealing treatment of MOFs and exhibited
good gas-sensing performances including high response, good selectivity and low working
temperature [21,22]. However, the synthetic strategies of these porous or hollow structured
materials are usually carried out by template-directed preparation, a tedious method with
material waste and low yield [23,24]. Thus, it is of great significance to develop a facile and
scalable route for the synthesis of materials with a large specific surface area.

Additionally, defects in semiconductor materials can adjust the conductivity and sur-
face activity of materials, which are critical factors in influencing the gas-sensing response
depending on the variation of resistance [25]. According to some literature studies, the
ubiquitous oxygen vacancy in the materials can improve gas-sensing characteristics [26,27].

As a proof of concept, we herein propose an easy approach to generate NiFe2O4 fluffy
nanosheet-assembled flowers (NSFs) with an enlarged specific surface area and increased
concentration of oxygen vacancies arising from the heating rate control. The synergistic
effect of larger specific surface area, fluffy feature and more oxygen vacancies led to
better gas-sensing performances toward ethanol gas including higher sensitivity and faster
response. This facile approach offers guidance on designing superior gas sensors based
on semiconducting metal oxides via morphology and defect engineering. The gas-sensing
results are helpful in understanding the gas-sensing mechanism.

2. Materials and Methods
2.1. Preparation of NiFe2O4 NSFs

NiFe2O4 NSFs were synthesized by a facile one-step hydrothermal process and subse-
quent annealing treatment. Briefly, a homogenous solution of Ni(NO3)2·6H2O (1 mmol),
Fe(NO3)3·9H2O (0.67 mmol), NH4F (2.67 mmol), CO(NH2)2 (4 mmol) and 30 mL deionized
water was heated in a Teflon-lined autoclave for 6 h at 100 ◦C. After being washed with
deionized water and ethanol for three times and dried, the yellow sediment was annealed
at 500 ◦C for 3 h to obtain NiFe2O4 NSFs with a heating rate of 2, 5 and 8 ◦C min−1,
respectively, denoted as NFO-2, NFO-5 and NFO-8 NSFs.

2.2. Materials Characterization

The crystal structure, morphology and surface property of NiFe2O4 were characterized
with XRD, SEM, transmission electron microscopy (TEM), nitrogen adsorption–desorption
measurement and XPS. The information of the testing equipment and testing condition can
be found in the Supplementary Information.

2.3. Fabrication and Measurement of Gas Sensor

The gas sensor was fabricated and measured following our previous works [3,7]. The
as-synthesized NiFe2O4 NSFs were coated on the outside surface of an alumina ceramic
tube with a pair of Au electrodes at each end and a heating coil inside. The gas-sensing
measurement was performed on a CGS-8 System (Beijing Elite Technology Co., Ltd., Beijing,
China). A schematic diagram of the sensing setup and sensing device is shown in Figure S1.
The response of a sensor is generally defined as Rg/Ra, where Rg and Ra represent the
sensor resistance in the target gas and air, respectively.

3. Results
3.1. Structures Characterization

Based on the XRD patterns of the synthesized NiFe2O4 NSFs with a heating rate of
2, 5 and 8 ◦C min−1, respectively, denoted as NFO-2, NFO-5 and NFO-8 NSFs (shown in
Figure 1a), it was found that all three as-prepared samples matched well with the mon-
oclinic NiFe2O4 phase, indexed to JCPDS: 10-0325. Nitrogen adsorption–desorption
isotherms and Brunner–Emmet–Teller (BET) surface area values of the synthesized NiFe2O4
NSFs are presented in Figure 1b. A higher heating rate of 8 ◦C min−1 endows the NiFe2O4
with increased BET surface area (87.0 m2 g−1) compared with the samples acquired under
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2 ◦C min−1 and 5 ◦C min−1 (BET surface areas: 46.7 m2 g−1 and 66.2 m2 g−1). The larger
specific surface area of NFO-8 NSFs can provide more active sites to adsorb oxygen species
and react with target gas molecules, which can facilitate the gas-sensing performances.
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Figure 1. The XRD patterns (a) and nitrogen adsorption–desorption isotherms and Brunner–Emmet–Teller (BET) surface
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To explore the morphologies of the NiFe2O4 NSFs prepared at different heating rates,
the SEM images and particle size distribution are gathered in Figure 1c–k. The NiFe2O4
nanosheets self-assembled together, forming nanosheet flowers. The sizes of the flowers
formed under the heating rate of 2, 5 and 8 ◦C min−1 were ca. 1.42, 2.98 and 4.14 µm,
respectively. As the three NiFe2O4 samples came from the same precursor, the NFO-8 NSFs
clearly possessed the largest size of the flower, then a large specific surface area was formed,
which was in accordance with the results of BET. The nanosheets of NFO-8 NSFs were
ultrathin and the flowers were fluffier. The corresponding TEM image in Figure S2a also
reveals the ultrathin NiFe2O4 nanosheets in the NFO-8 NSFs. Moreover, the representative
HRTEM image in Figure S2b shows a set of lattice fringes with the interplanar distance of
0.25 nm which resulted from the (311) facets of spinel NiFe2O4.

To characterize the surface defects of NiFe2O4 NSFs, the XPS measurements were
conducted which could provide some information of the elemental valence state and the
surface characteristics. The well-resolved Ni 2p spectra in Figure 2a–c exhibit two main
peaks at ca. 854.15 and 855.75 eV for Ni2+ and Ni3+. The two pairs of coupled peaks in
Figure 2d–f with binding energies at ca. 710.05 and 712.60 eV correspond to the binding
energy of the Fe3+ and Fe4+ [28]. The ratios of Ni3+/Ni2+ in NFO-2, NFO-5 and NFO-8
NSFs are 2.22, 2.80 and 2.56 and the ratios of Fe4+/Fe3+ are 0.54, 0.85 and 0.75, respectively.
The amounts of Ni3+ and Fe4+ in NFO-5 and NFO-8 NSFs were much more than those in
NFO-2 NSFs, which means more defects in the materials of the NFO-5 and NFO-8 NSFs.
The relative contents of oxygen defects can be analyzed and calculated from the O 1s
peak in Figure 2g–i. From low to high banding energy, the resolved peaks at ca. 529.5,
531.2 and 531.9 eV are usually associated with the metal–oxygen bonding (OL), oxygen
vacancy-related defects (OV) and absorbed oxygen (Oabs), respectively [29–31]. The relative
contents of OL, OV and Oabs calculated from the O 1s peak fitting of NFO-2, NFO-5 and
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NFO-8 NSFs are summarized in Table S1. Obviously, the NFO-5 and NFO-8 NSFs possess
higher contents of OV and Oabs than NFO-2 NSFs, which play critical roles in the resistance
and response of NiFe2O4 sensors.
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3.2. Ethanol Sensing Performance

The sensing performance of the NiFe2O4 NSFs was evaluated by separately detect-
ing different volatile organic compounds (VOCs) including ethanol (C2H5OH), acetone
(C3H6O), n-propanol (C3H7OH), methanol (CH3OH) and formaldehyde (HCHO). Firstly,
we determined the optimal operating temperature of all the three sensors by monitoring
the real-time electrical resistances in air and under 100 ppm ethanol at the temperature
range of 120–180 ◦C (shown in Figure 3a). For each sample, the highest response toward
100 ppm ethanol appeared at 120 ◦C, and the response decreases as the operating temper-
ature elevates. It is worth mentioning that the test at the temperature lower than 120 ◦C
is meaningless as the electrical resistances in air of all the three sensors fail to achieve
steady values. Therefore, 120 ◦C was selected as the operating temperature in subsequent
tests. The changes in gas-sensing responses of NFO-2, NFO-5 and NFO-8 NSFs over gas
concentration were investigated during 5 to 100 ppm ethanol gas (Figure 3b). At the
concentrations of 50 and 100 ppm, the NFO-8 NSFs-based sensor showed the highest
response values compared with the NFO-2 and NFO-5 NSFs-based sensors. Meanwhile, at
the concentration range of 5–20 ppm, the NFO-8 NSFs- and NFO-5 NSFs-based sensors
showed approximately equal responses, which are much higher than that of the NFO-2
NSFs-based sensor. The improvement in the sensing response of the NFO-8 NSFs-based
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sensor toward ethanol gas is mainly attributed to the combined effect of the fluffy structure
and surface composition. The fluffy structure with a higher specific surface area can expose
more active sites for sensing reaction and facilitate the diffusion of ethanol molecules.
Moreover, the oxygen vacancies in the material surface act as electron donors providing
unpaired electrons and an active site which can improve the gas-sensing performances [32].
Although the calculated contents of oxygen vacancies of NFO-5 NSFs and NFO-8 NSFs
are similar, the specific surface area of NFO-5 NSFs is much lower than that of NFO-8
NSFs. Thus, the larger specific surface area and fluffy features of NFO-8 NSFs with oxygen
vacancies undoubtedly provide more active sites for the adsorption of target gas molecules
and oxygen species.
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To more deeply understand the properties related to the gas-sensing performance of
the three sensors, the dynamic sensing transients of resistances were tested. As shown
in Figure 3c, the resistances clearly increase in ethanol gas and decrease in air, indicating
the p-type semiconductor conductivity, which is due to the hole hopping between Ni3+

and Ni2+ [33]. In addition, it can be noted that the resistance of samples in air with a
relatively higher heating rate (5 and 8 ◦C min−1) was much larger than that of 2 ◦C min−1.
This can be ascribed to their fluffier structure and the decreasing carrier concentration. As
the structure becomes fluffier, fewer electric channels can be produced in the materials
of NFO-5 and NFO-8 NSFs. In addition, free electrons produced by oxygen vacancies
compensate part of the hole carrier and increase the resistance in the air of p-type NFO-5
and NFO-8 NSFs [34,35].

The response time (τres) of the sensors was calculated from Figure S3 to be 141, 120
and 104 s for NFO-2, NFO-5 and NFO-8 NSFs, respectively. The recovery time (τrec) was
113, 105 and 77 s for NFO-2, NFO-5 and NFO-8 NSFs, respectively. The response and
recovery were not very quick which may be due to the relatively low working temperature
of 120 ◦C [32]. Even so, the response/recovery process of the sensors based on NFO-8 NSFs
is faster compared to the other two samples, which might benefit from the easy diffusion
of gas molecules due to the fluffy structure with a high specific surface area. The responses
of the NFO-8 NSFs-based sensor to 100 ppm ethanol, acetone, n-propanol, methanol and



Nanomaterials 2021, 11, 297 6 of 8

formaldehyde were 23.2, 17.1, 13.9, 11.1 and 3.9 at 120 ◦C, respectively (summarized in
Figure 3f). The results indicate a selectivity toward ethanol gas. The different lowest
unoccupied molecule orbit (LUMO) energy for various target gas molecules leads to
different responses. Moreover, the selectivity toward ethanol gas could be ascribed to
the strong interaction between the ethanol molecules and the surface of NFO-8 NSFs at
120 ◦C [36]. Our material can be used as part of a sensor array to provide a response pattern.

The stability of gas sensors is a crucial factor for practical application. The as-fabricated
sensors exhibited satisfactory cyclic stability and repeatability as the response values were
roughly constant for eight successive cycles alternatively exposed to air and 100 ppm
ethanol gas (Figure 3d). Furthermore, the sensor based on NFO-8 NSFs also showed a
satisfactory long-term stability with a slight variation in response towards 100 ppm ethanol
gas during the 10 days (Figure 3e).

3.3. Gas-Sensing Mechanism

For resistance-type gas-sensing material, the wildly accepted reason for the resistance
change during the testing process is the electron gain and loss model. At an air atmosphere,
oxygen molecules are pre-adsorbed on the surface of gas-sensing materials, forming active
oxygen species by capturing free electrons [37–42]. Simultaneously, the concentration of the
hole carrier in the p-type semiconductor increases, resulting in a resistance decrease. When
ethanol gas is introduced, the ethanol molecules will react with the pre-absorbed oxygen
species or directly adsorb on the surface [25]. The reaction with the pre-absorbed oxygen
species will release the captured electrons back to the gas-sensing materials, increasing the
resistance. Further, the direct adsorption will be accompanied by a charge transfer from
the ethanol molecules to the surface, increasing the resistance of p-type semiconductor
materials [43–45].

In this work, the improvement in the ethanol-sensing performance of NFO-8 NSFs
is mainly attributed to the synergy effect of the fluffy structure and surface composition.
On one hand, the high specific surface area and fluffy structure of NFO-8 NSFs expose
more active sites for the sensing reaction and facilitate the diffusion of ethanol molecules,
accelerating the process of gas adsorption–desorption. On the other hand, the oxygen
vacancies in the material surface can lower the adsorption energy, modify the electronic
state of metal cations and provide active sites for the gas-sensing process. [32,46–48]
Thus, the larger surface area and fluffy structure of NFO-8 NSFs with oxygen vacancies
undoubtedly enhance the reaction between the target gas and the surface.

4. Conclusions

In summary, fluffy NiFe2O4 nanosheet flowers labeled as NFO-2, NFO-5 and NFO-8
NSFs have been successfully prepared by a facile one-step hydrothermal approach after
annealing at 500 ◦C for 3 h with a heating rate of 2, 5 and 8 ◦C min−1, respectively. Com-
pared with the NFO-2 NSFs- and NFO-5 NSFs-based sensors, the p-type semiconducting
NFO-8 NSFs-based sensor can present enhanced ethanol-sensing behavior at a low working
temperature (120 ◦C), which exhibits a response of 23.2 to 100 ppm ethanol, benefiting
from the fluffy structure, high specific surface area and surface oxygen vacancies. This
facile and effective approach opens up a perspective for mass production, miniaturization
and commercialization of the relevant sensors.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079-499
1/11/2/297/s1, Figure S1: Schematic diagram of the sensing setup and sensing device, Figure S2:
TEM characterization of NFO-8 NSFs; (b) HRTEM image of NFO-8 NSFs, Figure S3: Response time
and recovery time of the sensor towards 100 ppm ethanol at 120 ◦C, Table S1: The contents of O in
different forms summarized from O 1s XPS results of the NiFe2O4 NSFs.
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