Hydrothermal Synthesis of Various Shape-Controlled Europium Hydroxides
Abstract
:1. Introduction
2. Experimental
2.1. Raw Materials
2.2. Preparation of Eu(OH)3 Powders
2.3. Characterization
3. Results and Discussion
3.1. Crystalline Phases
3.2. Morphology
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, P.X.; Wu, F.; Zhu, B.L.; Li, G.R.; Wang, Y.L.; Gao, X.P.; Zhu, H.Y.; Yan, T.Y.; Huang, W.P.; Zhang, S.M.; et al. Praseodymium Hydroxide and Oxide Nanorods and Au/Pr6O11 Nanorod Catalysts for CO Oxidation. J. Phys. Chem. B 2006, 110, 1614–1620. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Yanagisawa, K. Controlling the morphology of yttrium oxide through different precursors synthesized by hydrothermal method. J. Solid State Chem. 2008, 181, 1738–1743. [Google Scholar] [CrossRef] [Green Version]
- Vishnyakov, A.V.; Korshunova, I.A.; Kochurikhin, V.E.; Sal’nikova, L.S. Catalytic activity of rare earth oxides in flameless methane combustion. Kinet. Catal. 2010, 51, 273–278. [Google Scholar] [CrossRef]
- Li, N.; Yanagisawa, K.; Kumada, N. Facile Hydrothermal Synthesis of Yttrium Hydroxide Nanowires. Cryst. Growth Des. 2009, 9, 978–981. [Google Scholar] [CrossRef]
- Zeng, Q.G.; Ding, Z.J.; Zhang, Z.M.; Sheng, Y.Q. Photoluminescence and Raman Spectroscopy Studies of Eu(OH)3 Rods at High Pressures. J. Phys. Chem. C 2010, 114, 4895–4900. [Google Scholar] [CrossRef]
- Wang, P.-P.; Bai, B.; Huang, L.; Hu, S.; Zhuang, J.; Wang, X. General synthesis and characterization of a family of layered lanthanide (Pr, Nd, Sm, Eu, and Gd) hydroxide nanowires. Nanoscale 2011, 3, 2529–2535. [Google Scholar] [CrossRef]
- Wen, C.; Sun, L.; Yan, J.; Liu, Y.; Song, J.; Zhang, Y.; Lian, H.; Kang, Z. Mesoporous rare earth fluoride nanocrystals and their photoluminescence properties. J. Colloid Interface Sci. 2011, 357, 116–120. [Google Scholar] [CrossRef]
- Gai, S.; Yang, G.; Li, X.; Li, C.; Dai, Y.; He, F.; Yang, P. Facile synthesis and up-conversion properties of monodisperse rare earth fluoride nanocrystals. Dalton Trans. 2012, 41, 11716–11724. [Google Scholar] [CrossRef]
- Peng, C.; Li, C.; Li, G.; Li, S.; Lin, J. YF3:Ln3+ (Ln = Ce, Tb, Pr) submicrospindles: Hydrothermal synthesis and luminescence properties. Dalton Trans. 2012, 41, 8660–8668. [Google Scholar] [CrossRef]
- Yang, M.; You, H.; Song, Y.; Huang, Y.; Jia, G.; Liu, K.; Zheng, Y.; Zhang, L.; Zhang, H. Synthesis and Luminescence Properties of Sheaflike TbPO4 Hierarchical Architectures with Different phase Structures. J. Phys. Chem. C 2009, 113, 20173–20177. [Google Scholar] [CrossRef]
- Kim, E.; Osseo-Asare, K. Aqueous stability of thorium and rare earth metals in monazite hydrometallurgy: Eh–pH diagrams for the systems Th, Ce, La, Nd(PO4)(SO4)H2O at 25 °C. Hydrometallurgy 2012, 113–114, 67–78. [Google Scholar] [CrossRef]
- Eliseeva, S.V.; Bünzli, J.-C.G. Rare earths: Jewels for functional materials of the future. New J. Chem. 2011, 35, 1165–1176. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Li, C.; Quan, Z.; Zhang, C.; Yang, P.; Li, Y.; Yu, C.; Lin, J. Self-Assembled 3D Flowerlike Lu2O3 and Lu2O3:Ln3+ (Ln = Eu, Tb, Dy, Pr, Sm, Er, Ho, Tm) Microarchitectures: Ethylene Glycol-Mediated Hydrothermal Synthesis and Luminescent Properties. J. Phys. Chem. C 2008, 112, 12777–12785. [Google Scholar] [CrossRef]
- Zheng, H.; Yanagisawa, K.; Onda, A.; Zhu, K. Hydrothermal synthesis of spindle-like architectures of terbium hydroxide. J. Ceram. Soc. Jpn. 2015, 123, 672–676. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Yang, J.; Hu, S.; Luo, Y.; Yang, J. Synthesis of 3D hierarchical architectures of Tb2(CO3)3: Eu3+ phosphor and its efficient energy transfer from Tb3+ to Eu3+. J. Mater. Sci. 2015, 50, 4503–4515. [Google Scholar] [CrossRef]
- Gonçalves, R.F.; Moura, A.P.; Godinho, M.J.; Longo, E.; Machado, M.A.C.; de Castro, D.A.; Siu Li, M.; Marques, A.P.A. Crystal growth and photoluminescence of europium-doped strontium titanate prepared by a microwave hydrothermal method. Ceram. Int. 2015, 41, 3549–3554. [Google Scholar] [CrossRef]
- Zhang, D.; He, X.; Yang, H.; Shi, L.; Fang, J. Surfactant-assisted reflux synthesis, characterization and formation mechanism of carbon nanotube/europium hydroxide core–shell nanowires. Appl. Surf. Sci. 2009, 255, 8270–8275. [Google Scholar] [CrossRef]
- Xu, Z.; Li, C.; Yang, P.; Hou, Z.; Zhang, C.; Lin, J. Uniform Ln(OH)3 and Ln2O3 (Ln = Eu, Sm) Submicrospindles: Facile Synthesis and Characterization. Cryst. Growth Des. 2009, 9, 4127–4135. [Google Scholar] [CrossRef]
- Du, N.; Zhang, H.; Chen, B.; Wu, J.; Li, D.; Yang, D. Low temperature chemical reaction synthesis of single-crystalline Eu(OH)3 nanorods and their thermal conversion to Eu2O3nanorods. Nanotechnology 2007, 18, 065605. [Google Scholar] [CrossRef]
- Zhang, D.; Yan, T.; Shi, L.; Li, H.; Chiang, J.F. Template-free synthesis, characterization, growth mechanism and photoluminescence property of Eu(OH)3 and Eu2O3 nanospindles. J. Alloys Compd. 2010, 506, 446–455. [Google Scholar] [CrossRef]
- Kang, J.-G.; Jung, Y.; Min, B.-K.; Sohn, Y. Full characterization of Eu(OH)3 and Eu2O3 nanorods. Appl. Surf. Sci. 2014, 314, 158–165. [Google Scholar] [CrossRef]
- Xu, Z.; Li, C.; Yang, P.; Zhang, C.; Huang, S.; Lin, J. Rare Earth Fluorides Nanowires/Nanorods Derived from Hydroxides: Hydrothermal Synthesis and Luminescence Properties. Cryst. Growth Des. 2009, 9, 4752–4758. [Google Scholar] [CrossRef]
- Zhang, L.; Hu, W.; Wu, Y.; Wei, P.; Dong, L.; Hao, Z.; Fan, S.; Song, Y.; Lu, Y.; Liang, C.; et al. Microwave-Assisted Facile Synthesis of Eu(OH)3 Nanoclusters with Pro-Proliferative Activity Mediated by miR-199a-3p. ACS Appl. Mater. Interfaces 2018, 10, 31044–31053. [Google Scholar] [CrossRef]
- Lian, J.; Liang, P.; Wang, B.; Liu, F. Homogeneous precipitation synthesis and photoluminescence properties of La2O2 SO4: Eu3+ quasi-spherical phosphors. J. Ceram. Process. Res. 2014, 15, 382–388. [Google Scholar]
- Arunachalam, S.; Kirubasankar, B.; Murugadoss, V.; Vellasamy, D.; Angaiah, S. Facile synthesis of electrostatically anchored Nd(OH)3 nanorods onto graphene nanosheets as a high capacitance electrode material for supercapacitors. New J. Chem. 2018, 42, 2923–2932. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, J.-G.; Li, X.; Qi, Y.; Sun, X. [(Y1−xGdx)0.95Eu0.05]2(OH)5NO3·nH2O (0 ≤ x ≥ 0.50) layered rare-earth hydroxides: Exfoliation of unilamellar and single-crystalline nanosheets, assembly of highly oriented and transparent oxide films, and greatly enhanced red photoluminescence by Gd3+ doping. RSC Adv. 2015, 5, 64588–64595. [Google Scholar]
- Zhang, L.; Jiang, D.; Xia, J.; Zhang, N.; Li, Q. Enhanced fluorescence of europium-doped yttrium hydroxide nanosheets modified by 2-thenoyltrifluoroacetone. RSC Adv. 2014, 4, 17856–17859. [Google Scholar] [CrossRef]
- Wu, X.; Li, J.-G.; Zhu, Q.; Liu, W.; Li, J.; Li, X.; Sun, X.; Sakka, Y. One-step freezing temperature crystallization of layered rare-earth hydroxide (Ln2(OH)5NO3·nH2O) nanosheets for a wide spectrum of Ln (Ln = Pr–Er, and Y), anion exchange with fluorine and sulfate, and microscopic coordination probed via photoluminescence. J. Mater. Chem. C 2015, 3, 3428–3437. [Google Scholar] [CrossRef]
- Ji, X.; Hu, P.; Li, X.; Zhang, L.; Sun, J. Hydrothermal control, characterization, growth mechanism, and photoluminescence properties of highly crystalline 1D Eu(OH)3 nanostructures. RSC Adv. 2020, 10, 33499–33508. [Google Scholar] [CrossRef]
- Wu, N.-C.; Shi, E.-W.; Zheng, Y.-Q.; Li, W.-J. Effect of pH of Medium on Hydrothermal Synthesis of Nanocrystalline Cerium(IV) Oxide Powders. J. Am. Ceram. Soc. 2002, 85, 2462–2468. [Google Scholar] [CrossRef]
- Voorhees, P.W. The theory of Ostwald ripening. J. Stat. Phys. 1985, 38, 231–252. [Google Scholar] [CrossRef] [Green Version]
- Mu, Q.; Wang, Y. A simple method to prepare Ln(OH)3 (Ln = La, Sm, Tb, Eu, and Gd) nanorods using CTAB micelle solution and their room temperature photoluminescence properties. J. Alloys Compd. 2011, 509, 2060–2065. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, H.; Zhu, K.; Onda, A.; Yanagisawa, K. Hydrothermal Synthesis of Various Shape-Controlled Europium Hydroxides. Nanomaterials 2021, 11, 529. https://doi.org/10.3390/nano11020529
Zheng H, Zhu K, Onda A, Yanagisawa K. Hydrothermal Synthesis of Various Shape-Controlled Europium Hydroxides. Nanomaterials. 2021; 11(2):529. https://doi.org/10.3390/nano11020529
Chicago/Turabian StyleZheng, Hongjuan, Kongjun Zhu, Ayumu Onda, and Kazumichi Yanagisawa. 2021. "Hydrothermal Synthesis of Various Shape-Controlled Europium Hydroxides" Nanomaterials 11, no. 2: 529. https://doi.org/10.3390/nano11020529
APA StyleZheng, H., Zhu, K., Onda, A., & Yanagisawa, K. (2021). Hydrothermal Synthesis of Various Shape-Controlled Europium Hydroxides. Nanomaterials, 11(2), 529. https://doi.org/10.3390/nano11020529