Protein Adsorption on SiO2-CaO Bioactive Glass Nanoparticles with Controllable Ca Content
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Bioactive Glass Nanoparticles (BGNs)
2.3. Particle Characterization
2.4. Protein Adsorption
2.5. Statistical Analysis
3. Results and Discussion
3.1. Synthesis and Morphology of BGNs
3.2. Incorporation of Calcium into BGNs
3.3. Structural Analysis of BGNs
3.4. Effects of CaO Content in BGNs on Protein Adsorption
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zheng, K.; Boccaccini, A.R. Sol-gel processing of bioactive glass nanoparticles: A review. Adv. Colloid Interface Sci. 2017, 249, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Vichery, C.; Nedelec, J.-M. Bioactive Glass Nanoparticles: From Synthesis to Materials Design for Biomedical Applications. Materials 2016, 9, 288. [Google Scholar] [CrossRef] [Green Version]
- Zheng, K.; Sui, B.; Ilyasaand, K.; Boccaccini, A.R. Porous bioactive glass micro- and nanospheres with controlled morphology: Developments, properties and emerging biomedical applications. Mater. Horiz. 2021. [Google Scholar] [CrossRef]
- Wu, J.; Zheng, K.; Huang, X.; Liu, J.; Liu, H.; Boccaccini, A.R.; Wan, Y.; Guo, X.; Shao, Z. Thermally triggered injectable chitosan/silk fibroin/bioactive glass nanoparticle hydrogels for in-situ bone formation in rat calvarial bone defects. Acta Biomater. 2019, 91, 60–71. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.S.; Kim, J.H.; Singh, R.K.; Jang, J.H.; Kim, H.W. Therapeutic-designed electrospun bone scaffolds: Mesoporous bioactive nanocarriers in hollow fiber composites to sequentially deliver dual growth factors. Acta Biomater. 2015, 16, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Boccaccini, A.R.; Erol, M.; Stark, W.J.; Mohn, D.; Hong, Z.; Mano, J.F. Polymer/bioactive glass nanocomposites for biomedical applications: A review. Compos. Sci. Technol. 2010, 70, 1764–1776. [Google Scholar] [CrossRef] [Green Version]
- Kesse, X.; Vichery, C.; Jacobs, A.; Descamps, S.; Nedelec, J.-M. Unravelling the Impact of Calcium Content on the Bioactivity of Sol–Gel-Derived Bioactive Glass Nanoparticles. Acs Appl. Bio Mater. 2020, 3, 1312–1320. [Google Scholar] [CrossRef]
- Pajares-Chamorro, N.; Chatzistavrou, X. Bioactive Glass Nanoparticles for Tissue Regeneration. Acs Omega 2020, 5, 12716–12726. [Google Scholar] [CrossRef]
- Kesse, X.; Vichery, C.; Nedelec, J.-M. Deeper Insights into a Bioactive Glass Nanoparticle Synthesis Protocol to Control Its Morphology, Dispersibility, and Composition. Acs Omega 2019, 4, 5768–5775. [Google Scholar] [CrossRef]
- Zheng, K.; Taccardi, N.; Beltran, A.M.; Sui, B.; Zhou, T.; Marthala, V.R.R.; Hartmann, M.; Boccaccini, A.R. Timing of calcium nitrate addition affects morphology, dispersity and composition of bioactive glass nanoparticles. Rsc Adv. 2016, 6, 95101–95111. [Google Scholar] [CrossRef] [Green Version]
- Zheng, K.; Dai, X.; Lu, M.; Hüser, N.; Taccardi, N.; Boccaccini, A.R. Synthesis of copper-containing bioactive glass nanoparticles using a modified Stöber method for biomedical applications. Colloids Surf. Biointerfaces 2017, 150, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Brauer, D.S. Bioactive Glasses—Structure and Properties. Angew. Chem. Int. Ed. 2015, 54, 2–24. [Google Scholar] [CrossRef] [PubMed]
- Marie, P.J. The calcium-sensing receptor in bone cells: A potential therapeutic target in osteoporosis. Bone 2010, 46, 571–576. [Google Scholar] [CrossRef]
- Hoppe, A.; Güldal, N.S.; Boccaccini, A.R. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 2011, 32, 2757–2774. [Google Scholar] [CrossRef]
- Zheng, K.; Kapp, M.; Boccaccini, A.R. Protein interactions with bioactive glass surfaces: A review. Appl. Mater. Today 2019, 15, 350–371. [Google Scholar] [CrossRef]
- Aggarwal, P.; Hall, J.B.; McLeland, C.B.; Dobrovolskaia, M.A.; McNeil, S.E. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv. Drug Deliv. Rev. 2009, 61, 428–437. [Google Scholar] [CrossRef] [Green Version]
- Rabe, M.; Verdes, D.; Seeger, S. Understanding protein adsorption phenomena at solid surfaces. Adv. Colloid Interface Sci. 2011, 162, 87–106. [Google Scholar] [CrossRef] [Green Version]
- Lynch, I.; Dawson, K.A. Protein-nanoparticle interactions. Nano Today 2008, 3, 40–47. [Google Scholar] [CrossRef]
- Zheng, K.; Kang, J.; Rutkowski, B.; Gawȩda, M.; Zhang, J.; Wang, Y.; Founier, N.; Sitarz, M.; Taccardi, N.; Boccaccini, A.R. Toward Highly Dispersed Mesoporous Bioactive Glass Nanoparticles With High Cu Concentration Using Cu/Ascorbic Acid Complex as Precursor. Front. Chem. 2019, 7, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Zheng, K.; Lu, M.; Rutkowski, B.; Dai, X.; Yang, Y.; Taccardi, N.; Stachewicz, U.; Czyrska-Filemonowicz, A.; Hüser, N.; Boccaccini, A.R. ZnO quantum dots modified bioactive glass nanoparticles with pH-sensitive release of Zn ions, fluorescence, antibacterial and osteogenic properties. J. Mater. Chem. B 2016, 4, 7936–7949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, K.; Lu, M.; Liu, Y.; Chen, Q.; Taccardi, N.; Norbert, H.; Boccaccini, A.R. Monodispersed lysozyme-functionalized bioactive glass nanoparticles with antibacterial and anticancer activities. Biomed. Mater. 2016, 11, 035012. [Google Scholar] [CrossRef]
- Tsigkou, O.; Labbaf, S.; Stevens, M.M.; Porter, A.E.; Jones, J.R. Monodispersed bioactive glass submicron particles and their effect on bone marrow and adipose tissue-derived stem cells. Adv. Healthc. Mater. 2014, 3, 115–125. [Google Scholar] [CrossRef]
- Greasley, S.L.; Page, S.J.; Sirovica, S.; Chen, S.; Martin, R.A.; Riveiro, A.; Hanna, J.V.; Porter, A.E.; Jones, J.R. Controlling particle size in the Stöber process and incorporation of calcium. J. Colloid Interface Sci. 2016, 469, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Wong, Y.J.; Zhu, L.; Teo, W.S.; Tan, Y.W.; Yang, Y.; Wang, C.; Chen, H. Revisiting the Stöber Method: Inhomogeneity in Silica Shells. J. Am. Chem. Soc. 2011, 133, 11422–11425. [Google Scholar] [CrossRef] [PubMed]
- Wells, J.D.; Koopal, L.K.; Keizer, A. De Monodisperse, nonporous, spherical silica particles. Colloids Surf. Phys. Eng. Asp. 2000, 166, 171–176. [Google Scholar] [CrossRef]
- Lin, S.; Ionescu, C.; Pike, K.J.; Smith, M.E.; Jones, J.R. Nanostructure evolution and calcium distribution in sol–gel derived bioactive glass. J. Mater. Chem. 2009, 19, 1276–1282. [Google Scholar] [CrossRef]
- Serra, J.; González, P.; Liste, S.; Serra, C.; Chiussi, S.; León, B.; Pérez-Amor, M.; Ylänen, H.O.; Hupa, M. FTIR and XPS studies of bioactive silica based glasses. J. Non. Cryst. Solids 2003, 332, 20–27. [Google Scholar] [CrossRef]
- Höhn, S.; Zheng, K.; Romeis, S.; Brehl, M.; Peukert, W.; de Ligny, D.; Virtanen, S.; Boccaccini, A.R. Effects of Medium pH and Preconditioning Treatment on Protein Adsorption on 45S5 Bioactive Glass Surfaces. Adv. Mater. Interfaces 2020, 7, 2000420. [Google Scholar] [CrossRef]
- Kondo, A.; Oku, S.; Higashitani, K. Structural changes in protein molecules adsorbed on ultrafine silica particles. J. Colloid Interface Sci. 1991, 143, 214–221. [Google Scholar] [CrossRef]
- Mueller, B.; Zacharias, M.; Rezwan, K. Bovine serum albumin and lysozyme adsorption on calcium phosphate particles. Adv. Eng. Mater. 2010, 12, 53–61. [Google Scholar] [CrossRef]
- Lin, S.; Van Den Bergh, W.; Baker, S.; Jones, J.R. Protein interactions with nanoporous sol-gel derived bioactive glasses. Acta Biomater. 2011, 7, 3606–3615. [Google Scholar] [CrossRef] [PubMed]
- Yamasaki, M.; Yano, H.; Aoki, K. Differential scanning calorimetric studies on bovine serum albumin: I. Effects of pH and ionic strength. Int. J. Biol. Macromol. 1990, 12, 263–268. [Google Scholar] [CrossRef]
- Katiyar, A.; Yadav, S.; Smirniotis, P.G.; Pinto, N.G. Synthesis of ordered large pore SBA-15 spherical particles for adsorption of biomolecules. J. Chromatogr. A 2006, 1122, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Rezwan, K.; Meier, L.P.; Gauckler, L.J. Lysozyme and bovine serum albumin adsorption on uncoated silica and AlOOH-coated silica particles: The influence of positively and negatively charged oxide surface coatings. Biomaterials 2005, 26, 4351–4357. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Jones, J.R. The effect of serum proteins on apatite growth for 45S5 Bioglass and common sol-gel derived glass in SBF. Biomed. Glas. 2018, 4, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Radin, S.; Ducheyne, P.; Rothman, B.; Conti, A. The effect of in vitro modeling conditions on the surface reactions of bioactive glass. J. Biomed. Mater. Res. 1997, 37, 363–375. [Google Scholar] [CrossRef]
- El-Ghannam, A.; Hamazawy, E.; Yehia, A. Effect of thermal treatment on bioactive glass microstructure, corrosion behavior, zeta potential, and protein adsorption. J. Biomed. Mater. Res. 2001, 55, 387–395. [Google Scholar] [CrossRef]
- Polzonetti, G.; Iucci, G.; Frontini, A.; Infante, G.; Furlani, C.; Avigliano, L.; Del Principe, D.; Palumbo, G.; Rosato, N. Surface reactions of a plasma-sprayed CaO-P2O5-SiO2-based glass with albumin, fibroblasts and granulocytes studied by XPS, fluorescence and chemiluminescence. Biomaterials 2000, 21, 1531–1539. [Google Scholar] [CrossRef]
- Lu, H.H.; Pollack, S.R.; Ducheyne, P. 45S5 Bioactive glass surface charge variations and the formation of a surface calcium phosphate layer in a solution containing fibronectin. J. Biomed. Mater. Res. 2001, 54, 454–461. [Google Scholar] [CrossRef]
- Buchanan, L.A.; El-Ghannam, A. Effect of bioactive glass crystallization on the conformation and bioactivity of adsorbed proteins. J. Biomed. Mater. Res. Part A 2010, 93, 537–546. [Google Scholar] [CrossRef]
- Wilson, C.J.; Clegg, R.E.; Leavesley, D.I.; Pearcy, M.J. Mediation of biomaterial-cell interactions by adsorbed proteins: A review. Tissue Eng. 2005, 11, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Valenti, L.E.; Fiorito, P.A.; García, C.D.; Giacomelli, C.E. The adsorption-desorption process of bovine serum albumin on carbon nanotubes. J. Colloid Interface Sci. 2007, 307, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Lobel, K.D.; Hench, L.L. In-vitro protein interactions with a bioactive gel-glass. J. Sol. Gel Sci. Technol. 1996, 7, 69–76. [Google Scholar] [CrossRef]
- Rosengren, Å.; Oscarsson, S.; Mazzocchi, M.; Krajewski, A.; Ravaglioli, A. Protein adsorption onto two bioactive glass-ceramics. Biomaterials 2003, 24, 147–155. [Google Scholar] [CrossRef]
Nominal Composition (mol%) | Solution A | Solution B | ||||
---|---|---|---|---|---|---|
TEOS (mL) | Ethanol (mL) | Ammonia (mL) | Ethanol (mL) | Water (mL) | CaN (g) | |
100SiO2 (100S) | 12 | 48 | 18 | 33 | 100 | - |
99SiO2-1CaO (99S) | 12 | 48 | 18 | 33 | 100 | 0.12 |
95SiO2-5CaO (95S) | 12 | 48 | 18 | 33 | 100 | 0.66 |
90SiO2-10CaO (90S) | 12 | 48 | 18 | 33 | 100 | 1.45 |
70SiO2-30CaO (70S) | 12 | 48 | 18 | 33 | 100 | 5.80 |
Sample Codes | Nominal Composition (mol%) | Calculated Composition (mol%) | Zeta-Potential | Specific Surface Area | ||
---|---|---|---|---|---|---|
SiO2 | CaO | SiO2 | CaO | (mV) | (m2/g) | |
100S | 100 | 0 | 100 | 0 | −24 ± 1 | 34.4 |
99S | 99 | 1 | 99.0 | 1.0 ± 0.2 | −24 ± 1 | 30.2 |
95S | 95 | 5 | 95.1 | 4.9 ± 0.2 | −25 ± 1 | 31.3 |
90S | 90 | 10 | 89.6 | 10.4 ± 0.6 | −25 ± 1 | 29.7 |
70S | 70 | 30 | 87.7 | 12.3 ± 1.2 | −24 ± 1 | 27.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapp, M.; Li, C.; Xu, Z.; Boccaccini, A.R.; Zheng, K. Protein Adsorption on SiO2-CaO Bioactive Glass Nanoparticles with Controllable Ca Content. Nanomaterials 2021, 11, 561. https://doi.org/10.3390/nano11030561
Kapp M, Li C, Xu Z, Boccaccini AR, Zheng K. Protein Adsorption on SiO2-CaO Bioactive Glass Nanoparticles with Controllable Ca Content. Nanomaterials. 2021; 11(3):561. https://doi.org/10.3390/nano11030561
Chicago/Turabian StyleKapp, Martin, Chunde Li, Zeqian Xu, Aldo R. Boccaccini, and Kai Zheng. 2021. "Protein Adsorption on SiO2-CaO Bioactive Glass Nanoparticles with Controllable Ca Content" Nanomaterials 11, no. 3: 561. https://doi.org/10.3390/nano11030561
APA StyleKapp, M., Li, C., Xu, Z., Boccaccini, A. R., & Zheng, K. (2021). Protein Adsorption on SiO2-CaO Bioactive Glass Nanoparticles with Controllable Ca Content. Nanomaterials, 11(3), 561. https://doi.org/10.3390/nano11030561