Integration of Stable Ionic Liquid-Based Nanofluids into Polymer Membranes. Part I: Membrane Synthesis and Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials for IoNF Preparation
2.2. Materials for Membrane Preparation
2.3. Membrane Characterization
3. Results and Discussion
3.1. FTIR Characterization
3.2. Thermogravimetric Analysis
3.3. Thermal Analysis
3.4. Morphology
3.4.1. Scanning Electron Microscope (SEM)
3.4.2. Interferometric Optical Profilometry
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
IoNF1 | 0.2 wt% xGnP/[C2C1py] [C4F9SO3] |
IoNF2 | 0.4 wt% xGnP/[C2C1py] [C4F9SO3] |
IoNF3 | 2 wt% xGnP/[C2C1py] [C4F9SO3] |
IoNF4 | 4 wt% xGnP/[C2C1py] [C4F9SO3] |
IoNF5 | 8 wt% xGnP/[C2C1py] [C4F9SO3] |
IoNF6 | 12 wt% xGnP/[C2C1py] [C4F9SO3] |
References
- KET4F-Gas. Reduction of the Environmental Impact of Fluorinated Gases in the Sudoe Space Using Key Enabling Technologies. Available online: www.ket4f-gas.eu (accessed on 22 December 2020).
- Castro, J.P.; Redondo, A.E.; Sosa, J.E.; Zakrzewska, M.E.; Nunes, A.V.M.; Araújo, J.M.; Pereiro, A.B. Absorption of Fluorinated Greenhouse Gases in Deep Eutectic Solvents. Ind. Eng. Chem. Res. 2020, 59, 13246–13259. [Google Scholar] [CrossRef]
- Sosa, J.E.; Malheiro, C.; Ribeiro, R.P.; Castro, P.J.; Piñeiro, M.M.; Araújo, J.M.; Plantier, F.; Mota, J.P.; Pereiro, A.B. Adsorption of fluorinated greenhouse gases on activated carbons: Evaluation of their potential for gas separation. J. Chem. Technol. Biotechnol. 2020, 95, 1892–1905. [Google Scholar] [CrossRef]
- Asensio-Delgado, S.; Jovell, S.; Zarca, G.; Urtiaga, A.; Llovell, F. Thermodynamic and process modeling of the recovery of R410A compounds with ionic liquids. Int. J. Refrig. 2020, 118, 365–375. [Google Scholar] [CrossRef]
- Huang, G.; Isfahani, A.P.; Muchtar, A.; Sakurai, K.; Shrestha, B.B.; Qin, D.; Yamaguchi, D.; Sivaniah, E.; Ghalei, B. Pebax/ionic liquid modified graphene oxide mixed matrix membranes for enhanced CO2 capture. J. Membr. Sci. 2018, 565, 370–379. [Google Scholar] [CrossRef]
- Hermida-Merino, C.; Pérez-Rodríguez, M.; Pereiro, A.B.; Piñeiro, M.M.; Pastoriza-Gallego, M.J. Tailoring Nanofluid Thermophysical Profile through Graphene Nanoplatelets Surface Functionalization. ACS Omega 2018, 3, 744–752. [Google Scholar] [CrossRef] [PubMed]
- Hermida-Merino, C.; Pérez-Rodríguez, M.; Piñeiro, M.M.; Pastoriza-Gallego, M.J. Tuning the electrical conductivity of exfoliated graphite nanosheets nanofluids by surface functionalization. Soft Matter 2017, 13, 3395–3403. [Google Scholar] [CrossRef]
- Dong, G.; Hou, J.; Wang, J.; Zhang, Y.; Chen, V.; Liu, J. Enhanced CO2/N2 separation by porous reduced graphene oxide/Pebax mixed matrix membranes. J. Membr. Sci. 2016, 860–868. [Google Scholar] [CrossRef]
- Noble, R.D.; Gin, D.L. Perspective on ionic liquids and ionic liquid membranes. J. Membr. Sci. 2011, 369, 1–4. [Google Scholar] [CrossRef]
- Freemantle, M. New horizons for Ionic Liquids. Chem. Eng. News 2001, 79, 21–25. [Google Scholar] [CrossRef]
- Huddleston, J.G.; Willauer, H.D.; Swatloski, R.P.; Visser, A.E.; Rogers, R.D. Room temperature ionic liquids as novel media for ‘clean’ liquid–liquid extraction. Chem. Commun. 1998, 1765–1766. [Google Scholar] [CrossRef]
- Kohoutová, M.; Sikora, A.; Hovorka, S.; Randová, A.; Schauer, J.; Tišma, M.; Setničková, K.; Guernik, S.; Greenspoon, N.; Izák, P. Influence of ionic liquid content on properties of dense polymer membranes. Eur. Polym. J. 2009, 45, 813–819. [Google Scholar] [CrossRef]
- Scovazzo, P.; Kieft, J.; Finan, D.A.; Koval, C.; Du Bois, D.; Noble, R. Gas separations using nonhexafluorophosphate [PF6]-Anion supported ionic liquid membranes. J. Membr. Sci. 2004, 238, 57–63. [Google Scholar] [CrossRef]
- Zou, J.; Ho, W.S.W. CO2-selective polymeric membranes containing amines in crosslinked poly (vinyl alcohol). J. Membr. Sci. 2006, 286, 310–321. [Google Scholar] [CrossRef]
- Scovazzo, P. Determination of the upper limits, benchmarks and critical properties for gas separations using stabilized room temperature ionic liquid membranes (SILMs) for the purpose of guiding future research. J. Membr. Sci. 2009, 343, 199–211. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, J.; Zhang, Y.; Deng, Y. Nanoconfined ionic liquids. Chem. Rev. 2017, 117, 6755–6833. [Google Scholar] [CrossRef] [PubMed]
- Konyukhova, E.V.; Buzinb, A.I.; Godovsky, Y.K. Melting of polyether block amide (Pebax): The effect of stretching. Thermochim. Acta 2002, 391, 271–277. [Google Scholar] [CrossRef]
- Bernardo, P.; Jansen, J.C.; Bazzarelli, F.; Tasselli, F.; Fuoco, A.; Friess, K.; Izák, P.; Jarmarová, V.; Kacírková, M.; Clarizia, G. Gas transport properties of Pebax®/room temperature ionic liquid gel membranes. Sep. Purif. Technol. 2012, 97, 73–82. [Google Scholar] [CrossRef]
- Aroona, M.A.; Ismail, A.F.; Matsuura, T.; Montazer-Rahmati, M.M. Performance studies of mixed matrix membranes for gas separation: A review. Sep. Purif. Technol. 2010, 75, 229–242. [Google Scholar] [CrossRef]
- Vinoba, M.; Bhagiyalakshmi, M.; Alqaheem, Y.; Alomair, A.A.; Pérez, A.; Rana, M.S. Recent progress of fillers in mixed matrix membranes for CO2 separation: A review. Sep. Purif. Technol. 2017, 188, 431–450. [Google Scholar] [CrossRef]
- Pereiro, A.B.; Araújo, J.M.M.; Teixeira, F.S.; Marrucho, I.M.; Piñeiro, M.M.; Rebelo, L.P.N. Aggregation Behavior and Total Miscibility of Fluorinated Ionic Liquids in Water. Langmuir 2015, 31, 1283–1295. [Google Scholar] [CrossRef]
- Pereiro, A.B.; Araújo, J.M.M.; Martinho, S.; Alves, F.; Nunes, S.; Matias, A.; Duarte, C.M.; Rebelo, L.P.; Marrucho, I.M. Fluorinated Ionic Liquids: Properties and Applications. ACS Sustain. Chem. Eng. 2013, 1, 427–439. [Google Scholar] [CrossRef]
- Alves, M.; Vieira, N.S.; Rebelo, L.P.N.; Araújo, J.M.; Pereiro, A.B.; Archer, M. Fluorinated ionic liquids for protein drug delivery systems: Investigating their impact on the structure and function of lysozyme. Int. J. Pharm. 2017, 526, 309–320. [Google Scholar] [CrossRef]
- Ferreira, M.L.; Pastoriza-Gallego, M.J.; Araújo, J.M.; Canongia Lopes, J.N.; Rebelo, L.P.N.; Piñeiro, M.M.; Shimizu, K.; Pereiro, A.B. Influence of nanosegregation on the phase behavior of fluorinated ionic liquids. J. Phys. Chem. C 2017, 121, 5415–5427. [Google Scholar] [CrossRef]
- Yang, H.; Li, F.; Shan, C.; Han, D.; Zhang, Q.; Niu, L.; Ivaska, A. Covalent functionalization of chemically converted graphene sheets via silane and its reinforcement. J. Mater. Chem. 2009, 19, 4632–4638. [Google Scholar] [CrossRef]
- Guo, H.-L.; Wang, X.-F.; Qian, Q.-Y.; Wang, F.-B.; Xia, X.-H. A Green Approach to the Synthesis of Graphene Nanosheets. ACS Nano 2009, 3, 2653–2659. [Google Scholar] [CrossRef] [PubMed]
- Marcano, D.C.; Kosynkin, D.V.; Berlin, J.M.; Sinitskii, A.; Sun, Z.; Slesarev, A.; Alemany, L.B.; Lu, W.; Tour, J.M. Improved Synthesis of Graphene Oxide. ACS Nano 2010, 4, 4806–4814. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Lin, Y.; Xu, S.; Li, R.; Zheng, X.; Zhang, F. Intercalation of perfluorobutane sulfonate into layered double hydroxides. Appl. Clay Sci. 2010, 48, 641–645. [Google Scholar] [CrossRef]
- Zhang, K.; Huang, J.; Yu, G.; Zhang, Q.; Deng, S.; Wang, B. Destruction of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) by Ball Milling. Environ. Sci. Technol. 2013, 47, 6471–6477. [Google Scholar] [CrossRef]
- Thanakkasaranee, S.; Kim, D.; Seo, J. Preparation and Characterization of Poly (ether-block-amide)/Polyethylene Glycol Composite Films with TemperatureDependent Permeation. Polymers 2018, 10, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeonga, S.; Sohnb, H.; Kang, S.W. Highly permeable PEBAX-1657 membranes to have long-term stability for facilitated olefin transport. Chem. Eng. J. 2018, 333, 276–279. [Google Scholar] [CrossRef]
- Kim, M.; Kang, S.W. PEBAX-1657/Ag nanoparticles/7,7,8,8-tetracyanoquinodimethane complex for highly permeable composite membranes with longterm stability. Sci. Rep. 2019. [Google Scholar] [CrossRef]
- Hermida-Merino, C.; Pereiro, A.B.; Araújo, J.M.M.; Gracia-Fernández, C.; Vallejo, J.P.; Lugo, L.; Piñeiro, M.M. Graphene IoNanofluids, Thermal and Structural Characterization. Nanomaterials 2019, 9, 1549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardo, F.; Zarca, G.; Urtiaga, A. Effect of feed pressure and long-term separation performance of Pebax-ionic liquid membranes for the recovery of difluoromethane (R32) from refrigerant mixture R410A. J. Membr. Sci. 2021, 618, 118744. [Google Scholar] [CrossRef]
- Pardo, F.; Zarca, G.; Urtiaga, A. Separation of Refrigerant Gas Mixtures Containing R32, R134a, and R1234yf through Poly (ether-block-amide) Membranes. ACS Sustain. Chem. Eng. 2020, 8, 2548–2556. [Google Scholar] [CrossRef]
- Miranda, D.F.; Russell, T.P.; Watkins, J.J. Ordering in Mixtures of a Triblock Copolymer with a Room Temperature Ionic Liquid. Macromolecules 2010, 43, 10528–10535. [Google Scholar] [CrossRef]
- Isfahani, A.P.; Sadeghi, M.; Wakimoto, K.; Gibbons, A.H.; Bagheri, R.; Sivaniah, E.; Ghalei, B. Enhancement of CO2 capture by polyethylene glycol-based polyurethane membranes. J. Membr. Sci. 2017, 542, 143–149. [Google Scholar] [CrossRef]
- Li, M.; Zhang, X.; Zeng, S.; Bai, L.; Gao, H.; Deng, J.; Yang, Q.; Zhang, S. Pebax-based composite membranes with high gas transport properties enhanced by ionic liquids for CO2 separation. RSC Adv. 2017, 7, 6422. [Google Scholar] [CrossRef] [Green Version]
Abbreviated Name of Membranes | Full Name (Mass Compositions of Polymer, Ionic Liquid, IL, and Graphene, xGnP) | |
---|---|---|
Pebax | M1 | Pebax®1657 |
Pebax/20IL | M2 | 80 wt% Pebax®1657 + 20 wt% [C2C1py] [C4F9SO3] |
Pebax/40IL | M3 | 60 wt% Pebax®1657 + 40 wt% [C2C1py] [C4F9SO3] |
Pebax/60IL | M4 | 40 wt% Pebax®1657 + 60 wt% [C2C1py] [C4F9SO3] |
Pebax/19.8IL/0.2xGnP | M5 | 80 wt% Pebax®1657 + 19.8 wt% [C2C1py] [C4F9SO3] + 0.2 wt% xGnP |
Pebax/18IL/2xGnP | M6 | 80 wt% Pebax®1657 + 18 wt% [C2C1py] [C4F9SO3] + 2 wt% xGnP |
Pebax/16IL/4xGnP | M7 | 80 wt% Pebax®1657 + 16 wt%[C2C1py] [C4F9SO3] + 4 wt% xGnP |
Pebax/32IL/8xGnP | M8 | 60 wt% Pebax®1657 + 32 wt%[C2C1py] [C4F9SO3] + 8 wt% xGnP |
Pebax/48IL/12xGnP | M9 | 40 wt% Pebax®1657 + 48 wt%[C2C1py] [C4F9SO3] + 12 wt% xGnP |
TStart (°C) | TDec (°C) | TOnset (°C) | TStart (°C) | TDec (°C) | TOnset (°C) | TStart (°C) | TDec (°C) | TOnset (°C) | |
---|---|---|---|---|---|---|---|---|---|
1 Degradation Step | 2 Degradation Step | 3 Degradation Step | |||||||
Pebax | 179 | 238 | 204 | 277 | 486 | 399 | − | − | − |
Pebax/20IL | 160 | 225 | 191 | 254 | 395 | 372 | 394 | 546 | 419 |
Pebax/40IL | 242 | 377 | 358 | 375 | 416 | 387 | 413 | 550 | 429 |
Pebax/60IL | 255 | 375 | 352 | 375 | 484 | 406 | − | − | − |
Pebax/19.8IL/0.2 × GnP | 162 | 224 | 192 | 250 | 397 | 375 | 397 | 511 | 428 |
Pebax/18IL/2 × GnP | 180 | 216 | 194 | 259 | 395 | 373 | 395 | 489 | 420 |
Pebax/16IL/4 × GnP | 170 | 242 | 192 | 259 | 402 | 367 | 402 | 480 | 424 |
Pebax/32IL/8 × GnP | − | − | − | 230 | 461 | 352 | − | − | − |
Cooling | Heating | ||||||||
---|---|---|---|---|---|---|---|---|---|
Tcrys 1 (°C) | Enthalpy 1 (J/g) | Tcrys 2 (°C) | Enthalpy 2 (J/g) | Tm 1 (°C) | Enthalpy 1 (J/g) | Tm 2 (°C) | Enthalpy 2 (J/g) | Tg (°C) | |
Pebax | −13 | 22.12 | 168 | 25.47 | 28 | 18 | 206 | 22.07 | −50 |
Pebax/20IL | −21 | 9.26 | 155 | 18.31 | 14 | 16 | 190 | 16.11 | −54 |
Pebax/40IL | − | − | 150 | 12.50 | − | − | 186 | 9.84 | −49 |
Pebax/60IL | − | − | 144 | 12.94 | − | − | 149 | 9.19 | −55 |
Pebax/19.8IL/0.2xGnP | −20 | 9.82 | 161 | 8.21 | 13 | 14.95 | 189 | 13.40 | −52 |
Pebax/18IL/2xGnP | −19 | 12.72 | 162 | 14.25 | 18 | 18.53 | 193 | 11.77 | −50 |
Pebax/16IL/4xGnP | −11 | 12.57 | 154 | 13.87 | 16 | 15.46 | 187 | 12.83 | −54 |
Pebax/32IL/8xGnP | − | − | 154 | 15.07 | 12 | 0.33 | 184 | 9.63 | −49 |
(a) Interferometric Optical Profilometry/3D Amplitude Roughness Parameters/1.2 × 0.9 µm2 Field of View/ROUGH FACES | |||||
Sa (nm) | Sq (nm) | Sz (nm) | Ssk | Sku | |
Pebax | 0.62 | 0.98 | 15.31 | 0.94 | 13.43 |
Pebax/20IL | 1.17 | 1.65 | 16.58 | 1.44 | 7.49 |
Pebax/40IL | 0.69 | 1.12 | 14.65 | 3.35 | 20.71 |
Pebax/60IL | 0.98 | 1.34 | 15.35 | 0.02 | 5.10 |
Pebax/19.8IL/0.2 × GnP | 1.27 | 1.82 | 14.19 | 1.94 | 9.85 |
Pebax/18IL/2 × GnP | 1.44 | 2.02 | 21.72 | 1.62 | 11.48 |
Pebax/16IL/4 × GnP | 2.63 | 3.63 | 32.43 | 1.49 | 8.78 |
Pebax/32IL/8 × GnP | 3.79 | 5.26 | 40.17 | 1.385 | 7.08 |
Pebax/48IL/12 × GnP | 7.80 | 10.21 | 56.08 | 0.80 | 5.39 |
(b) Interferometric Optical Profilometry/3D Amplitude Roughness Parameters/1.2 × 0.9 µm2 Field of View/SMOOTH FACES | |||||
Sa (nm) | Sq (nm) | Sz (nm) | Ssk | Sku | |
Pebax | 0.66 | 0.95 | 13.99 | 0.06 | 8.58 |
Pebax/20IL | 0.83 | 1.12 | 12.20 | −0.14 | 5.28 |
Pebax/40IL | 0.33 | 0.46 | 8.97 | 0.39 | 15.60 |
Pebax/60IL | 0.41 | 0.73 | 12.00 | −5.03 | 67.22 |
Pebax/19.8IL/0.2 × GnP | 0.55 | 0.74 | 7.31 | −0.46 | 5.59 |
Pebax/18IL/2 × GnP | 0.71 | 1.00 | 13.71 | 0.20 | 7.19 |
Pebax/16IL/4 × GnP | 1.31 | 1.70 | 16.20 | 0.25 | 5.79 |
Pebax/32IL/8 × GnP | 1.99 | 2.59 | 19.84 | 0.27 | 4.33 |
Pebax/48IL/12 × GnP | 2.26 | 2.85 | 19.95 | −0.12 | 3.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hermida-Merino, C.; Pardo, F.; Zarca, G.; Araújo, J.M.M.; Urtiaga, A.; Piñeiro, M.M.; Pereiro, A.B. Integration of Stable Ionic Liquid-Based Nanofluids into Polymer Membranes. Part I: Membrane Synthesis and Characterization. Nanomaterials 2021, 11, 607. https://doi.org/10.3390/nano11030607
Hermida-Merino C, Pardo F, Zarca G, Araújo JMM, Urtiaga A, Piñeiro MM, Pereiro AB. Integration of Stable Ionic Liquid-Based Nanofluids into Polymer Membranes. Part I: Membrane Synthesis and Characterization. Nanomaterials. 2021; 11(3):607. https://doi.org/10.3390/nano11030607
Chicago/Turabian StyleHermida-Merino, Carolina, Fernando Pardo, Gabriel Zarca, João M. M. Araújo, Ane Urtiaga, Manuel M. Piñeiro, and Ana B. Pereiro. 2021. "Integration of Stable Ionic Liquid-Based Nanofluids into Polymer Membranes. Part I: Membrane Synthesis and Characterization" Nanomaterials 11, no. 3: 607. https://doi.org/10.3390/nano11030607
APA StyleHermida-Merino, C., Pardo, F., Zarca, G., Araújo, J. M. M., Urtiaga, A., Piñeiro, M. M., & Pereiro, A. B. (2021). Integration of Stable Ionic Liquid-Based Nanofluids into Polymer Membranes. Part I: Membrane Synthesis and Characterization. Nanomaterials, 11(3), 607. https://doi.org/10.3390/nano11030607