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Abstract: In this work, polymeric membranes functionalized with ionic liquids (ILs) and exfoliated
graphene nanoplatelets (xGnP) were developed and characterized. These membranes based on
graphene ionanofluids (IoNFs) are promising materials for gas separation. The stability of the
selected IoNFs in the polymer membranes was determined by thermogravimetric analysis (TGA).
The morphology of membranes was characterized using scanning electron microscope (SEM) and
interferometric optical profilometry (WLOP). SEM results evidence that upon the small addition
of xGnP into the IL-dominated environment, the interaction between IL and xGnP facilitates the
migration of xGnP to the surface, while suppressing the interaction between IL and Pebax®1657.
Fourier transform infrared spectroscopy (FTIR) was also used to determine the polymer–IoNF
interactions and the distribution of the IL in the polymer matrix. Finally, the thermodynamic
properties and phase transitions (polymer–IoNF) of these functionalized membranes were studied
using differential scanning calorimetry (DSC). This analysis showed a gradual decrease in the melting
point of the polyamide (PA6) blocks with a decrease in the corresponding melting enthalpy and a
complete disappearance of the crystallinity of the polyether (PEO) phase with increasing IL content.
This evidences the high compatibility and good mixing of the polymer and the IoNF.

Keywords: materials for gas separation; ionanofluids; functionalized pebax®1657 membrane; ther-
mal and morphological properties

1. Introduction

Reducing emissions of fluorinated gases (F-gases) is at present one of the most urgent
environmental issues. Despite being energy efficient, ozone harmless, user safe, with
low levels of flammability and toxicity, fluorinated gases are among the most powerful
greenhouse gases, with a global warming effect up to 23,000 times greater than that
of dioxide of carbon and lifetimes up to 50,000 year in the atmosphere. Then, the F-
gases atmospheric emissions must imperatively be reduced, in accordance with the Kyoto
protocol, further developed by the Kigali agreement (international agreement specific for
these compounds signed in 2016) and the most recent EU regulation [1]. The development
of more benign and efficient materials designed according to the principles of green
chemistry [2,3] to recover fluorinated gases used in refrigeration and air conditioning [4]
and reducing their emissions are the objectives of this study.

Among separation techniques, membrane-based separation processes have received
attention for gas capture due to their high energy efficiency, simplicity, and reduced
cost. Furthermore, among the various upgrading technologies, membrane separation has

Nanomaterials 2021, 11, 607. https://doi.org/10.3390/nano11030607 https://www.mdpi.com/journal/nanomaterials

https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-9298-3889
https://orcid.org/0000-0001-9821-0310
https://orcid.org/0000-0002-4072-4252
https://orcid.org/0000-0002-8648-7539
https://orcid.org/0000-0002-8189-9171
https://orcid.org/0000-0002-3955-3564
https://orcid.org/0000-0001-7166-6764
https://doi.org/10.3390/nano11030607
https://doi.org/10.3390/nano11030607
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/nano11030607
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/2079-4991/11/3/607?type=check_update&version=2


Nanomaterials 2021, 11, 607 2 of 17

attracted much attention for its relatively low energy consumption and small footprint. The
design and development of new materials with selective transport pathways and high gas
permeability is a practical approach to improve the gas separation performance of these
membranes. However, it is still challenging to obtain an optimal interfacial morphology
and good dispersion through the polymer matrix [5].

Two-dimensional graphene nanosheets, with tunable surface functionality [6,7], facile
synthesis and high mechanical and thermal properties, have been used as a promising filler
to develop novel and specific membranes for gas separations [5]. The high aspect ratio of
graphene nanosheets provides longer and more tortuous paths for larger gas molecules to
pass through the polymer membranes. This property might decrease the permeability of
larger gas molecules while efficiently enhancing the overall gas selectivity. Furthermore, the
presence of polar groups close to the surface of exfoliated graphene nanoplatelets (xGnP)
(e.g., IL) enhances the compatibility of the filler with the polymer matrix [8]. Ionic liquids
(ILs) are the subject of increasing research efforts, owing to their unique physico–chemical
properties such as a wide liquid range, stability at high temperatures, non-flammability
and negligible vapor pressure [9]. These features have contributed to their recognition as
ambient friendly media [10], alternatives to the conventional volatile, flammable and toxic
organic solvents used in chemical processes [11].

Mass transport is in general much faster in ILs than in polymer materials, thus allow-
ing higher fluxes through the membrane and more effective (“faster”) separation [12]. ILs
can be considered as “designer solvents” for specific applications because their properties
can be finely tuned by selecting the anion, the cation and their side functional groups. In
virtue of their peculiar characteristics, ILs have been successfully applied also in the prepa-
ration of stable membranes for gas separation [13–15]. ILs have also been incorporated into
porous materials as cavity occupants or binding agents to improve the physicochemical
properties and gas affinity [16].

On the other hand, an important aspect of this investigation is the incorporation of
xGnP-IL with good dispersibility in the polymeric matrix that is easily applied to the
development of thin film membranes. In this work, the functionalized polymeric mem-
branes were prepared by incorporating ionic liquid with graphene (xGnP–IL) in poly
(ether–block–amide) a family of elastomeric multiblock copolymers commercially available
with the trademark Pebax®1657. It has a molecular structure composed of polyether (PEO)
amorphous rubbery segments and hard polyamide (PA6) semi-crystalline segments [17].
The properties of these copolymers are related to the relative content of PEO and PA6 and
to their chemical characteristics. Pebax®1657 block copolymers contain a phase-separated
microstructure in which the hard PA6 segments provide mechanical stability and contribute
to crystallinity, while only the soft PEO blocks act as a permeable phase owing to their
high chain mobility and thus control the gas transport. Among the different products com-
mercially available, Pebax®1657 is very hydrophilic, containing 40 wt. % PA6 and 60 wt. %
PEO, and it has been widely studied for membrane gas separation applications [18].

The literature review has shown that the introduction of these additives improves the
general gas transport properties of the polymeric matrix [5]. However, poor filler-polymer
compatibilities and filler aggregation can have a detrimental impact on the mechanical
and separation performance of the final membranes [19,20]. In this study, Pebax®1657
membranes were coupled with a fluorinated IL and graphene to achieve gas-selective
membranes with higher permeability. This work shows for the first time the high com-
patibility of graphene ionanofluids (IoNFs), based on highly surfactant IL, [21] with the
copolymer Pebax®1657. The surfactant IL chosen in this work allows to improve the
dispersion of the graphene within the polymer matrix, increasing at the same time the mass
transport through these new membranes. Additionally, both IL and graphene can increase
the selectivity and separating power of these novel materials. Then, the objective of this
work is to develop these novel and stable membranes using a simple solution molding
technique. Two composite ionic liquid and polymer membranes (Pebax®1657 (80 wt%
and 60 wt%) + (20 wt% and 40 wt% IL) and six mixed matrix membranes (Pebax®1657



Nanomaterials 2021, 11, 607 3 of 17

(80 wt% and 60 wt%) + (20 wt% and 40 wt% of IoNF previously prepared at three different
concentrations of graphene nanoparticles (1 wt%, 10 wt% and 20 wt%)) were prepared
and characterized by thermogravimetric analysis (TGA), differential scanning calorimetry
(DSC), scanning electron microscope (SEM), interferometric optical profilometry (WLOP)
and Fourier transform infrared spectroscopy (FTIR). These different characterization tech-
niques have been applied to determine the morphology, thermal and structural properties
in view of the potential use of these membranes.

2. Materials and Methods
2.1. Materials for IoNF Preparation

Firstly, six different IoNFs were prepared using a highly surfactant fluorinated ionic
liquid (FIL) as base fluid (base fluids for use in gas separation) and they were functionalized
with pristine graphene, xGnP. Nano-powder was weighed with a Mettler AE-240 balance,
whose accuracy is estimated to be 5 × 10−5 g, and then dispersed into a calculated volume
of the base fluid, obtaining stable and homogeneous xGnP/FIL (IoNFs), with percent
weight concentrations of 0.2, 0.4, 2, 4, 8 and 12 wt%.

The nanosheets were supplied by XG Sciences, Inc. (Lansing, MI, USA), having a
surface area of 750 mm2.g−1 and a thickness of 1–5 nm. The FIL used was 1-ethyl-3-
methylpyridinium perfluorobutanesulfonate [C2C1py] [C4F9SO3] (>99% mass fraction
purity) supplied by Iolitec (Heilbronn, Germany). The thermophysical profile of this FIL
has been determined in previous works [22–24], and its chemical structure is presented
in Figure 1a. The values of [C2C1py] [C4F9SO3] at 30 ◦C used in this work were: density
1.51 g·cm−3, viscosity 150.3 mPa·s, and molar volume 279.01 cm3·mol−1.
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Figure 1. Structures of: (a) FIL used in this work, 1-ethyl-3-methylpyridinium perfluorobutanesul-
fonate ([C2C1py] [C4F9SO3]); and (b) molecular structure of repeated unit of Pebax®1657MH.

The dispersion in the base fluid was carried out with an ultrasound bath (Ultrasons-
HD by Selecta, Barcelona, Spain), the stability of these samples was previously analyzed,
and was determined that the ideal dispersion time is 1 h.

2.2. Materials for Membrane Preparation

Butan-1-ol (99.9 wt%), purchased from VWR, was used as solvent for the preparation
of all dense films. The block copolymer poly(ether-block-amide) Pebax1657® MH grade
chemical structure presented in Figure 1b was kindly provided as pellets by Arkema
Química S.A. (Madrid, Spain), which consists of soft and flexible polyether blocks (PEO)
interlinked with hard and rigid polyamide 6 (PA6) segments. The composition of this
copolymer is 60 wt% PEO, 40 wt% PA6 and it has a density of 1.14 g·cm−3.

The IL 1-ethyl-3-methylpyridinium perfluorobutanesulfonate [C2C1py] [C4F9SO3] was
used for the preparation of the composite ionic liquid and polymer membranes (CILPMs)
and the synthetized [C2C1py] [C4F9SO3]-based IoNF was employed for the preparation of
the mixed-matrix membranes (MMMs). For membrane preparation, all reagents (solvent,
polymer, IL and IoNF) were used as received without any further purification step.

For membrane preparation, near 3 wt% of polymer was dissolved in butan-1ol at
100 ◦C under magnetic stirring. Once the polymer was dissolved, the corresponding
amount of either IL or IoNF was added and stirring was maintained at 100 ◦C for 1 h more
to ensure homogenization and to prevent the gelation of the mixture. Afterwards, the
solution was poured onto a glass Petri dish, and the solvent was evaporated into a vacuum
oven at 300 mbar of absolute pressure and 40 ◦C overnight.
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Membranes thickness was measured with a Mitutoyo digital micrometer (MDC-25PX,
accuracy ± 1 µm, Neuss, Germany). An average value of 100 ± 10 µm was obtained from
nine measurements at different points of the membrane.

2.3. Membrane Characterization

The prepared IoNFs and membranes were characterized by ATR-FTIR spectra (Nicolet
6700) in the range of 4000–400 cm−1 with a resolution of 4 cm−1 and 34 scans. The glass tran-
sition temperature (Tg) of membranes was measured using differential scanning calorimeter
(DSC) (Q2000 by TA Instruments, Spain) under a nitrogen atmosphere in the range of (−80)
to 250 ◦C with a 10 ◦C/min scanning rate. Thermo-gravimetric analysis (TGA, Setsys
Evolution 1750, Setaram) was utilized under a nitrogen atmosphere at a 10 ◦C/min ramp
rate to evaluate membrane thermal stability of the membranes.

The morphology of membranes was observed by Scanning Electron Microscope (SEM),
A FEI Quanta 200 environmental scanning electron microscope (ESEM). It was used to
characterize the surface and the cross-sectional morphology of the samples that were fixed
on an adhesive carbon tape and coated with gold. The cross-sections were prepared by
cryogenic fracturing in liquid nitrogen. Secondary electron (SE) images were taken at an
accelerating voltage of 12.5 kV FEI. The surface morphology of the membranes was also
characterized using white light interferometry (WLOP), WYKO NT 1100. The mode used
is white light vertical scanning interferometry, (VSI). For the preparation of the samples,
the least deformed pieces of membrane are chosen and fixed on an opaque sample holder,
to help the reflection of light. They are fixed at the ends with an adhesive; so that they are
as flat as possible without becoming deformed.

3. Results and Discussion

In this work, a total of six IoNFs and nine functionalized polymeric membranes (one
neat Pebax®1657 membrane, three CILPMs and five MMMs) were analyzed at different
concentrations. The concentrations of copolymer, IL and graphene nanoparticles are shown
in Table 1 for each IoNF and functionalized membranes studied in this work. The results
obtained for all IoNFs and membranes are shown in the Supporting Information. In this
section, only the most relevant results have been selected for discussion.

Table 1. Abbreviated name and full name (description of the membranes and ionanofluids (IoNFs)) studied in this work.

Abbreviated Name of Membranes Full Name (Mass Compositions of Polymer, Ionic Liquid, IL, and Graphene, xGnP)

Pebax M1 Pebax®1657
Pebax/20IL M2 80 wt% Pebax®1657 + 20 wt% [C2C1py] [C4F9SO3]
Pebax/40IL M3 60 wt% Pebax®1657 + 40 wt% [C2C1py] [C4F9SO3]
Pebax/60IL M4 40 wt% Pebax®1657 + 60 wt% [C2C1py] [C4F9SO3]

Pebax/19.8IL/0.2xGnP M5 80 wt% Pebax®1657 + 19.8 wt% [C2C1py] [C4F9SO3] + 0.2 wt% xGnP
Pebax/18IL/2xGnP M6 80 wt% Pebax®1657 + 18 wt% [C2C1py] [C4F9SO3] + 2 wt% xGnP
Pebax/16IL/4xGnP M7 80 wt% Pebax®1657 + 16 wt%[C2C1py] [C4F9SO3] + 4 wt% xGnP
Pebax/32IL/8xGnP M8 60 wt% Pebax®1657 + 32 wt%[C2C1py] [C4F9SO3] + 8 wt% xGnP
Pebax/48IL/12xGnP M9 40 wt% Pebax®1657 + 48 wt%[C2C1py] [C4F9SO3] + 12 wt% xGnP

3.1. FTIR Characterization

The FTIR spectra of IoNFs are shown in Figure 2. In practice, one can only see the
characteristics peaks of the IL, [C2C1py] [C4F9SO3], in the IoNFs spectra, the bands of the
graphene particles seem “invisible”. The spectrum of pristine graphene is well detailed in
different works [25–27], and the prominent peaks are depicted in Table S1. The identifica-
tion bands corresponding to the ionic liquid are reported in Table S2 [28,29]. The prominent
groups in pristine graphene have a hydrophobic nature, determining the dispersibility
behavior in aqueous and non-aqueous media, and mainly interact with the hydrophobic
regions of the IL as detailed below. The bands between 2850 and 3000 cm−1 are due to the
tension modes of the C–H bonds of CH2 and CH3 groups of the aliphatic chains attached
to the pyridine ring. The bending modes appear between 1352 and 1459 cm−1, which
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increase slightly with the addition of graphene. The 3068 cm−1 band is due to the C–H
bond tension modes of the aromatic ring of pyridine. The bands located between 1486 and
1637 cm−1 are due to the tension vibrations of the C=C and C=N bonds of the pyridine
aromatic ring. The tension vibration modes of the C–F links of the CF2 and CF3 groups
usually appear between 1000 and 1300 cm−1, while the bending modes appear between
500 and 850 cm−1, and all increase intensity with the addition of graphene. The bands
between 1000 and 1070 cm−1 correspond to the symmetric tension mode of the SO3 group
of the IL. The antisymmetric tension mode appears at a higher frequency, between 1100
and 1200 cm−1. The different bending modes of the SO3 group appear between 500 and
700 cm−1. These results show the good interaction between the IL with graphene even at
high concentrations of graphene nanoparticles.
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Figure 2. FTIR spectra of pure ionic liquid (IL) and of 3 IoNFs—full names in Table 1—with: 0.2 wt%
xGnP (IoNF1); 2 wt% xGnP (IoNF3); and 8 wt% xGnP (IoNF5).

Figure 3 illustrates the comparison of pure Pebax®1657 with the CILPMs prepared
in this work. Figure S1 shows the comparison between CILPM Pebax/20IL and MMMs.
The identification bands corresponding to the Pebax®1657 are shown in Table S3 [30].
Pebax®1657 characteristic peaks appear as stretching and bending vibrations of the NH
group at 3297 and 1542 cm−1, respectively, the free peak of C=O at 1731 cm−1, C=O group
in HNC=O at 1637 cm−1, and C–O–C bond stress peaks at 1094 cm−1 with the highest
peak at 1090 cm−1. In Figure 3a, a slight change is observed, the 3500 cm−1 band moves
slightly towards higher wave numbers, also a decrease in the intensity of the peaks and
a slight narrowing are observed. In Figure 3b, it is observed that new bands appear in
the CILPM samples, ~1600 cm−1 to pyridinium ring, ~1520 to C=N, ~1240 to CF2 and the
R–SO3 group has several bending modes, one at 600–700 cm−1, which includes all the
links in the group (S=O and SO) and another bending mode at 520–530 cm−1 that only has
S=O bonds, that did not exist in pure Pebax®1657, and as the amount of IL increases, the
intensity of these bands increases as well. The new, more intense bands are due to vibration
modes of the CF2 and SO3 groups of the IL. Bands corresponding to the pyridinium ring of
this compound also appear.

Figure 4 illustrates the FTIR spectra of the polymeric membranes: Pebax®1657, 60wt%
Pebax®1657 + 40 wt% [C2C1py] [C4F9SO3] and 60 wt% Pebax®1657 + 32 wt%[C2C1py]
[C4F9SO3] + 8 wt% xGnP. In addition, all characterized membranes are shown in Figure S2.
The aforementioned Pebax®1657 characteristic peaks are detailed in Figure 4. The charac-
teristic IL signal representing the C–H group on the cation ring appears as a peak between
2850–3000 cm−1, the peak being more intense than in pure Pebax®1657. Furthermore, the
bending vibration of the IL cationic ring and the stretching peaks of ethyl-N and methyl-N
can be found as broad peaks of 1046 and 1012 cm−1. When IL/xGnP was mixed with
Pebax®1657, little change in the distribution of the polymeric membrane was observed.
Furthermore, there were no additional peaks other than those of Pebax®1657, xGnP and
IL in the mixture, confirming the absence of chemical reaction as a result of the IL/xGnP
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mixture. No significant peaks were observed for graphene, indicating the lack of functional
groups xGnP-polymer.
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3.2. Thermogravimetric Analysis

Pebax-IoNFs degradation can be tested by the thermal stability of the membrane deter-
mined by TGA. Figure 5 shows the TGA and DTGA curves of the neat Pebax®1657 and the
composites containing xGnP-IL fillers and the previously reported IL [22]. Figures S3–S5 show
the TGA and DTGA curves for all characterized membranes. In the Figure 5, Pebax®1657
showed a two-stage decomposition, related to the random cleavage mechanism of the main
polymer chain. The functionalized membranes showed a similar behavior to pure Pebax®1657.
The onset (TOnset), starting (TStart) and decomposition (TDec) temperatures, corresponding to
the temperature at which the baseline slope changed during heating, the starting point and
the final point of the degradation, respectively, are shown in Table 2.
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Decomposition starts earlier in MMMs compared to pure polymer and CILMPs. The
onset temperature of the pure polymer is higher than that of CILMPs and MMMs. There is
a greater influence on the degradation temperatures in CILPM than in MMMs, which have
similar values at different concentrations of graphene and ionic liquid, as can be seen in
Figures S3 and S4. However, the increment of the IL concentration increases the stability
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of CILMPs but the increment of xGnP does not increase the stability of these membranes.
The CILPM and MMM samples present three decomposition zones, presenting a new
decomposition zone from 390 to 550 ◦C, with the exception of the 60% Pebax®1657 + 32%
[C2C1py] [C4F9SO3] + 8% xGnP membrane, in which degradation occurs in a single step.

Table 2. Thermal properties obtained by TGA, temperature at which degradation begins; TStart, temperature at which
degradation ends; TDec, and the onset temperature; TOnset, of the different membranes.

TStart
(◦C)

TDec
(◦C)

TOnset
(◦C)

TStart
(◦C)

TDec
(◦C)

TOnset
(◦C)

TStart
(◦C)

TDec
(◦C)

TOnset
(◦C)

1 Degradation Step 2 Degradation Step 3 Degradation Step

Pebax 179 238 204 277 486 399 − − −
Pebax/20IL 160 225 191 254 395 372 394 546 419
Pebax/40IL 242 377 358 375 416 387 413 550 429
Pebax/60IL 255 375 352 375 484 406 − − −

Pebax/19.8IL/0.2 × GnP 162 224 192 250 397 375 397 511 428
Pebax/18IL/2 × GnP 180 216 194 259 395 373 395 489 420
Pebax/16IL/4 × GnP 170 242 192 259 402 367 402 480 424
Pebax/32IL/8 × GnP − − − 230 461 352 − − −

When the IoNF is incorporated into the Pebax®1657 polymer, the IoNFs penetrates be-
tween the Pebax®1657 chains. This reduced the thermal stability of the Pebax®1657/IoNFs
composite membrane in comparison to pure copolymer. These results suggest that the
Pebax®1657/IoNFs functionalized polymeric membrane may show enhanced separation
properties as will be analyzed in-depth Part II of this study. As a result, thermal stability was
reduced and degradation occurred at a lower temperature than pure Pebax®1657 [31,32]
and the degradation profiles approximate the pure ionic liquid profile. Furthermore,
CILPMs are more stable than MMMs. This behavior demonstrates that the transport prop-
erties and stability of this type of membranes is more influenced by the presence of IL
than by graphene. However, the presence of graphene can play an important role in the
selectivity of this type of membranes.

3.3. Thermal Analysis

Heat flow measurements from thermograms were carried out to explore the effect of
xGnP-IL fillers on the pristine Pebax®1657 sample. The results are shown in Figure 6, where
the comparison between the DSC curve for the polymer Pebax®1657, for the pure IL [22,33]
and the curves with the incorporation of IL and xGnP-IL are illustrated. Furthermore,
Figure S6 illustrates the DSC curves for all characterized membranes and the results are
reported in Table 3.

In the cooling thermogram, Figure 6a, the Pebax®1657 sample showed two exothermic
peaks, which can be attributed to the crystalline fraction of poly(ethylene oxide) (PEO)
and polyamide (PA6). On the other hand, crystallinity decreases with the addition of IL,
as expected, [34] due to the steric hindrance presented by the ionic liquid. In addition, a
complete disappearance of the second exothermic peak, except for the samples containing
80% of Pebax®1657. The MMMs show a clearly different behavior, as there is a shift in
the positions of the first exothermic peak Pebax®1657. However, the second exothermic
peak was maintained due to the xGnP presence, except for the highest xGnP-IL concentra-
tion where the exothermic peak at low temperatures disappears completely (the highest
IL concentration).

In the heating thermogram, Figure 6b, two dominant endothermic peaks are present
for neat Pebax®1657. The maxima of these peaks occur at 28 and 206 ◦C. These endotherms
can be attributed to the melting of the crystalline fraction of the blocks of polyethylene
oxide (PEO) and of polyamide (PA6), respectively [18,34,35]. The incorporation of IL
produces a decrease in the peaks as a consequence of the decrease in the concentration
of the Pebax®1657 polymer and a complete disappearance of the first endothermic peak,
except for the samples containing 80% of Pebax®1657. With the addition of graphene, there



Nanomaterials 2021, 11, 607 9 of 17

is practically no change in the positions of the peaks and both crystalline phases remain
present, which indicates little phase compatibility between the crystalline fraction of the
polymer and the xGnP, in contrast to the high compatibility and good mixing of graphene
and IL.
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Table 3. Crystallization temperatures, Tcrys; melting temperatures, Tm; and enthalpy, ∆H, at 10 ◦C/min.

Cooling Heating

Tcrys 1
(◦C)

Enthalpy
1 (J/g)

Tcrys 2
(◦C)

Enthalpy
2 (J/g)

Tm 1
(◦C)

Enthalpy
1 (J/g)

Tm 2
(◦C)

Enthalpy
2 (J/g)

Tg
(◦C)

Pebax −13 22.12 168 25.47 28 18 206 22.07 −50
Pebax/20IL −21 9.26 155 18.31 14 16 190 16.11 −54
Pebax/40IL − − 150 12.50 − − 186 9.84 −49
Pebax/60IL − − 144 12.94 − − 149 9.19 −55

Pebax/19.8IL/0.2xGnP −20 9.82 161 8.21 13 14.95 189 13.40 −52
Pebax/18IL/2xGnP −19 12.72 162 14.25 18 18.53 193 11.77 −50
Pebax/16IL/4xGnP −11 12.57 154 13.87 16 15.46 187 12.83 −54
Pebax/32IL/8xGnP − − 154 15.07 12 0.33 184 9.63 −49
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Therefore, the peak sizes decrease according to the decrease in the polymer concentration
in the Pebax/IL mixture. The overall crystallinity is derived from the weight fraction of
the two blocks and decreases rapidly with increasing IoNF content. In Pebax1657/IoNFs
mixtures, the endothermic peak attributed to the PA6 crystalline fraction is shifted towards
a lower temperature with an increasing content of IoNFs. The strong and relatively sharp
peak of the PA6 blocks is replaced by a much weaker and broader melting peak, suggesting a
reduction in the average crystal size and/or purity, while the PEO melting peak disappears for
samples with high ionic liquid content in CILPMs, as seen in the literature [36]. Furthermore,
this analysis showed that the enthalpy of fusion was in the range of 18–0.3 J/g for the PEO
fraction and in the range of 22–10 J/g for the PA6 fraction, showing a decrease in the enthalpy
of fusion of the polyether phase (PEO) with the increment of the IL content.

On the other hand, the effect of xGnP-IL fillers on the glass transition temperature
(Tg) of pristine Pebax®1657 was determined. The soft domains of PEO have a low Tg at
−50 ◦C. The PA6 part of the Pebax®1657 shows a wide melting temperature starting at
160 ◦C while the Tg of the hard segment cannot be detected. Small changes in membrane Tg
make it clear that xGnP-IL fillers could not provide strong interactions with PEO segments.
However, the slope of Tg increases with the incorporation of xGnP-IL, indicating that the
PEO chains suffer relatively little interference with the PA6 segments [37]. Furthermore,
at higher xGnP loadings, the agglomeration of the xGnP sheets and the tendency of the
particles to disperse in the PEO segments rather than the PA6 domains caused the Tg to
shift to higher temperatures.

Thus, DSC provides an excellent tool for evaluating the miscibility of IL in Pebax®1657
copolymers, where the melting point depression and reduction in crystallinity is a measure
of the strength of the interaction between the polymers and IL [38]. The absence of the IL
melting peak in the composite is a strong evidence of miscibility of IL in Pebax copolymers.
Summarizing, the present study evidences a high compatibility of IL and Pebax®1657 polymer.

3.4. Morphology
3.4.1. Scanning Electron Microscope (SEM)

SEM images of the surface and cross-sectional morphology of Pebax®1657, 80 wt%
Pebax®1657 + 20 wt% [C2C1py] [C4F9SO3], 80 wt% Pebax®1657 + 19.8 wt% [C2C1py]
[C4F9SO3] + 0.2 wt% xGnP, 80 wt% Pebax®1657 + 16 wt% [C2C1py] [C4F9SO3] + 4 wt%
xGnP and 60 wt% Pebax®1657 + 32 wt% [C2C1py] [C4F9SO3] + 8 wt% xGnP are presented
in Figure 7. Moreover, SEM images for all characterized membranes are shown in Figure S7.
SEM analysis was also employed to investigate the dispersion and interfacial adhesion of IL
and IL-xGnP within the Pebax®1657 matrix. The Pebax®1657 copolymer membrane shows
a smooth and dense cross-sectional morphology [5]. However, by adding xGnP sheets,
rough morphologies appeared on the surface of the membranes [37]. The face up images of
80 wt% Pebax®1657 + 19.8 wt% [C2C1py] [C4F9SO3] + 0.2 wt% xGnP, 80 wt% Pebax®1657 +
16 wt% [C2C1py] [C4F9SO3] + 4 wt% xGnP show that some of the xGnP laminates formed
in the MMMs appear perpendicular to the surface of the polymeric membrane.
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Figure 7. SEM images of Pebax; Pebax/20IL; Pebax/19.8IL/0.2 × GnP; Pebax/16IL/4 × GnP; and Pebax/32IL/8 × GnP—full
names in Table 1.

Agglomeration of xGnP was observed at the highest concentration values (8 wt%
xGnP for Pebax/32IL/8xGnP and 12 wt% xGnP for Pebax/48IL/12xGnP, see Figure 7 and
Figure S7). In addition, these membranes with higher IL content exhibit a homogeneous
morphology revealing a uniform dispersion of IL-xGnP in the polymer matrix without
aggregation or voids at the IoNFs/polymer interface—as can be seen in Figure 7 and
Figure S7. The surface of the CILPMs membranes is smoother and the structure of the
membranes becomes more amorphous with increasing IL content. This can be attributed to
the reduction in crystallinity. These results justify that the modification of the surface with
IoNFs improved the compatibility of the interface.
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3.4.2. Interferometric Optical Profilometry

A topographic and morphological study of the nine polymeric membranes was carried
out using interferometric optical profilometry (WLOP) for each of their faces, since the
membranes present roughness differences. Although WLOP has a lower resolution than
atomic force microscopy (AFM), it provides measurements of larger fields of view. Then, a
larger area can be analyzed, allowing the analysis to be more representative for this type of
samples. Two measurement modes were used: (1) phase shift interferometry (PSI) mode
which enables the high-resolution measurement of smooth surfaces and small steps; (2)
vertical scan interferometry (VSI) mode which enables the measurement of rough surfaces
and steps up to several millimeters in height.

Each of the membranes has two faces with different topographic properties, one face
being quite smooth and the other quite rough. Figure 8 and Figure S8 shows the optical
images of both sides of the samples, optical images are qualitatively analyzed with a field of
view of 14.5 × 10.5 mm2. In the most transparent samples, without graphene, it is difficult
to differentiate roughness differences in optical reflection images. In the detailed results
of interferometric profilometry, Figure 9 and Figure S9, we obtain significant topographic
differences, allowing to classify the rough and smooth faces.
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influence of geometric deformations. The calculations were carried out without applying 
the interpolation in the few missing areas of pixels, to represent the images and improve 
their visual quality, and the “Data Restore” interpolation was applied. Amplitude 
parameters Sa and Sq are the mean roughness and root mean square (RMS) roughness 
evaluated over the complete 3D surface, respectively. Mathematically, Sa and Sq can be 
evaluated as follows: 
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measurements. On the other hand, Sku indicates the nature of the height distribution. 
Therefore, it is useful to indicate the presence of either peak or valley defects, such as 
scratches. If the surface heights are normally distributed, then Sku is 3.00. Surfaces 
composed of inordinately high peaks/deep valleys have Sku > 3.00. Sku indicates gradually 
varying surfaces. 

Sp, Sv, and Sz are the parameters evaluated from the absolute highest and lowest 
points found on the surface. Sp, the maximum peak height, is the height of the highest 

Figure 9. 3D imaging with the topographic enhancement of the rough face and smooth face.

The Pebax®1657 sample presents a similar roughness on both sides of the membrane
Figure 9, it shows the same level of roughness and it is indistinct to classify one side or the
other as smooth or rough. However, topographic differences are observed in Figure 10,
although in the calculation of roughness, they do not produce appreciable differences,
observing a frequency of peaks in the rough samples; that is, high areas, while in the
smooth face; valleys are predominant.
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they are less noticeable than on the rough side. The smooth faces have been in contact 
with a relatively flat support or surface during their synthesis which explain the behavior 

Figure 10. Trend of Sa parameter for the smooth and rough faces of Pebax (M1); Pebax/20IL (M2);
Pebax/40IL (M3); Pebax/60IL (M4); Pebax/19.8IL/0.2 × GnP (M5); Pebax/18IL/2 × GnP (M6);
Pebax/16IL/4 × GnP (M7); Pebax/32IL/8 × GnP (M8); and Pebax/48IL/12 × GnP (M9)—full
names in Table 1.

The 5X objective of WLOP offers a field of view of 1.2 × 0.9 mm2. From these images,
we calculated the 3D amplitude parameters that define the roughness to quantitatively
assess the surface texture of the polymeric membranes. For the calculation of the three-
dimensional roughness parameters (Sa, Sq, Sz, Ssk and Sku), a “Cylinder and Tilt” correction
was applied beforehand to eliminate plane inclination and minimize the influence of geo-
metric deformations. The calculations were carried out without applying the interpolation
in the few missing areas of pixels, to represent the images and improve their visual quality,
and the “Data Restore” interpolation was applied. Amplitude parameters Sa and Sq are the
mean roughness and root mean square (RMS) roughness evaluated over the complete 3D
surface, respectively. Mathematically, Sa and Sq can be evaluated as follows:

Sa =
∫ ∫

a
|Z(x, y)|dxdy (1)

Sq =

√∫ ∫
a
(Z(x, y))2dxdy (2)
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Ssk and Sku are the skewness and kurtosis of the 3D surface texture, respectively,
representing a histogram of the heights from an ideal normal distribution. Mathematically,
Ssk and Sku can be evaluated as follows:

Ssk =
1

S3
q

∫ ∫
a
(Z(x, y))3dxdy (3)

Sku =
1

S4
q

∫ ∫
a
(Z(x, y))4dxdy (4)

Ssk represents the degree of symmetry of the surface heights about the mean plane. The
sign of Ssk indicates the preponderance of peaks (that is, Ssk > 0) or valley structures (Ssk < 0)
comprising the surface. Ssk is useful to characterize honed surfaces and wear measurements.
On the other hand, Sku indicates the nature of the height distribution. Therefore, it is useful
to indicate the presence of either peak or valley defects, such as scratches. If the surface
heights are normally distributed, then Sku is 3.00. Surfaces composed of inordinately high
peaks/deep valleys have Sku > 3.00. Sku indicates gradually varying surfaces.

Sp, Sv, and Sz are the parameters evaluated from the absolute highest and lowest
points found on the surface. Sp, the maximum peak height, is the height of the highest
point, Sv, the maximum valley depth, is the depth of the lowest point (expressed as a
negative number) and Sz, the maximum height of the surface, is calculated from Sz = Sp–Sv.

The results obtained for the membranes studied in this work are reported in Table 4
and Sa parameter is plotted in Figure 10.

Table 4. Interferometric optical profilometry of the (a) rough and (b) smooth faces of the mem-
branes studied.

(a) Interferometric Optical Profilometry/3D Amplitude Roughness Parameters/1.2 × 0.9 µm2

Field of View/ROUGH FACES

Sa (nm) Sq (nm) Sz (nm) Ssk Sku

Pebax 0.62 0.98 15.31 0.94 13.43
Pebax/20IL 1.17 1.65 16.58 1.44 7.49
Pebax/40IL 0.69 1.12 14.65 3.35 20.71
Pebax/60IL 0.98 1.34 15.35 0.02 5.10

Pebax/19.8IL/0.2 × GnP 1.27 1.82 14.19 1.94 9.85
Pebax/18IL/2 × GnP 1.44 2.02 21.72 1.62 11.48
Pebax/16IL/4 × GnP 2.63 3.63 32.43 1.49 8.78
Pebax/32IL/8 × GnP 3.79 5.26 40.17 1.385 7.08

Pebax/48IL/12 × GnP 7.80 10.21 56.08 0.80 5.39

(b) Interferometric Optical Profilometry/3D Amplitude Roughness Parameters/1.2 × 0.9 µm2

Field of View/SMOOTH FACES

Sa (nm) Sq (nm) Sz (nm) Ssk Sku

Pebax 0.66 0.95 13.99 0.06 8.58
Pebax/20IL 0.83 1.12 12.20 −0.14 5.28
Pebax/40IL 0.33 0.46 8.97 0.39 15.60
Pebax/60IL 0.41 0.73 12.00 −5.03 67.22

Pebax/19.8IL/0.2 × GnP 0.55 0.74 7.31 −0.46 5.59
Pebax/18IL/2 × GnP 0.71 1.00 13.71 0.20 7.19
Pebax/16IL/4 × GnP 1.31 1.70 16.20 0.25 5.79
Pebax/32IL/8 × GnP 1.99 2.59 19.84 0.27 4.33

Pebax/48IL/12 × GnP 2.26 2.85 19.95 −0.12 3.63

On the smooth side, some differences are observed in the roughness values, although
they are less noticeable than on the rough side. The smooth faces have been in contact with a
relatively flat support or surface during their synthesis which explain the behavior observed
in this work. There is a coincidence in the tendency of the roughness of both the smooth



Nanomaterials 2021, 11, 607 15 of 17

and rough faces, the rough face being more pronounced. On the rough side, although
an increase in roughness is observed, Pebax®1657 and the three CILPMs membranes
present low roughness values and close to each other. The incorporation of graphene in the
membrane clearly increases the three-dimensional roughness parameters.

4. Conclusions

As described above, graphene and ionic liquid-functionalized polymeric membranes
have received much attention for gas separation applications and have seen remarkable
progress in recent years. The search for surface modifications that generate compatibility
between polymers and their aggregates, suppressing the plasticization of polymers and tak-
ing advantage of the synergistic effects, can improve the sustainability of these membranes
towards gas capture applications. In this first paper, a series of functionalized polymeric
MMMs were prepared by incorporating IL and graphene (graphene ionanofluids) into
the Pebax®1657 matrix. The membranes obtained were characterized by FTIR, TGA, DSC,
SEM and WLOP. The goal of the incorporation of surfactant IL and graphene is to improve
the permeability and selectivity of these novel materials. This work demonstrated the high
compatibility of IoNFs with the copolymer Pebax®1657 and these novel MMMs can be
prepared using a simple solution molding technique.

The incorporation of IoNF in the Pebax®1657 matrix does not change the FTIR spec-
trum of the Pebax®1657 polymer. In addition, there are no additional peaks, confirming the
absence of chemical reaction. When the IoNF is incorporated into the Pebax®1657 polymer,
it penetrates between the Pebax®1657 chains, increasing the free volume of the polymer
chain. This reduces the thermal stability of the Pebax®1657/IoNFs composite membrane.
These results suggest that the Pebax®1657/IoNFs functionalized polymeric membrane
showed improved permeability due to the high free volume of the polymer chain in it. In
the DSC analysis, a great depression of the melting point of the PEO blocks is observed
when the concentration of IL increases in the mixtures. This finding indicates a strong and
favorable interaction between IL and PEO. In addition, this decrease in crystallinity leads
to improved gas transport properties.

SEM analysis showed that the Pebax®1657 copolymer membrane presents a smooth
and dense cross-sectional morphology. An amorphous structure appears with the addition
and increment of the IL concentration, and the addition of xGnP sheets produces rough mor-
phologies on the surface of the membranes, forming an important proportion of laminates
in the MMMs oriented perpendicularly to the surface of the polymeric membrane. Finally,
the morphological and topographic study was used to determine the three-dimensional
roughness parameters that also demonstrated the increment of the roughness with the
incorporation of graphene in the membranes.

Polymers are generally used to make membranes due to their excellent gas separation
properties. However, they have a comprehensive compromise between permeability
and selectivity, and sensitivity to high temperatures, high pressures and harsh chemical
environments. For this reason, it is important to perform a comprehensive study of their
characterization, evaluating in this particular case the effect of the ionic liquid and graphene
addition on the microstructure of these membranes.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079-4
991/11/3/607/s1, Figure S1. Comparison between CILPM Pebax/20IL and MMMs (full names in
Table 1) with differences concentrations of IL and xGnP: a) range 2500-4000cm-1, b) range 400-2400cm-
1, Figure S2. FTIR spectra of Pebax, Pebax/20IL, Pebax/40IL, Pebax/60IL, Pebax/19.8/IL/0.2xGnP,
Pebax/18IL/2xGnP, Pebax/16IL/4xGnP, Pebax/32/8xGnP, and Pebax/48IL/12xGnP (full names in
Table 1), Figure S3. TGA Curves of IL, Pebax, Pebax/20IL, Pebax/40IL, Pebax/60IL, Pebax/19.8/IL/
0.2xGnP, Pebax/18IL/2xGnP, Pebax/16IL/4xGnP, and Pebax/32/8xGnP (full names in Table 1),
Figure S4. TGA Curves of a) CILPMs: Pebax/20IL, Pebax/40IL, and Pebax/60IL; and b) MMMs:
Pebax/19.8/IL/0.2xGnP, Pebax/18IL/2xGnP, Pebax/16IL/4xGnP, and Pebax/32/8xGnP (full names
in Table 1), Figure S5. dTGA Curves of Pebax, Pebax/20IL, Pebax/40IL, Pebax/60IL, Pebax/19.8/IL/
0.2xGnP, Pebax/18IL/2xGnP, Pebax/16IL/4xGnP, and Pebax/32/8xGnP (full names in Table 1),
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Figure S6. DSC Termograms of IL, Pebax, Pebax/20IL, Pebax/40IL, Pebax/60IL, Pebax/19.8/IL/
0.2xGnP, Pebax/18IL/2xGnP, Pebax/16IL/4xGnP, and Pebax/32/8xGnP at 10◦C/min: (a) cool-
ing ramp, (b) heating ramp, Figure S7. STEM images of Pebax, Pebax/20IL, Pebax/40IL, Pe-
bax/60IL, Pebax/19.8IL/0.2xGnP, Pebax/18IL/2xGnP, Pebax/16IL/4xGnP, Pebax/32IL/8xGnP,
and Pebax/48IL/12xGnP (full names in Table 1), Figure S8. 2D imaging with optical reflection of
Rough face A and face B of Pebax, Pebax/20IL, Pebax/40IL, Pebax/60IL, Pebax/19.8IL/0.2xGnP,
Pebax/18IL/2xGnP, Pebax/16IL/4xGnP, Pebax/32IL/8xGnP, and Pebax/48IL/12xGnP (full names
in Table 1), Figure S9. 3D imaging with topographic enhancement of Rough face and Smooth face
of Pebax, Pebax/20IL, Pebax/40IL, Pebax/60IL, Pebax/19.8IL/0.2xGnP, Pebax/18IL/2xGnP, Pe-
bax/16IL/4xGnP, Pebax/32IL/8xGnP, and Pebax/48IL/12xGnP (full names in Table 1). Table S1.
Identification of bands corresponding to the graphene [S1-S3], Table S2. Identification of bands
corresponding to the ionic liquid [S4,S5], Table S3. Identification of bands corre-sponding to Pe-
bax®1657 [S6].
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Abbreviations

IoNF1 0.2 wt% xGnP/[C2C1py] [C4F9SO3]
IoNF2 0.4 wt% xGnP/[C2C1py] [C4F9SO3]
IoNF3 2 wt% xGnP/[C2C1py] [C4F9SO3]
IoNF4 4 wt% xGnP/[C2C1py] [C4F9SO3]
IoNF5 8 wt% xGnP/[C2C1py] [C4F9SO3]
IoNF6 12 wt% xGnP/[C2C1py] [C4F9SO3]
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