Properties and Characterization of Lignin Nanoparticles Functionalized in Macroalgae Biopolymer Films
Abstract
:1. Introduction
2. Materials and Method
2.1. Materials
2.2. Isolation and Purification of Lignin
2.3. Preparation of Lignin Nanoparticles
2.4. Characterisation of Lignin Nanoparticles
2.5. Fabrication of Lignin Nanoparticles/Macroalgae Composite Films
2.6. Characterization of Lignin Nanoparticles/Macroalgae Composite Films
2.6.1. Physical Properties
2.6.2. Mechanical Properties
2.6.3. Surface and Fractured Surface Characterizations by Field Emission Scanning Electron Microscope (FESEM)
2.6.4. Structural Analysis (FT-IR)
2.6.5. Thermal Properties
2.6.6. Color and Opacity Properties
2.6.7. Wettability Analysis
2.6.8. Statistical Analysis
3. Results and Discussion
3.1. Characterisation of Unpurified and Purified Lignin Nanoparticles
3.2. Characterization of Lignin Nanoparticles/Macroalgae Composite Films
3.2.1. Physical Properties
3.2.2. Mechanical Properties
3.2.3. Fracture Morphology Studies
3.2.4. Structural Analysis by FT-IR
3.2.5. Thermogravimetric Analysis
3.2.6. Color and Opacity Properties
3.2.7. Surface Morphology and Hydrophobicity Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hasan, M.; Lai, T.K.; Gopakumar, D.A.; Jawaid, M.; Owolabi, F.; Mistar, E.; Alfatah, T.; Noriman, N.; Haafiz, M.; Abdul Khalil, H.P.S. Micro crystalline bamboo cellulose based seaweed biodegradable composite films for sustainable packaging material. J. Polym. Environ. 2019, 27, 1602–1612. [Google Scholar] [CrossRef]
- Kumar, U.S.U.; Paridah, M.; Owolabi, F.T.; Gopakumar, D.A.; Rizal, S.; Amirul, A.; Rahman, A.; Alfatah, T.; Mistar, E.; Aprilia, N.S. Neem leaves extract based seaweed bio-degradable composite films with excellent antimicrobial activity for sustainable packaging material. BioResources 2019, 14, 700–713. [Google Scholar]
- Mellinas, C.; Ramos, M.; Jiménez, A.; Garrigós, M.C. Recent trends in the use of pectin from agro-waste residues as a natural-based biopolymer for food packaging applications. Materials 2020, 13, 673. [Google Scholar] [CrossRef] [Green Version]
- Abdul Khalil, H.P.S.; Saurabh, C.K.; Tye, Y.; Lai, T.; Easa, A.; Rosamah, E.; Fazita, M.; Syakir, M.; Adnan, A.; Fizree, H. Seaweed based sustainable films and composites for food and pharmaceutical applications: A review. Renew. Sustain. Energy Rev. 2017, 77, 353–362. [Google Scholar] [CrossRef]
- Hasan, M.; Gopakumar, D.A.; Olaiya, N.; Zarlaida, F.; Alfian, A.; Aprinasari, C.; Alfatah, T.; Rizal, S.; Abdul Khalil, H.P.S. Evaluation of the thermomechanical properties and biodegradation of brown rice starch-based chitosan biodegradable composite films. Int. J. Biol. Macromol. 2020, 156, 896–905. [Google Scholar] [CrossRef]
- Uthaya Kumar, U.S.; Abdulmadjid, S.; Olaiya, N.; Amirul, A.; Rizal, S.; Rahman, A.; Alfatah, T.; Mistar, E.; Abdul Khalil, H.P.S. Extracted Compounds from Neem Leaves as Antimicrobial Agent on the Physico-Chemical Properties of Seaweed-Based Biopolymer Films. Polymers 2020, 12, 1119. [Google Scholar] [CrossRef]
- Rizal, S.; Lai, T.K.; Muksin, U.; Olaiya, N.; Abdullah, C.; Yahya, E.B.; Chong, E.; Abdul Khalil, H.P.S. Properties of Macroalgae Biopolymer Films Reinforcement with Polysaccharide Microfibre. Polymers 2020, 12, 2554. [Google Scholar] [CrossRef] [PubMed]
- Abdul Khalil, H.P.S.; Tye, Y.; Saurabh, C.; Leh, C.; Lai, T.; Chong, E.; Fazita, M.; Hafiidz, J.M.; Banerjee, A.; Syakir, M. Biodegradable polymer films from seaweed polysaccharides: A review on cellulose as a reinforcement material. Express Polym. Lett. 2017, 11, 244–265. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Jafari, S.M.; Salehabadi, A.; Nafchi, A.M.; Uthaya, U.S.; Abdul Khalil, H.P.S. Biodegradable green packaging with antimicrobial functions based on the bioactive compounds from tropical plants and their by-products. Trends Food Sci. Technol. 2020, 100, 262–277. [Google Scholar] [CrossRef]
- Luo, B.; Chi, M.; Zhang, Q.; Li, M.; Chen, C.; Wang, X.; Wang, S.; Min, D. Fabrication of Lignin-based nano carbon film-copper foil composite with enhanced thermal conductivity. Nanomaterials 2019, 9, 1681. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Eraghi Kazzaz, A.; AlipoorMazandarani, N.; Hosseinpour Feizi, Z.; Fatehi, P. Production of flocculants, adsorbents, and dispersants from lignin. Molecules 2018, 23, 868. [Google Scholar] [CrossRef] [Green Version]
- Tribot, A.; Amer, G.; Alio, M.A.; de Baynast, H.; Delattre, C.; Pons, A.; Mathias, J.-D.; Callois, J.-M.; Vial, C.; Michaud, P. Wood-lignin: Supply, extraction processes and use as bio-based material. Eur. Polym. J. 2019, 112, 228–240. [Google Scholar] [CrossRef]
- Köhnke, J.; Rennhofer, H.; Unterweger, C.; Gierlinger, N.; Keckes, J.; Zollfrank, C.; Rojas, O.J.; Gindl-Altmutter, W. Electrically-Conductive Sub-Micron Carbon Particles from Lignin: Elucidation of Nanostructure and Use as Filler in Cellulose Nanopapers. Nanomaterials 2018, 8, 1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colburn, A.; Vogler, R.J.; Patel, A.; Bezold, M.; Craven, J.; Liu, C.; Bhattacharyya, D. Composite membranes derived from cellulose and lignin sulfonate for selective separations and antifouling aspects. Nanomaterials 2019, 9, 867. [Google Scholar] [CrossRef] [Green Version]
- Aqlil, M.; Moussemba Nzenguet, A.; Essamlali, Y.; Snik, A.; Larzek, M.; Zahouily, M. Graphene oxide filled lignin/starch polymer bionanocomposite: Structural, physical, and mechanical studies. J. Agric. Food Chem. 2017, 65, 10571–10581. [Google Scholar] [CrossRef] [PubMed]
- Leskinen, T.; Witos, J.; Valle-Delgado, J.J.; Lintinen, K.; Kostiainen, M.; Wiedmer, S.K.; Österberg, M.; Mattinen, M.-L. Adsorption of proteins on colloidal lignin particles for advanced biomaterials. Biomacromolecules 2017, 18, 2767–2776. [Google Scholar] [CrossRef]
- Iglesias Montes, M.L.; Luzi, F.; Dominici, F.; Torre, L.; Cyras, V.P.; Manfredi, L.B.; Puglia, D. Design and characterization of PLA bilayer films containing lignin and cellulose nanostructures in combination with umbelliferone as active ingredient. Front. Chem. 2019, 7, 157. [Google Scholar] [CrossRef] [Green Version]
- Kai, D.; Chong, H.M.; Chow, L.P.; Jiang, L.; Lin, Q.; Zhang, K.; Zhang, H.; Zhang, Z.; Loh, X.J. Strong and biocompatible lignin/poly (3-hydroxybutyrate) composite nanofibers. Compos. Sci. Technol. 2018, 158, 26–33. [Google Scholar] [CrossRef]
- Muthuraj, R.; Hajee, M.; Horrocks, A.; Kandola, B.K. Biopolymer blends from hardwood lignin and bio-polyamides: Compatibility and miscibility. Int. J. Biol. Macromol. 2019, 132, 439–450. [Google Scholar] [CrossRef]
- Abdul Khalil, H.P.S.; Yap, S.W.; Tye, Y.Y.; Tahir, P.M.; Rizal, S.; Fazita, M.N. Effects of corn starch and Kappaphycus alvarezii seaweed blend concentration on the optical, mechanical, and water vapor barrier properties of composite films. BioResources 2018, 13, 1157–1173. [Google Scholar] [CrossRef]
- Narapakdeesakul, D.; Sridach, W.; Wittaya, T. Recovery, characteristics and potential use as linerboard coatings material of lignin from oil palm empty fruit bunches’ black liquor. Ind. Crops Prod. 2013, 50, 8–14. [Google Scholar] [CrossRef]
- Abdul Khalil, H.P.S.; Marliana, M.; Issam, A.; Bakare, I. Exploring isolated lignin material from oil palm biomass waste in green composites. Mater. Des. 2011, 32, 2604–2610. [Google Scholar] [CrossRef]
- Abdul Khalil, H.P.S.; Chong, E.; Owolabi, F.; Asniza, M.; Tye, Y.; Tajarudin, H.; Paridah, M.; Rizal, S. Microbial-induced CaCO3 filled seaweed-based film for green plasticulture application. J. Clean. Prod. 2018, 199, 150–163. [Google Scholar] [CrossRef]
- Ghanbarzadeh, B.; Almasi, H. Physical properties of edible emulsified films based on carboxymethyl cellulose and oleic acid. Int. J. Biol. Macromol. 2011, 48, 44–49. [Google Scholar] [CrossRef] [PubMed]
- ASTM (D882–02). Standard Test Method for Tensile Properties of Thin Plastic Sheeting; ASTM International: West Conshohocken, PA, USA, 2002. [Google Scholar]
- Si, M.; Zhang, J.; He, Y.; Yang, Z.; Yan, X.; Liu, M.; Zhuo, S.; Wang, S.; Min, X.; Gao, C. Synchronous and rapid preparation of lignin nanoparticles and carbon quantum dots from natural lignocellulose. Green Chem. 2018, 20, 3414–3419. [Google Scholar] [CrossRef]
- Hashim, S.; Zakaria, S.; Chia, C.H.; Pua, F.L.; Jaafar, S.N.S. Chemical and thermal properties of purified kenaf core and oil palm empty fruit bunch lignin. Sains Malays. 2016, 45, 1649–1653. [Google Scholar]
- Arapova, O.; Chistyakov, A.; Tsodikov, M.; Moiseev, I. Lignin as a Renewable Resource of Hydrocarbon Products and Energy Carriers (A Review). Petroleum Chem. 2020, 60, 227–243. [Google Scholar] [CrossRef]
- Tian, D.; Hu, J.; Bao, J.; Chandra, R.P.; Saddler, J.N.; Lu, C. Lignin valorization: Lignin nanoparticles as high-value bio-additive for multifunctional nanocomposites. Biotechnol. Biofuels 2017, 10, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsakas, L.; Gerber, M.; Yu, L.; Rova, U.; Christakopoulos, P. Preparation of low carbon impact lignin nanoparticles with controllable size by using different strategies for particles recovery. Ind. Crops Prod. 2020, 147, 112243. [Google Scholar] [CrossRef]
- Matsakas, L.; Karnaouri, A.; Cwirzen, A.; Rova, U.; Christakopoulos, P. Formation of lignin nanoparticles by combining organosolv pretreatment of birch biomass and homogenization processes. Molecules 2018, 23, 1822. [Google Scholar] [CrossRef] [Green Version]
- Salami, M.A.; Kaveian, F.; Rafienia, M.; Saber-Samandari, S.; Khandan, A.; Naeimi, M. Electrospun polycaprolactone/lignin-based nanocomposite as a novel tissue scaffold for biomedical applications. J. Med. Signal Sens. 2017, 7, 228. [Google Scholar]
- Liu, Z.-H.; Hao, N.; Shinde, S.; Pu, Y.; Kang, X.; Ragauskas, A.J.; Yuan, J.S. Defining lignin nanoparticle properties through tailored lignin reactivity by sequential organosolv fragmentation approach (SOFA). Green Chem. 2019, 21, 245–260. [Google Scholar] [CrossRef]
- Mu, L.; Shi, Y.; Hua, J.; Zhuang, W.; Zhu, J. Engineering hydrogen bonding interaction and charge separation in bio-polymers for green lubrication. J. Phys. Chem. B 2017, 121, 5669–5678. [Google Scholar] [CrossRef]
- Yang, M.; Zhao, W.; Singh, S.; Simmons, B.; Cheng, G. On the solution structure of kraft lignin in ethylene glycol and its implication for nanoparticle preparation. Nanoscale Adv. 2019, 1, 299–304. [Google Scholar] [CrossRef] [Green Version]
- Xiong, F.; Wu, Y.; Li, G.; Han, Y.; Chu, F. Transparent nanocomposite films of lignin nanospheres and poly (vinyl alcohol) for UV-absorbing. Ind. Eng. Chem. Res. 2018, 57, 1207–1212. [Google Scholar] [CrossRef]
- Yang, W.; Weng, Y.; Puglia, D.; Qi, G.; Dong, W.; Kenny, J.M.; Ma, P. Poly (lactic acid)/lignin films with enhanced toughness and anti-oxidation performance for active food packaging. Int. J. Biol. Macromol. 2020, 144, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Suhr, J.; Seo, H.-W.; Sun, H.; Kim, S.; Park, I.-K.; Kim, S.-H.; Lee, Y.; Kim, K.-J.; Nam, J.-D. All biomass and UV protective composite composed of compatibilized lignin and poly (lactic-acid). Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Montes, M.I.; Cyras, V.; Manfredi, L.; Pettarín, V.; Fasce, L. Fracture evaluation of plasticized polylactic acid/poly (3-HYDROXYBUTYRATE) blends for commodities replacement in packaging applications. Polym. Test. 2020, 84, 106375. [Google Scholar] [CrossRef]
- Chen, Y.; Zheng, K.; Niu, L.; Zhang, Y.; Liu, Y.; Wang, C.; Chu, F. Highly mechanical properties nanocomposite hydrogels with biorenewable lignin nanoparticles. Int. J. Biol. Macromol. 2019, 128, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Qi, G.; Kenny, J.M.; Puglia, D.; Ma, P. Effect of cellulose nanocrystals and lignin nanoparticles on mechanical, antioxidant and water vapour barrier properties of glutaraldehyde crosslinked PVA films. Polymers 2020, 12, 1364. [Google Scholar] [CrossRef]
- Jumaidin, R.; Sapuan, S.; Jawaid, M.; Ishak, M.; Sahari, J. Characteristics of Eucheuma cottonii waste from East Malaysia: Physical, thermal and chemical composition. Eur. J. Phycol. 2017, 52, 200–207. [Google Scholar] [CrossRef]
- Kwon, S.; Orsuwan, A.; Bumbudsanpharoke, N.; Yoon, C.; Choi, J.; Ko, S. A short review of light barrier materials for food and beverage packaging. Korean J. Pack. Sci. Technol. 2018, 24, 141–148. [Google Scholar] [CrossRef]
- Zadeh, E.M.; O’Keefe, S.F.; Kim, Y.-T. Utilization of lignin in biopolymeric packaging films. ACS Omega 2018, 3, 7388–7398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizal, S.; Abdullah, C.; Olaiya, N.; Sri Aprilia, N.; Zein, I.; Surya, I.; Abdul Khalil, H.P.S. Preparation of Palm Oil Ash Nanoparticles: Taguchi Optimization Method by Particle Size Distribution and Morphological Studies. Appl. Sci. 2020, 10, 985. [Google Scholar] [CrossRef] [Green Version]
- Kim, N.Y.; Kyhm, J.; Han, H.; Kim, S.J.; Ahn, J.; Hwang, D.K.; Jang, H.W.; Ju, B.K.; Lim, J.A. Chiroptical-Conjugated Polymer/Chiral Small Molecule Hybrid Thin Films for Circularly Polarized Light-Detecting Heterojunction Devices. Adv. Funct. Mater. 2019, 29, 1808668. [Google Scholar] [CrossRef]
- Yang, W.; Fortunati, E.; Dominici, F.; Giovanale, G.; Mazzaglia, A.; Balestra, G.; Kenny, J.; Puglia, D. Effect of cellulose and lignin on disintegration, antimicrobial and antioxidant properties of PLA active films. Int. J. Biol. Macromol. 2016, 89, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Kai, D.; Tan, M.J.; Chee, P.L.; Chua, Y.K.; Yap, Y.L.; Loh, X.J. Towards lignin-based functional materials in a sustainable world. Green Chem. 2016, 18, 1175–1200. [Google Scholar] [CrossRef]
Filler Loading (%) | Decomposition Temperature (°C) | Mass Loss (%) | ||||
---|---|---|---|---|---|---|
Tonset | Tmax. | 100 °C | 250 °C | 400 °C | 800 °C | |
Control | 221.52 | 244.96 | 19.43 | 51.35 | 69.73 | 81.42 |
Unpurified lignin | ||||||
1 | 222.39 | 246.14 | 18.64 | 50.78 | 69.19 | 81.23 |
3 | 223.71 | 246.37 | 17.82 | 47.86 | 69.01 | 80.61 |
5 | 235.13 | 248.33 | 17.43 | 46.72 | 68.94 | 80.12 |
7 | 224.12 | 247.85 | 16.94 | 46.14 | 68.04 | 79.13 |
Purified lignin | ||||||
1 | 224.03 | 247.15 | 17.77 | 50.31 | 69.14 | 80.57 |
3 | 235.29 | 248.48 | 10.17 | 42.16 | 65.25 | 79.08 |
5 | 242.63 | 249.73 | 9.79 | 40.01 | 64.39 | 77.40 |
7 | 239.37 | 248.95 | 9.58 | 38.83 | 64.07 | 76.99 |
Average | 229.80 | 247.55 | 15.29 | 46.02 | 67.53 | 79.62 |
Difference | 21% | 10% | 3% | 2% |
Filler Loading (%) | L* | a* | b* | ΔE | Opacity | Photograph |
---|---|---|---|---|---|---|
Control | 85.15 ± 0.12 f | 0.29 ± 0.01 a | 5.56 ± 0.01 a | 85.33 ± 0.12 g | 0.91 ± 0.05 a | |
Unpurified lignin | ||||||
1 | 74.99 ± 0.55 e | 3.42 ± 0.12 b | 16.33 ± 0.19 c | 76.82 ± 0.50 f | 3.35 ± 0.09 b | |
3 | 59.06 ± 1.39 c | 11.24 ± 0.66 d | 24.51 ± 0.04 g | 64.92 ± 1.14 d | 6.42 ± 0.06 d | |
5 | 51.01 ± 0.90 b | 15.01 ± 0.38 e | 22.21 ± 0.50 f | 57.62 ± 0.88 b | 7.33 ± 0.10 e | |
7 | 41.66 ± 0.45 a | 17.26 ± 0.04 f | 13.64 ± 0.50 b | 47.12 ± 0.53 a | 8.82 ± 0.16 f | |
Purified lignin | ||||||
1 | 69.65 ± 1.09 d | 5.64 ± 0.52 c | 19.82 ± 0.81 d | 72.64 ± 0.78 e | 4.76 ± 0.16 c | |
3 | 56.57 ± 0.46 c | 11.40 ± 0.18 d | 21.87 ± 0.17 ef | 61.71 ± 0.39 c | 6.61 ± 0.06 d | |
5 | 49.74 ± 1.45 b | 14.65 ± 0.57 e | 20.34 ± 0.66 de | 55.71 ± 1.39 b | 7.62 ± 0.15 e | |
7 | 42.41 ± 0.93 a | 16.73 ±0.11 f | 14.35 ± 1.25 b | 47.81 ± 1.15 a | 8.68 ± 0.18 f |
Filler Loading (%) | Unpurified Lignin | Purified Lignin | ||||
---|---|---|---|---|---|---|
Surface Morphology | Droplet Image | Contact Angle of Films (θ) | Surface Morphology | Droplet Image | Contact Angle of Films (θ) | |
Control | 67.46o ± 0.19 a | 67.46o ± 0.19 a | ||||
1 | 73.07o ± 0.42 b | 78.27o ± 0.34 d | ||||
3 | 75.59o ± 0.70 c | 90.80o ± 0.12 g | ||||
5 | 87.45o ± 0.31 f | 96.83o ± 0.40 h | ||||
7 | 74.89o ± 0.48 c | 84.51o ± 0.26 e |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rizal, S.; Alfatah, T.; H. P. S., A.K.; Mistar, E.M.; Abdullah, C.K.; Olaiya, F.G.; Sabaruddin, F.A.; Ikramullah; Muksin, U. Properties and Characterization of Lignin Nanoparticles Functionalized in Macroalgae Biopolymer Films. Nanomaterials 2021, 11, 637. https://doi.org/10.3390/nano11030637
Rizal S, Alfatah T, H. P. S. AK, Mistar EM, Abdullah CK, Olaiya FG, Sabaruddin FA, Ikramullah, Muksin U. Properties and Characterization of Lignin Nanoparticles Functionalized in Macroalgae Biopolymer Films. Nanomaterials. 2021; 11(3):637. https://doi.org/10.3390/nano11030637
Chicago/Turabian StyleRizal, Samsul, Tata Alfatah, Abdul Khalil H. P. S., E. M. Mistar, C. K. Abdullah, Funmilayo G. Olaiya, F. A. Sabaruddin, Ikramullah, and Umar Muksin. 2021. "Properties and Characterization of Lignin Nanoparticles Functionalized in Macroalgae Biopolymer Films" Nanomaterials 11, no. 3: 637. https://doi.org/10.3390/nano11030637
APA StyleRizal, S., Alfatah, T., H. P. S., A. K., Mistar, E. M., Abdullah, C. K., Olaiya, F. G., Sabaruddin, F. A., Ikramullah, & Muksin, U. (2021). Properties and Characterization of Lignin Nanoparticles Functionalized in Macroalgae Biopolymer Films. Nanomaterials, 11(3), 637. https://doi.org/10.3390/nano11030637