Scalable Production of Boron Quantum Dots for Broadband Ultrafast Nonlinear Optical Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the BQDs
2.2. Characterization of BQDs
3. Results and Discussion
3.1. The Nonlinear Absorption of the BQDs
3.2. Ultrafast Carrier Dynamics of the BQDs
3.3. All-Optical Diode Behavior
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666. [Google Scholar] [CrossRef] [Green Version]
- Rezapour, M.R.; Myung, C.W.; Yun, J.; Ghassami, A.; Li, N.; Yu, S.U.; Hajibabaei, A.; Park, Y.; Kim, K.S. Graphene and Graphene Analogs toward Optical, Electronic, Spintronic, Green-Chemical, Energy-Material, Sensing, and Medical Applications. ACS Appl. Mater. Interfaces 2017, 9, 24393. [Google Scholar] [CrossRef]
- Xie, S.Y.; Wang, Y.L.; Li, X.B. Flat Boron: A New Cousin of Graphene. Adv. Mater. 2019, 31, 1900392. [Google Scholar] [CrossRef]
- Sun, X.; Liu, X.; Yin, J.; Yu, J.; Li, Y.; Hang, Y.; Zhou, X.; Yu, M.; Li, J.; Tai, G.; et al. Two-Dimensional Boron Crystals: Structural Stability, Tunable Properties, Fabrications and Applications. Adv. Funct. Mater. 2017, 27, 1603300. [Google Scholar] [CrossRef]
- Zhang, Z.; Penev, E.S.; Yakobson, B.I. Two-dimensional boron: Structures, properties and applications. Chem. Soc. Rev. 2017, 46, 6746. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.F.; Mannix, A.J.; Kiraly, B.; Wood, J.D.; Alducin, D.; Myers, B.D.; Liu, X.L.; Fisher, B.L.; Santiago, U.; Guest, J.R.; et al. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 2015, 350, 6267. [Google Scholar]
- Xu, S.G.; Zhao, Y.J.; Liao, J.H.; Yang, X.B.; Xu, H. The nucleation and growth of borophene on the Ag (111) surface. Nano Res. 2016, 9, 2616. [Google Scholar] [CrossRef] [Green Version]
- Paton, K.R.; Varrla, E.; Backes, C.; Smith, R.J.; Khan, U.; O’Neill, A.; Boland, C.; Lotya, M.; Istrate, O.M.; King, P.; et al. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 2014, 13, 624. [Google Scholar] [CrossRef]
- Coleman, J.N.; Lotya, M.; O’Neill, A.; Bergin, S.D.; King, P.J.; Khan, U.; Young, K.; Gaucher, A.; De, S.; Smith, R.J.; et al. Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science 2011, 331, 568. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.Z.; Zheng, X.; Jiang, T. Giant nonlinear absorption and excited carrier dynamics of black phosphorus few-layer nanosheets in broadband spectra. Opt. Express 2017, 25, 7507. [Google Scholar] [CrossRef]
- Xu, Y.H.; Wang, Z.T.; Guo, Z.N.; Huang, H.; Xiao, Q.; Zhang, H.; Yu, X.F. Solvothermal Synthesis and Ultrafast Photonics of Black Phosphorus Quantum Dots. Adv. Optical Mater. 2016, 4, 1223. [Google Scholar] [CrossRef]
- Zou, H.Y.; Liu, Z.X.; Wang, N.; Yang, T.; Peng, Z.W.; Wang, J.; Li, N.; Huang, C.Z. Photoluminescence of carbon quantum dots: Coarsely adjusted by quantum confinement effects and finely by surface trap states. Sci. China Chem. 2018, 61, 490. [Google Scholar]
- Du, W.N.; Chen, J.; Shi, J.W.; Li, M.L.; Wang, Y.; Zhang, Q.; Liu, X.F. Perovskite quantum dot lasers. InfoMat 2020, 2, 170. [Google Scholar]
- Guo, Q.B.; Wu, K.; Shao, Z.P.; Basore, E.T.; Jiang, P.; Qiu, J.R. Boron Nanosheets for Efficient All-Optical Modulation and Logic Operation. Adv. Optical Mater. 2019, 7, 1900322. [Google Scholar] [CrossRef]
- Shi, R.C.; Guo., J.; Wang, R.Y.; Wang, Z.; Zhang, F.; Wang, C.; Chen, H.L.; Ma, C.Y.; Wang, Z.H.; Ge, Y.Q.; et al. Graphdiyne-Polymer Nanocomposite as a Broadband and Robust Saturable Absorber for Ultrafast Photonics. Laser Photonics Rev. 2020, 14, 1900367. [Google Scholar]
- Wu, L.; Dong, Y.; Zhao, J.; Ma, D.; Huang, W.; Zhang, Y.; Wang, Y.; Jiang, X.; Xiang, Y.; Li, J.; et al. Kerr Nonlinearity in 2D Graphdiyne for Passive Photonic Diodes. Adv. Mater. 2019, 31, 1807981. [Google Scholar] [CrossRef] [PubMed]
- Dong, N.G.; Huang, J.W.; Zhang, S.F.; Sun, Z.Y.; Zhang, W.H.; Wang, J. Nonlinear Absorption Induced Transparency and Optical Limiting of Black Phosphorus Nanosheets. ACS Photonics 2017, 4, 3063. [Google Scholar]
- Li, J.S.; Tang, Y.; Li, Z.T.; Rao, L.S.; Ding, X.R.; Yu, B.H. High efficiency solid-liquid hybrid-state quantum dot light-emitting diodes. Photonics Res. 2018, 6, 1107. [Google Scholar] [CrossRef]
- Zhao, Q.; Yang, Z.J.; He, J. Coherent couplings between magnetic dipole transitions of quantum emitters and dielectric nanostructures. Photonics Res. 2019, 7, 1142. [Google Scholar] [CrossRef]
- Tang, J.; Zhang, F.; Zhou, F.; Tang, X.; Dai, X.; Lu, S. Broadband nonlinear optical response in GeSe nanoplates and its applications in all-optical diode. Nanophotonics 2020, 9, 2007–2015. [Google Scholar] [CrossRef] [Green Version]
- Bi, L.; Hu, J.; Jiang, P.; Kim, H.S.; Kim, D.H.; Onbasli, M.C.; Dionne, G.F.; Ross, C.A. Magneto-Optical Thin Films for On-Chip Monolithic Integration of Non-Reciprocal Photonic Devices. Materials 2013, 6, 5094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anand, B.; Podila, R.; Lingam, K.; Krishnan, S.R.; Siva Sankara Sai, S.; Philip, R.; Rao, A.M. Optical Diode Action from Axially Asymmetric Nonlinearity in an All-Carbon Solid-State Device. Nano. Lett. 2013, 13, 5771. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Du, L.; Miao, L.; Yi, J.; Huang, B.; Zou, Y.; Zhao, C.; Wen, S. Highly stable femtosecond pulse generation from a MXene Ti3C2Tx(T = F, O, or OH) mode-locked fiber laser. Photonics Res. 2019, 7, 260. [Google Scholar] [CrossRef]
- Li, H.; Jing, L.; Liu, W.; Lin, J.; Tay, R.Y.; Tsang, S.H.; Teo, E.H.T. Scalable Production of Few-Layer Boron Sheets by Liquid-Phase Exfoliation and Their Superior Supercapacitive Performance. ACS Nano 2018, 12, 1262. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, P.; Sahu, T.K.; Bhushan, R.; Yamijala, S.S.; Late, D.J.; Kumar, P.; Vinu, A. Freestanding Borophene and Its Hybrids. Adv. Mater. 2019, 31, 1900353. [Google Scholar] [CrossRef]
- Hao, J.Q.; Tai, G.A.; Zhou, J.X.; Wang, R.; Hou, C.; Guo, W.L. Crystalline Semiconductor Boron Quantum Dots. ACS Appl. Mater. Interfaces 2020, 12, 17669. [Google Scholar] [CrossRef] [PubMed]
- Yi, M.; Shen, Z.G. A review on mechanical exfoliation for scalable production of graphene. J. Mater. Chem. 2015, 3, 11700. [Google Scholar] [CrossRef]
- Garmire, E. Resonant Optical Nonlinearities in Semiconductors. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 1094. [Google Scholar] [CrossRef]
- Bao, Q.L.; Zhang, H.; Wang, Y.; Ni, Z.; Yan, Y.; Shen, Z.X.; Loh, K.P.; Tang, D.Y. Atomic-Layer Graphene as a Saturable Absorber for Ultrafast Pulsed Laser. Adv. Funct. Mater. 2009, 19, 3077. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, X.; Kislyakov, I.M.; Dong, N.; Zhang, S.; Wang, G.; Fan, J.; Zou, X.; Du, J.; Leng, Y.; et al. Bacterially synthesized tellurium nanostructures for broadband ultrafast nonlinear optical applications. Nat. Commun. 2019, 10, 3985. [Google Scholar] [CrossRef] [Green Version]
- Kulyk, B.; Essaidi, Z.; Luc, J.; Sofiani, Z.; Boudebs, G.; Sahraoui, B.; Kapustianyk, V.; Turko, B. Second and third order nonlinear optical properties of microrod ZnO films deposited on sapphire substrates by thermal oxidation of metallic zinc. J. Appl. Phys. 2007, 102, 113113. [Google Scholar] [CrossRef]
- Zawadzkaa, A.; Płóciennika, P.; Kouarib, Y.E.; Bougharrafc, H.; Sahraouid, B. Linear and nonlinear optical properties of ZnO thin films deposited by pulsed laser deposition. J. Lumin. 2016, 169, 483. [Google Scholar] [CrossRef]
- Iliopoulos, K.; Czaplicki, R.; El Ouazzani, H.; Balandier, J.Y.; Chas, M.; Goeb, S.; Sallé, M.; Gindre, D.; Sahraoui, B. Physical origin of the third order nonlinear optical response of orthogonal pyrrolo-tetrathiafulvalene derivatives. Appl. Phys. Lett. 2010, 97, 101104. [Google Scholar] [CrossRef]
- Kulyk, B.; Taboukhat, S.; Akdas-Kilig, H.; Fillaut, J.L.; Boughaleb, Y.; Sahraoui, B. Nonlinear refraction and absorption activity of dimethylaminostyryl substituted BODIPY dyes. RSC Adv. 2016, 6, 88. [Google Scholar] [CrossRef]
- Kulyk, B.; Guichaoua, D.; Ayadi, A.; El-Ghayoury, A.; Sahraoui, B. Functionalized azo-based iminopyridine rhenium complexes for nonlinear optical performance. Dyes Pigment. 2017, 145, 256. [Google Scholar] [CrossRef]
- Kulyk, B.; Waszkowska, K.; Busseau, A.; Villegas, C.; Hudhomme, P.; Dabos-Seignon, S.; Zawadzka, A.; Legoupy, S.; Sahraoui, B. Penta(zinc porphyrin)[60]fullerenes: Strong reverse saturable absorption for optical limiting applications. Appl. Surf. Sci. 2020, 533, 147468. [Google Scholar] [CrossRef]
- Valligatla, S.; Haldar, K.K.; Patra, A.; Desai, N.R. Nonlinear optical switching and optical limiting in colloidal CdSe quantum dots investigated by nanosecond Z-scan measurement. Opt. Laser Techno. 2016, 84, 87. [Google Scholar] [CrossRef]
- Zhang, F.; Chen, K.Q.; Wang, Y.Z.; Ge, Y.Q.; Wu, L.M.; Xu, S.X.; Bao, Q.L.; Zhang, H. Nonlinear optical absorption and ultrafast carrier dynamics of copper antimony sulfide semiconductor nanocrystals. J. Mater. Chem. 2018, 6, 8977. [Google Scholar] [CrossRef]
Laser | Sample | T (%) | Ref. | ||||
---|---|---|---|---|---|---|---|
515 nm, 340 fs | Bio-Te-PmPV | 54.0 | 6.17 | 201±35 | −(1.07±0.11) | 1.74±0.18 | [30] |
515 nm, 340 fs | BP dispersion | 86.2 | 1.48 | N/A | −(0.49±0.05) | 3.30±0.35 | [17] |
515 nm, 216 fs | BQDs | 17.7 | 17.30 | 575±143 | −(1.29±0.38) | 0.71±0.19 | This work |
1030 nm, 340 fs | Bio-Te-PmPV | 52.4 | 6.47 | 145±23 | −(2.76±0.58) | 4.27±0.91 | [30] |
1030 nm, 340 fs | BP dispersion | 80.3 | 2.19 | N/A | −(0.53±0.12) | 2.40±0.49 | [17] |
1030 nm, 216 fs | Graphene-NSs | 75.5 | 2.81 | 49±14 | −(0.80±0.11) | 2.84±0.41 | This work |
1030 nm, 216 fs | BQDs | 32.3 | 11.30 | 225±64 | −(2.56±0.79) | 2.26±0.70 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, S.; Chen, Q.; Lin, H.; Zhou, F.; Gong, Y.; Pan, C.; Lu, S. Scalable Production of Boron Quantum Dots for Broadband Ultrafast Nonlinear Optical Performance. Nanomaterials 2021, 11, 687. https://doi.org/10.3390/nano11030687
Meng S, Chen Q, Lin H, Zhou F, Gong Y, Pan C, Lu S. Scalable Production of Boron Quantum Dots for Broadband Ultrafast Nonlinear Optical Performance. Nanomaterials. 2021; 11(3):687. https://doi.org/10.3390/nano11030687
Chicago/Turabian StyleMeng, Shuolei, Qianyuan Chen, Hongjian Lin, Feng Zhou, Youning Gong, Chunxu Pan, and Shunbin Lu. 2021. "Scalable Production of Boron Quantum Dots for Broadband Ultrafast Nonlinear Optical Performance" Nanomaterials 11, no. 3: 687. https://doi.org/10.3390/nano11030687
APA StyleMeng, S., Chen, Q., Lin, H., Zhou, F., Gong, Y., Pan, C., & Lu, S. (2021). Scalable Production of Boron Quantum Dots for Broadband Ultrafast Nonlinear Optical Performance. Nanomaterials, 11(3), 687. https://doi.org/10.3390/nano11030687